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Two integrable random vectors ξ and ξ∗ in R
d are said to be zonoid equivalent if, for each u ∈ R

d , the
scalar products 〈ξ,u〉 and 〈ξ∗, u〉 have the same first absolute moments. The paper analyses stochastic
processes whose finite-dimensional distributions are zonoid equivalent with respect to time shift (zonoid
stationarity) and permutation of its components (swap invariance). While the first concept is weaker than
the stationarity, the second one is a weakening of the exchangeability property. It is shown that nonetheless
the ergodic theorem holds for swap-invariant sequences and the limits are characterised.

Keywords: ergodic theorem; exchangeability; isometry; swap-invariance; zonoid

1. Introduction

The first absolute moments E|〈ξ,u〉|, u ∈ R
d , for the scalar product of an integrable random

vector ξ in R
d and u, admit a straightforward geometric interpretation as the support function

of a zonoid of ξ , see [29]. Zonoids form an important family of convex bodies (i.e., convex
compact sets) in the Euclidean space R

d , see [37]. Zonoids are obtained as limits of zonotopes
in the Hausdorff metric, while zonotopes are Minkowski (elementwise) sums of a finite number
of segments.

The sums of segments and the limits of sums can be interpreted as expectations of random
segments. By translation, it is possible to assume that all segments are centred and so are of the
form [−ξ, ξ ] for a random vector ξ ∈ R

d . Recall that the support function of a set K in R
d is

given by

hK(u) = sup
{〈u,x〉: x ∈ K

}
, u ∈ R

d,

where 〈u,x〉 denotes the scalar product. The expectation of [−ξ, ξ ] is the convex set Zo
ξ identified

by its support function, which is equal to the expected support function of the segment (see [23],
Section 2.1), that is,

hZo
ξ
(u) = E

∣∣〈u, ξ 〉∣∣, u ∈ R
d .
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If ξ is integrable, Zo
ξ is an origin symmetric convex body (compact convex set). For instance, if ξ

is discrete in R
2 with only two possible values, then Zo

ξ is a parallelogram; if ξ is isotropic, then
Zo

ξ is a ball.
A slightly different construction of zonoids associated with random vectors was suggested by

Koshevoy and Mosler, see [21] and [29]. Namely, the zonoid Zξ of ξ is the expectation of [0, ξ ]
and so the support function of Zξ is given by

hZξ (u) = E〈u, ξ 〉+, u ∈ R
d,

where x+ = max(x,0). In order to stress the difference between the two variants of zonoids, we
call Zo

ξ the centred zonoid of ξ , see Section 5 for the comparison of the two concepts. Note that
Zξ is also well defined for some non-integrable ξ . Nonetheless from now on we always assume
that all mentioned random variables and random vectors are integrable and not identically zero.

It is well known that the zonoid of ξ does not uniquely characterise its distribution. For in-
stance, on the line, Zξ is the segment with end-points determined by the expectations of the pos-
itive and negative parts of ξ , while Zo

ξ is the segment with end-points ±E|ξ |. Thus, all random
variables with the same first absolute moment are not distinguishable in terms of their centred
zonoids.

The concept of zonoid is useful in multivariate statistics to define trimming and data depth, see
[6,29]. In case of (non-centred) zonoids, the expectations h(k,u) = E(k +〈u, ξ 〉)+ for k ∈ R and
u ∈ R

d uniquely determine the distribution of ξ , and determine the support function of a convex
body in R

d+1 called the lift zonoid of ξ , see [21,29]. In finance, E(k +〈u, ξ 〉)+ becomes the non-
discounted price of a basket call option with strike −k for k ≤ 0 (if the expectation is taken with
respect to a chosen martingale measure). The well-known result of Breeden and Litzenberger [2]
saying that the prices of all call options determine the distribution of ξ now becomes a corollary
of a general uniqueness result for lift zonoids, see [29], Theorem 2.21, and [26].

Definition 1. Two integrable random vectors ξ and ξ∗ in R
d are called zonoid equivalent if their

centred zonoids coincide, that is,

E
∣∣〈u, ξ 〉∣∣ = E

∣∣〈u, ξ∗〉∣∣
for all u ∈ R

d . Two families of integrable random variables {ξt , t ∈ T } and {ξ∗
t , t ∈ T } are called

zonoid equivalent if all their finite-dimensional distributions are zonoid equivalent.

The concept of zonoid equivalence is closely related to spectral representations of symmetric
stable (SαS) and max-stable processes. For instance, each SαS process with α ∈ (0,2) admits
the spectral representation

Xt
d∼

∫
E

ft (z)Mα(dz), t ∈ T , (1.1)

where the equality is understood in the sense of all finite-dimensional distributions, {ft , t ∈ T }
is a family of functions from Lα(E, E ,μ) for a measurable space (E, E ,μ) and Mα is an SαS

random measure with control measure μ, see [33]. If Xt admits another spectral representation
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on a measurable space (G, G, ν) with functions {gt }, then the collections of functions {ft } and
{gt } satisfy ∫

E

∣∣∣∣∣
n∑

i=1

uifti

∣∣∣∣∣
α

dμ =
∫

G

∣∣∣∣∣
n∑

i=1

uigti

∣∣∣∣∣
α

dν (1.2)

for all n ≥ 1, u1, . . . , un ∈ R and t1, . . . , tn ∈ T . This is easily seen by computing the character-
istic function of the spectral representations, see [33], Section 3.2. If α = 1 and both μ and ν

are probability measures, then (1.2) can be interpreted as the zonoid equivalence of stochastic
processes {ft } and {gt }.

Fairly similar facts hold for max-stable processes, see [15,18,39,40]. This close relationship
between stable processes and zonoid equivalence makes it possible to figure out a number of
properties of stochastic processes in relation to their zonoid equivalence.

The paper starts with the analysis of the main implication of the zonoid equivalence. Namely,
in Section 2 we show that the zonoid equivalence yields the equality of the expected values for
all even one-homogeneous function of the random vectors. Stochastic processes whose finite-
dimensional distributions remain zonoid equivalent for time shifts are discussed in Section 3.
This zonoid stationarity property is brought in relationship to the stationarity of related stable
and max-stable processes through their LePage representations.

A result of Hardin ([13], Theorem 1.1) implies that the distribution of an integrable random
vector ξ is uniquely determined by E|1 + 〈u, ξ 〉| for all u ∈ R

d , equivalently by the centred
zonoid of (1, ξ). In Theorem 8, we show that, if ξ is symmetric, it is possible to replace 1 by any
random variable taking values ±1.

Section 4 introduces the swap-invariance property for a random sequence that amounts to the
zonoid equivalence of each permutation of all its finite subsequences, which is weaker than the
exchangeability property. We prove the ergodic theorem for swap-invariant sequences and char-
acterise the limits, thereby generalising the classical results for exchangeable sequences. Zonoid
equivalence of positive random vectors with respect to permutation of two their components has
been investigated in [27] and for all possible permutations in [28] in view of financial applica-
tions.

Section 5 discusses relationships between centred and non-centred zonoids and also another
symmetry property being stronger than the exchangeability. In this relation, consider

E|u0 + u1ξ1 + · · · + udξd |
as function f (u0, u1, . . . , ud) of (d + 1) real arguments. The swap invariance means exactly
that f is invariant for permutations of u1, . . . , ud with u0 = 0; the exchangeability corresponds
to the permutation invariance of u1, . . . , ud for any (and then all) u0 	= 0. Assuming the full
permutation invariance for all u0, u1, . . . , ud imposes a property (called lift swap-invariance),
which is stronger than the exchangeability of ξ1, . . . , ξd . A variant of this property for non-
centred zonoids has been considered in [26] and [28] motivated by applications in finance.

Finally, Section 6 collects a number of relevant results concerning zonoids of particular dis-
tributions. It is shown that zonoids identify uniquely distributions from location-scale families
under rather mild conditions. The special case of random vectors with positive coordinates is
also analysed, in particular log-infinitely divisible laws being important in financial applications.
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The consideration of (non-centred) zonoids makes it possible to study possibly non-integrable
random vectors, which is left for a future work. The same relates to Lp-zonoids considered
in [25]. A number of results of this paper can be generalised for random elements in Banach
spaces along the lines of [1].

2. Expectations of homogeneous functions

Let H (resp., He) denote the family of all (resp., even) measurable homogeneous functions
R

d 
→ R+, so that f (cx) = cf (x) for all x ∈ R
d and c ≥ 0.

Theorem 2. Two random vectors ξ and ξ∗ are zonoid equivalent if and only if Ef (ξ) = Ef (ξ∗)
for all f ∈ He .

Proof. Sufficiency is immediate, since f (x) = |〈u,x〉| belongs to He .
Necessity. First, show that E‖ξ‖ = E‖ξ∗‖. The integral of the support function of a convex

body K over the unit sphere is 1
2dκdb(K), where b(K) is called the mean width of K and κd

is the volume of the unit ball in R
d . By changing the order of integral and expectation, it is

easy to see that the mean width of Zo
ξ equals the expected mean width of the segment [−ξ, ξ ].

The mean width of this segment can be found from the Steiner formula ([37], Equation (4.1.1)),
see also [37], page 210, as b([−ξ, ξ ]) = 4‖ξ‖κd−1/(dκd). Thus, E‖ξ‖ = b(Zo

ξ )dκd/(4κd−1) is
uniquely determined by Zo

ξ .
Denote the common value of E‖ξ‖ and E‖ξ∗‖ by c, and define probability measure Q with

density

dQ
dP

= ‖ξ‖
c

and another measure Q∗ generated by ξ∗ in the same way. Denote by EQ the expectation with
respect to Q (and, resp., with respect to Q∗). Then for all u ∈ R

d

1

c
E

∣∣〈u, ξ 〉∣∣ = 1

c
E

∣∣〈u, ξ 〉∣∣1{‖ξ‖	=0} = EQ

∣∣∣∣
〈
u,

ξ

‖ξ‖
〉∣∣∣∣1{‖ξ‖	=0} = EQ

∣∣∣∣
〈
u,

ξ

‖ξ‖
〉∣∣∣∣

and similarly c−1E|〈u, ξ∗〉| = EQ∗ |〈u, ξ∗/‖ξ∗‖〉|. Therefore, ξ/‖ξ‖ under Q and ξ∗/‖ξ∗‖ under
Q∗ share the same zonoid. Define measure μ on the unit Euclidean sphere by setting μ(A) =
Q(ξ/‖ξ‖ ∈ A) and correspondingly μ∗. The convex body Zo

μ with the support function

hZo
μ
(u) =

∫
Sd−1

∣∣〈u,x〉∣∣μ(dx) = EQ

∣∣∣∣
〈
u,

ξ

‖ξ‖
〉∣∣∣∣

is termed the zonoid of μ, see [37], Section 3.5. It is well known that an even finite measure on
the unit sphere is uniquely determined by its zonoid, see [37], Theorem 3.5.3. Since μ and μ∗
share the same zonoid, the integrals of any even and integrable function with respect to them
coincide.
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For f ∈ He, we have f (0) = 0 and therefore

Ef (ξ) = E
[
f (ξ)1‖ξ‖	=0

] = EQf
(
ξ/‖ξ‖) =

∫
Sd−1

f (u)μ(du).

Hence, Ef (ξ) = Ef (ξ∗) for each f ∈ He . A short calculation shows that integrability of
f (ξ/‖ξ‖) under Q implies integrability of f (ξ∗/‖ξ∗‖) under Q∗ and vice versa. �

If ξ and ξ∗ are zonoid equivalent, then f (ξ) and f (ξ∗) are two zonoid equivalent random
variables for all f ∈ He . The following result is easily derived by observing that Ef (ξ) =
E 1

2 (f (ξ) + f (−ξ)) for symmetric ξ .

Corollary 3. Two symmetric random vectors ξ and ξ∗ are zonoid equivalent if and only if
Ef (ξ) = Ef (ξ∗) for all f ∈ H. In particular, EhK(ξ) = EhK(ξ∗) for each convex body K .

Corollary 4. Let f1, . . . , fk ∈ He. If ξ and ξ∗ are zonoid equivalent, then the vectors
(f1(ξ), . . . , fk(ξ)) and (f1(ξ

∗), . . . , fk(ξ
∗)) are zonoid equivalent as long as one of these vectors

is integrable.

Proof. It suffices to use the fact that f (x) = |u1f1(x) + · · · + ukfk(x)| belongs to He and f (ξ)

is integrable. �

The following easy fact is also worth noticing.

Proposition 5. Two random vectors are zonoid equivalent if and only if all their linear transfor-
mations are zonoid equivalent.

Proof. For each matrix A, we have E|〈Aξ,u〉| = E|〈ξ,Au〉| and so Aξ and Aξ∗ are zonoid
equivalent if ξ and ξ∗ are. �

In the following, we often consider random vectors with positive coordinates (shortly called
positive vectors), which are usually denoted by the letter η.

Proposition 6. Two positive integrable random vectors η and η∗ are zonoid equivalent if and
only if Ef (η) = Ef (η∗) for each f ∈ H. In particular, the zonoid equivalence implies Eη = Eη∗.

Proof. While the sufficiency is evident, the necessity can be proved similarly to Theorem 2 with
Q having density η1/Eη1. The equality of expectations is obtained by setting f (x) = (xi)+ for
any i = 1, . . . , d . �

For positive random vectors, the concept of a max-zonoid is also useful. The max-zonoid Mη

of a positive random vector η = (η1, . . . , ηd) is defined as the expectation of the crosspolytope
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in R
d , which is the convex hull of the origin and the standard basis vectors scaled by η1, . . . , ηd ,

see [24]. The support function of Mη is given by

hMη(u) = E max(0, u1η1, . . . , udηd), u = (u1, . . . , ud) ∈ R
d . (2.1)

This support function is most interesting for positive u1, . . . , ud , where it is possible to omit
zero in the right-hand side of (2.1). The following result has been proved analytically in [39],
Theorem 1.1. An alternative proof (using a geometric argument combined with the change of
measure technique) has recently been given in [28], Proposition 1.

Proposition 7. Two positive integrable random vectors η and η∗ have identical max-zonoids if
and only if η and η∗ are zonoid equivalent.

3. Isometries, representations of stable processes, and zonoid
stationarity

A result of Hardin ([13], Theorem 1.1) reformulated for random vectors implies that, for any
given positive p /∈ 2Z, the values E|1+〈u, ξ 〉|p for all u ∈ R

d determine uniquely the distribution
of random vector ξ ∈ R

d . If p = 1, this result means that the centred zonoid of (1, ξ) uniquely
identifies the distribution of ξ , cf. [21,29]. This also means that if two zonoid equivalent random
vectors contain the same coordinate being exactly one, then these random vectors are identically
distributed. Below we provide a generalisation of this result for p = 1 and symmetric random
vectors showing that it is possible to replace the constant 1 with any random variable taking
values ±1.

Theorem 8. Let ξ be a symmetric random vector in R
d . If ε is any random variable with val-

ues ±1, then the centred zonoid of (ε, ξ), that is, the values of

E
∣∣u0ε + 〈u, ξ 〉∣∣, u0 ∈ R, u ∈ R

d ,

determines uniquely the distribution of ξ .

Proof. For each function f (ε, ξ) we have f (ε, ξ) + f (−ε, ξ) = f (1, ξ) + f (−1, ξ), so that

E
∣∣u0ε + 〈u, ξ 〉∣∣ + E

∣∣−u0ε + 〈u, ξ 〉∣∣ = E
∣∣u0 + 〈u, ξ 〉∣∣ + E

∣∣−u0 + 〈u, ξ 〉∣∣.
Since ξ is symmetric,

E
∣∣−u0 + 〈u, ξ 〉∣∣ = E

∣∣u0 + 〈u,−ξ 〉∣∣ = E
∣∣u0 + 〈u, ξ 〉∣∣.

Thus,

E
∣∣u0 + 〈u, ξ 〉∣∣ = 1

2

(
E

∣∣u0ε + 〈u, ξ 〉∣∣ + E
∣∣−u0ε + 〈u, ξ 〉∣∣)
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for all u0 	= 0 and u ∈ R
d . Therefore, the right-hand side is determined by the zonoid of (ε, ξ),

and it remains to note that the left-hand side uniquely identifies the distribution of ξ by [13],
Theorem 1.1. �

An integrable random vector ξ in R
d , which is not a.s. zero, generates a norm on R

d by

‖u‖ξ = E
∣∣〈u, ξ 〉∣∣.

With this definition, zonoid equivalence of ξ and ξ∗ means that ‖ · ‖ξ and ‖ · ‖ξ∗ are two iden-
tical norms on R

d . The uniqueness result in [13] is used to characterise isometries of subspaces
of L1 that contain the function identically equal one. Theorem 8 makes it possible to obtain
similar results for subspaces of L1 that consist of symmetric random variables and contain ran-
dom variables taking values ±c for any fixed c > 0. The characterisation of linear isometries
defined on families of random variables are important for the studies of symmetric stable laws,
see [13,14,32].

A collection of integrable random elements {ξt , t ∈ T } is a subset of the space L1 =
L1(�,K,P). Denote by Fξ the L1-closure of the linear space generated by this collection. As-
sume that � is a Borel space with K being the Borel σ -algebra.

Assume that {ξt } is rigid, that is, any linear isometry U0 :Fξ 
→ L1 is uniquely extendable to
the isometry U :L1 
→ L1. It is well known [13,32] that the rigidity is guaranteed by imposing
that the random elements {ξt } have full support, the union of its supports is � up to a null set
(see [14] for details), and that ξt/ξ̄ , t ∈ T , generate the σ -algebra K, where ξ̄ ∈ Fξ is a random
variable with full support (its existence is guaranteed by [13], Lemma 3.2). Note that the family
{ξt } is often called minimal instead of rigid, as it gives rise to a minimal spectral representation
of a SαS process via (1.1), see also [14].

Consider another rigid collection {ξ∗
t , t ∈ T }, which is zonoid equivalent to {ξt , t ∈ T }. Then

the isometry between Fξ and Fξ∗ can be characterised as follows, see Theorem 3.2 in [32]. For
every t ∈ T ,

ξ∗
t (ω) = h(ω)ξt

(
φ(ω)

)
P-a.s., (3.1)

where φ :� → �, h :� → R \ {0} are measurable and |ξ̄ |dP = |ξ̄ |(|h|dP) ◦ φ−1, for a random
variable ξ̄ ∈ Fξ with full support.

A similar construction of isometries can be carried over for max-zonoids and non-negative
integrable functions, see [10], where such isometries are called pistons. Since for positive random
vectors the zonoid equivalence and the max-zonoid equivalence are identical (see Proposition 7),
the isometries corresponding to max-zonoids are also characterised by (3.1).

Recall that each symmetric 1-stable (i.e., SαS with α = 1) random vector X in R
d can be

represented as the LePage series

X =
∞∑

k=1

�−1
k ξ (k), (3.2)

where �k = ζ1 + · · · + ζk are successive sums of i.i.d. standard exponential random variables
and ξ, ξ (1), ξ (2), . . . are i.i.d. integrable symmetric random vectors, see [22]. Note that the ξ ’s
are often assumed to be distributed on the unit sphere with an extra normalisation constant in



Invariance properties 1217

front of the sum, see [33], Corollary 1.4.3. A similar series representation with the sum replaced
by the maximum, and positive ξ yields simple (i.e., having unit Fréchet marginals) max-stable
random vectors, see [9] and [12]. If ξ is a stochastic process, similar series representations yield
symmetric 1-stable processes and simple max-stable processes. For instance, a result of [9] says
that each stochastically continuous simple max-stable process Y can be represented as

Yt = max
k≥1

�−1
k ξ

(k)
t , t ∈ R

d , (3.3)

where {ξ (k)
t , t ∈ R

d} are i.i.d. copies of an integrable positive process {ξt , t ∈ R
d}. In the follow-

ing, we refer to (3.2), its variant for stochastic processes or their max-analogues as the LePage
series.

Theorem 9. Two LePage series X and X∗ given by (3.2) (resp., their max-analogues) with in-
tegrable symmetric (resp., positive) summands distributed as ξ and ξ∗ coincide in distribution if
and only if ξ and ξ∗ are zonoid equivalent.

Proof. It suffices to consider the case of ξ being a random vector in R
d . The points

{(�−1
k , ξ (k)), k ≥ 1} build the Poisson point process on (0,∞) with intensity t−2, t > 0, and

independent marks ξ (k), k ≥ 1. The formula for the probability generating functional of the
marked Poisson process (see [8]) yields the characteristic function of X

Eeı〈u,X〉 = exp

{
−

∫ ∞

0
E

(
1 − eıt〈u,ξ〉)t−2 dt

}

= exp

{
−

∫ ∞

0
E

(
1 − cos

(
t〈u, ξ 〉))t−2 dt

}
= exp

{
−π

2
E

∣∣〈u, ξ 〉∣∣},

since
∫ ∞

0 (1 − cos(s))s−2 ds = π/2, where ı denotes the imaginary unit. Thus, the distribution
of X is determined by E|〈u, ξ 〉|, u ∈ R

d .
The result for max-stable random vectors follows from the association argument from [15]

or [39] or a direct calculation of the cumulative distribution functions combined with Proposi-
tion 7. �

Let {ξt , t ∈ T } be a stochastic process such that ξt is integrable for all t ∈ T , where T is either
integer grid Z

d or R
d .

Definition 10. The process {ξt , t ∈ T } is called zonoid stationary if {ξt , t ∈ T } and {ξt+s , t ∈ T }
are zonoid equivalent for all s ∈ T .

Obviously all integrable stationary processes are zonoid stationary. If both ξ and ξ∗ are cen-
tred Gaussian processes, then by Corollary 35 their zonoid equivalence implies the equality of all
finite-dimensional distributions, so their zonoid stationarity is equivalent to the conventional sta-
tionarity. The same holds for symmetric α-stable processes with given α > 1. The fact that zonoid
does not uniquely determine the general distribution suggests that there exist non-stationary but
zonoid stationary processes. The next result follows from Theorem 9.
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Corollary 11. A symmetric 1-stable process (resp., max-stable process with unit Fréchet
marginals) obtained as the LePage series (3.2) (resp., (3.3)) is stationary if and only if ξ is
zonoid stationary.

If the max-stable process Y given by (3.3) is stationary, the process log ξ is called Brown–
Resnick stationary, see [17]. Corollary 11 shows that the Brown–Resnick stationarity of log ξ is
equivalent to the zonoid stationarity of a positive stochastic process ξ .

Example 12. The geometric Brownian motion eWt−|t |/2, where Wt , t ∈ R, is a double-sided
Brownian motion, is zonoid stationary. The corresponding stationary process given by (3.3) was
introduced by Brown and Resnick [3]. Kabluchko et al. [17] replaced Wt by a Gaussian process
ξt with mean μt and variance σ 2

t . Their result implies that eξt is zonoid stationary if and only if
ξt − μt has stationary increments and μt + 1

2σ 2
t is constant for all t .

For a zonoid stationary process ξ the spaces generated by {ξt , t ∈ T } and {ξt+h, t ∈ T } are iso-
metric for all h ∈ T . This gives rise to a representation of ξ in term of isometries. Following [30],
a measurable function φ :� × T → � is said to be a measurable flow if φt1+t2(ω) = φt1(φt2(ω))

and φ0(ω) = ω for all t1, t2 ∈ T and ω ∈ �. The flow φ is said to be non-singular if P ◦ φ−1
t is

equivalent to P for all t ∈ T . A measurable function r :� × T → R is said to be a cocycle for a
measurable flow φ if rt1+t2(ω) = rt1(ω)rt2(φt1(ω)) for all t1, t2 ∈ T and for P-almost all ω ∈ �.
By replicating the proofs of [30], Theorem 3.1, and [31], Theorem 2.2, it is easy to show that a
zonoid stationary process ξ with rigid (minimal) family Fξ satisfies

ξt (ω) = rt (ω)

(
dP ◦ φt

dP

)
(ω)(ξ0 ◦ φt )(ω) P-a.s.,

where {φt , t ∈ T } is a measurable non-singular flow and {rt , t ∈ T } is a cocycle for φ taking
values in {−1,1}.

4. Swap invariant sequences

A finite or infinite random sequence ξ = (ξ1, ξ2, . . .) of random elements is said to be exchange-
able if its distribution is invariant under finite permutations, that is, the distribution of any finite
subsequence is invariant under any permutation of its elements, see, for example, [20], Sec-
tion 1.1.

Definition 13. An integrable random vector is called swap-invariant if all random vectors ob-
tained by permutations of its coordinates are zonoid equivalent. A sequence of integrable random
variables is called swap-invariant if all its finite subsequences are swap-invariant.

An integrable random vector ξ with positive components exhibiting the swap-invariance prop-
erty restricted to permutation of its two components ξi and ξj is called ij -swap-invariant. This
weaker variant of the swap-invariance property has been already introduced and applied in a
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financial context in [27] and [36]. The swap-invariance property of the vector of asset prices en-
sures that different financial derivatives share the same price and can be freely exchanged, which
is an essential tool for semi-static hedging of barrier options, see [4].

The swap-invariance property of ξ immediately implies that E|ξ1| = · · · = E|ξd |. It is obvious
that the exchangeable sequence is swap-invariant. The following examples show that the swap-
invariance is weaker than the exchangeability property.

Example 14 (See [7]). On the probability space � = [0,1] with the Lebesgue measure define

ξn = n(n + 1)1ω∈((n+1)−1,n−1], n ≥ 1. (4.1)

By a direct computation it is easy to see that

E|u1ξ1 + · · · + unξn| =
n∑

i=1

|ui |,

so that the sequence is indeed swap-invariant, but not exchangeable. Further examples of this type
can be obtained for general sequences of non-negative random variables with equal expectations
and disjoint supports.

Example 15. Let Z1,Z2, . . . be a sequence of i.i.d. standard normal random variables and let
{bk, k ≥ 1} be a sequence of real numbers such that

∑
b2
k < ∞. Define ηi = eξi , i ≥ 1, where

ξi = Zi +
∞∑

k=1

bkZk + μi

and

μi = −1

2
Var(ξi) = −1

2

(
1 +

∞∑
k=1

b2
k + 2bi

)
.

By Corollary 38, η is swap-invariant. Note that no two components ηi and ηj are identically
distributed unless bi = bj .

If the extended sequence (1, ξ) (or (ε, ξ) with ε ∈ {−1,1} and symmetric ξ ) is swap-invariant,
then ξ is exchangeable. Actually, the swap invariance of such extended sequence is stronger than
the exchangeability of ξ , see Section 5.

It is well known that each exchangeable sequence of integrable random variables satisfies sev-
eral ergodic theorems. Given an infinite random sequence {ξn, n ≥ 1}, denote the corresponding
tail σ -algebra by Tξ , the shift-invariant σ -algebra by Iξ , and the permutation-invariant σ -field
by Eξ . These σ -algebras are identical modulo null sets for exchangeable sequences, see [20],
Corollary 1.6. Since an infinite exchangeable sequence is stationary, the following result is a
direct consequence of [19], Theorem 10.6, and [20], Corollary 1.6.
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Theorem 16. Let ξ1, ξ2, . . . be an exchangeable sequence of integrable random variables. Then

n−1
n∑

i=1

ξi → E(ξ1 | Eξ ) a.s. and in L1 as n → ∞.

In the following, we extend this fact to swap-invariant sequences. Recall that these sequences
by definition consist of integrable random variables.

Theorem 17. Let ξ1, ξ2, . . . be a swap-invariant sequence of random variables. Then n−1(ξ1 +
· · · + ξn) converges almost surely to an integrable random variable X as n → ∞.

Proof. Assume first that all random variables ξ1, ξ2, . . . are symmetric and that at least one ran-
dom variable (say ξ1) is non-zero with probability one. Recall that E|ξi | is the same for all i.
Define an equivalent to P probability measure P1 by

dP1

dP
= |ξ1|

E|ξ1| . (4.2)

For any finite subsequence ξ = (ξ1, ξk1 , . . . , ξkd
),

E|〈u, ξ 〉|
E|ξ1| = EP1

∣∣∣∣u1ε + u2
ξk1

|ξ1| + · · · + ud

ξkd

|ξ1|
∣∣∣∣, (4.3)

where ε = ξ1/|ξ1| is the sign of ξ1 and EP1 denotes the expectation with respect to P1. By The-
orem 8, the right-hand side of (4.3) determines the distribution of (ξk1 , . . . , ξkd

)/|ξ1| under P1.
By writing (4.3) for a permutation ξki1

, . . . , ξkid
we arrive at the conclusion that the sequence

ξ2|ξ1| ,
ξ3|ξ1| , . . . is exchangeable under P1. Theorem 16 yields that

1

n

(
ξ2

|ξ1| + · · · + ξn

|ξ1|
)

→ Z P1-a.s. as n → ∞

for some random variable Z. Since P1 and P are equivalent, the same holds P-a.s. Thus,

ξ2 + · · · + ξn

n
→ X = |ξ1|Z a.s. as n → ∞.

It is obviously possible to add ξ1 in the numerator without altering the limit.
If the sequence {ξn} is no longer symmetric, consider an independent symmetric random vari-

able ε with values ±1. Then the sequence {εξn, n ≥ 1} is symmetric and swap-invariant, which
is seen by the total probability formula. As shown above, {εξn} satisfies the ergodic theorem with
limit Xε . Then the original sequence {ξn} satisfies the ergodic theorem with the limit εXε (note
that ε and Xε may be dependent).

It remains to consider the case when all ξi have an atom at zero. Fix any k ≥ 1 and define a
new measure Pk by

dPk

dP
= |ξk|

E|ξk| .
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The function (x1, . . . , xd) 
→ |u1x1 + · · · + udxd |1xk 	=0 is in He , hence

E|u1ξ1 + u2ξ2 + · · · + ukξk + · · · + udξd |1ξk 	=0

= E|u1ξ1 + u2ξi2 + · · · + ukξk + · · · + unξid |1ξk 	=0

for all u1, . . . , ud ∈ R and all permutations i1, . . . , id with ik = k. Thus, the sequence
(ξ1, . . . , ξk−1, ξk+1, . . .)/|ξk| is exchangeable under Pk . Since Pk is equivalent to P restricted on
{ξk 	= 0}, n−1(ξ1 + · · · + ξn) converges to some random variable X for almost all ω ∈ {ξk 	= 0}.
Note that the same limit appears under Pm for m 	= k for almost all ω such that ξk(ω) 	= 0 and
ξm(ω) 	= 0. Finally, set X(ω) = 0 for all ω ∈ � such that ξn(ω) = 0 for all n ≥ 1.

Since ξ1, ξ2, . . . have the same first absolute moment, the integrability of X follows trivially
by Fatou’s lemma and the triangle inequality. �

Remark 18. A proof of Theorem 17 for almost surely positive swap-invariant sequences can be
alternatively carried over by using ξ1 to change the measure and then referring to [13], Theo-
rem 1.1.

Theorem 19. Assume that a swap-invariant sequence ξ1, ξ2, . . . satisfies one of the following
conditions:

(a) ξk 	= 0 a.s. for some k ≥ 1,
(b) ξ1, ξ2, . . . is uniformly integrable.

Then the convergence of n−1(ξ1 + · · · + ξn) → X also holds in L1.

Proof. (a) The proofs of Theorems 17 and 16 yield that

E
∣∣n−1(ξ1 + · · · + ξn) − X

∣∣1ξk 	=0 → 0 as n → ∞,

while P(ξk 	= 0) = 1.
(b) It is well known that the uniform integrability of {ξn, n ≥ 1} implies the uniform integra-

bility of {(ξ1 + · · · + ξn)/n,n ≥ 1}. The a.s. convergence implies the L1-convergence in view of
the uniform integrability property, see [19], Proposition 4.12. �

Example 20 (Example 14 continuation). For the sequence (4.1), n−1(ξ1 + · · · + ξn) → 0 a.s.,
but En−1(ξ1 + · · · + ξn) = 1, so the ergodic theorem holds almost surely but not in L1.

The following theorem characterises the limits in Theorem 17 for the case when at least one
random variable in the sequence does not have an atom at zero.

Theorem 21. Let ξ = (ξ1, ξ2, . . .) be a symmetric swap-invariant sequence such that ξ1 	= 0 a.s.
Then

1

n

n∑
i=1

ξi → |ξ1|
E(|ξ1| | Eξ̃ )

E(ξ2 | Eξ̃ ) a.s. and in L1 as n → ∞, (4.4)

where ξ̃ = (ξ2/|ξ1|, ξ3/|ξ1|, . . .).
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Proof. The sequence ξ̃ is exchangeable under P1 defined by (4.2) and Theorem 16 implies

1

n

n∑
i=1

ξi

|ξ1| → EP1

[
ξ2

|ξ1|
∣∣∣ Eξ̃

]
a.s. and in L1 as n → ∞. (4.5)

Let Z be a Eξ̃ measurable and P1-integrable random variable. Then

EP1Z = E
|ξ1|Z
E|ξ1| = E

[
E

( |ξ1|Z
E|ξ1|

∣∣∣ Eξ̃

)]
= E

[
Z

E(|ξ1| | Eξ̃ )

E|ξ1|
]
. (4.6)

Let A ∈ Eξ̃ . By the definition of the conditional expectation

EP1

(
1AEP1

(
ξ2

|ξ1|
∣∣∣ Eξ̃

))
= EP1

(
1Aξ2/E|ξ1|

) = EP1

(
1AE

(
ξ2/E|ξ1| | Eξ̃

))

= EP1

[
1A

E(ξ2 | Eξ̃ )

E(|ξ1| | Eξ̃ )

E(|ξ1| | Eξ̃ )

E|ξ1|
]

= EP1

[
1A

E(ξ2 | Eξ̃ )

E(|ξ1| | Eξ̃ )

]
,

where the last equality follows from (4.6). The uniqueness of the conditional expectation yields

EP1

[
ξ2

|ξ1|
∣∣∣ Eξ̃

]
= E(ξ2 | Eξ̃ )

E(|ξ1| | Eξ̃ )
a.s.

This equation together with (4.5) yield the claim. �

With a similar proof, we arrive at the following result for positive sequences.

Proposition 22. Let ξ = (ξ1, ξ2, . . .) be a positive swap-invariant sequence. Then

1

n

n∑
i=1

ξi → ξ1

E(ξ1 | Eξ̃ )
E(ξ2 | Eξ̃ ) a.s. and in L1 as n → ∞, (4.7)

where ξ̃ = (ξ2/ξ1, ξ3/ξ1, . . .).

For non-symmetric swap-invariant sequences, we obtain the following result by applying the
total probability formula and Theorem 21.

Corollary 23. Let ξ = (ξ1, ξ2, . . .) be a swap-invariant sequence such that ξ1 	= 0 a.s. Then

1

n

n∑
i=1

ξi → |ξ1|
E(|ξ1| | Eεξ̃ )ε

E(εξ2 | Eεξ̃ ) a.s. and in L1 as n → ∞, (4.8)

where ε is the Rademacher random variable independent of ξ under P.
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Corollary 24. Let ξ = (ξ1, ξ2, . . .) be a swap-invariant sequence. If n−1(ξ1 +· · ·+ξn) converges
in L1 to a deterministic non-zero limit c, then (c, ξ) is swap-invariant and so ξ is exchangeable.

Proof. For m,n ≥ 1, the swap-invariance property implies

E

∣∣∣∣∣u1ξ1 + · · · + unξn + u0
1

m

m∑
k=1

ξn+k

∣∣∣∣∣ = E

∣∣∣∣∣ui1ξ1 + · · · + uinξn + ui0

1

m

m∑
k=1

ξn+k

∣∣∣∣∣
for all permutations (i0, i1, . . . , in) of (0,1, . . . , n). The L1-convergence then yields as m → ∞

E|u0c + u1ξ1 + · · · + unξn| = E|ui0c + ui1ξ1 + · · · + uinξn|,

so that (c, ξ) is swap-invariant. Its exchangeability follows from [13], Theorem 1.1. �

Example 25 (Example 15 continuation). We show that n−1(η1 + · · · + ηn) converges a.s. to

X = exp

( ∞∑
i=1

biZi − 1

2

∞∑
i=1

b2
i

)
.

By [20], Corollary 1.6, we can consider the tail σ -field Tη̃ , where

η̃ =
(

η2

η1
,
η3

η1
, . . .

)
= (

eZ2−Z1−(b2−b1), eZ3−Z1−(b3−b1), . . .
)
.

Since the functions x 
→ ex−(bi−b1), i ≥ 2, are bijective, Tη̃ can be written as Tη̃ = ⋂
n≥2 Fn,

where Fn = σ(Zn − Z1,Zn+1 − Z1, . . .). For each n ≥ 2, the random variable

Z̃n = lim
k→∞ k−1

k−1∑
i=0

(Z1 − Zn+i )

is clearly Fn-measurable and by the strong law of large numbers Z̃n = Z1 a.s. Thus, Z1 is mea-
surable with respect to the completion F̄n of Fn for all n ≥ 2, and hence T̄η̃ measurable. On the
other hand, for all n ≥ 2, the vector (Z2, . . . ,Zn) is independent of Fn+1 and therefore inde-
pendent of Tη̃ . Let f : R → R be continuous and bounded. Then for all A ∈ Tη̃ , the dominated
convergence theorem yields

E1Af

( ∞∑
i=2

biZi

)
= lim

k→∞ E1Af

(
k∑

i=2

biZi

)

= lim
k→∞ P(A)Ef

(
k∑

i=2

biZi

)
= P(A)Ef

( ∞∑
i=2

biZi

)
,
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which shows the independence of
∑∞

i=2 biZi and Tη̃ . Since E(Z | Tη̃) = E(Z | T̄η̃) a.s. for all
integrable Z,

E(η1 | Tη̃) = e(1+b1)Z1 e−(1+b2
1+2b1)/2,

E(η2 | Tη̃) = eb1Z1e−b2
1/2.

By Proposition 22,

1

n

n∑
i=1

ηi → XeZ1e−(1+2b1)/2

e(1+b1)Z1e−(1+b2
1+2b1)/2

eb1Z1e−b2
1/2 = X a.s. and in L1 as n → ∞.

5. Non-centred zonoids and lift swap invariance

It is possible to relate the centred and non-centred zonoids as Zo
ξ = Zξ +Z−ξ , that is, the centred

zonoid is the Minkowski (elementwise) sum of the zonoid of ξ and the zonoid of −ξ being
the central symmetric version Z−ξ = {−x: x ∈ Zξ } of Zξ . If ξ has a symmetric distribution,
then Zo

ξ = 2Zξ is a scaled zonoid of ξ . For a general integrable ξ , its centred zonoid equals
2Zεξ , where ε is the Rademacher random variable taking values ±1 with equal probability and
independent of ξ . Note that the conventional symmetrisation ξ − ξ ′ for i.i.d. ξ and ξ ′ is not
helpful in this context.

Proposition 26. If ξ and ξ∗ are two integrable random vectors, then Zξ = Zξ∗ if and only if
Eξ = Eξ∗ and Zo

ξ = Zo
ξ∗ .

Proof. Since 2a+ = |a| + a for any real a,

hZξ (u) = 1
2

(
E

∣∣〈ξ,u〉∣∣ + 〈Eξ,u〉).
It remains to note that the equality Zξ = Zξ∗ implies the equality of expectations by [29], Propo-
sition 2.11. �

In view of the above fact, Proposition 6 implies that for positive random vectors the equiva-
lences of centred and non-centred zonoids are identical concepts.

The centred zonoid of (1, ξ) (also called the centred lift zonoid of ξ ) determines uniquely the
distribution of ξ by [13], Theorem 1.1. In particular, the invariance of E|1 + u1ξ1 + · · · + udξd |
with respect to permutations of any u1, . . . , ud is equivalent to the exchangeability of ξ . If the
lifted random vector (1, ξ) is swap-invariant, that is, E|u0 + u1ξ1 + · · · + udξd | is invariant for
all permutations of u0, u1, . . . , ud , then ξ is called lift swap-invariant.

The lift swap-invariance property is slightly weaker than the joint self-duality of ξ meaning the
permutation invariance of E(u0 +u1ξ1 +· · ·+udξd)+ for all u0, u1, . . . , ud . The relation between
these two properties is exactly the same as the relation between the equality of centred and
non-centred zonoids. For instance, the lift swap-invariance implies that E|ξ1| = · · · = E|ξd | = 1,
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while the joint self-duality yields that Eξ1 = · · · = Eξd = 1. The both properties are identical for
random vectors with positive components.

By construction, the lift swap-invariance property implies the exchangeability of ξ and is
actually much stronger. For instance a vector of i.i.d. positive random variables is exchangeable,
but is neither jointly self-dual nor is lift swap-invariant unless all random variables equal 1 almost
surely, see [26].

A weaker version of the self-duality property corresponding to the permutation of the lifting
(constant) coordinate and one fixed other coordinate was studied in [26]. In particular, its uni-
variate version is often called put-call symmetry and is intensively discussed and applied in the
financial literature, see, for example, [5,38] and further references cited in [26].

Proposition 27. If a non-trivial random vector ξ is either jointly self-dual or is lift swap-
invariant with Eξi = 1 for any i, then all its components are almost surely positive random
variables with expectation being one.

Proof. It suffices to prove this for random variable ξ . If (1, ξ) is swap-invariant and Eξ = 1,
then (1, ξ) is jointly self-dual by Proposition 26, so it suffices to consider only the case of a
self-dual ξ . The self-duality property of ξ implies that

E
(
0 + (−1)ξ

)
+ = E(−1 + 0ξ)+,

so that Eξ− = 0 and so ξ is almost surely non-negative. Since

E(0 + 1ξ)+ = E(1 + 0ξ)+,

it follows that 1 = Eξ+ = Eξ .
If ξ has an atom at zero, then E(1−aξ)+, a ∈ R, is bounded from below by a positive number.

The self-duality implies that E(−a+ξ)+ is also bounded from below by the same number, which
is not possible for large a in view of the integrability of ξ . �

For integrable random vectors with positive components the symmetry properties can be re-
lated to each other. Following the notation of [27], define functions

κ̃j (x) =
(

x1

xj

, . . . ,
xj−1

xj

,
xj+1

xj

, . . . ,
xd

xj

)
, j = 1, . . . , d,

on x ∈ (0,∞)d . For any j = 1, . . . , d define a new probability measure by

dPj

dP
= ηj

Eηj

. (5.1)

This measure change was used in [11] in order to reduce the dimensionality when calculating
option prices. Consider an integrable random vector η with positive components. If Eηj = 1,
then the zonoid of η coincides with the lift zonoid of κ̃j (η) under Pj , see [28], Proposition 3.
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Theorem 28. Assume that η is an integrable random vector of dimension d ≥ 2 with positive
components. The following conditions are equivalent:

(a) η is swap-invariant under P.
(b) κ̃j (η) is lift swap-invariant (equivalently jointly self-dual) under Pj for any (and then all)

j ∈ {1, . . . , d}.
(c) In case d ≥ 3, for at least two j ∈ {1, . . . , d} (and then automatically for all j ), κ̃j (η) is

exchangeable under Pj .

Proof. The equivalence of (a) and (b) is obtained (for j = 1) by

E|u1η1 + · · · + udηd | = Eη1EP1

∣∣∣∣u1 + u2
η2

η1
+ · · · + ud

ηd

η1

∣∣∣∣,
so that permutations of coordinates in the left-hand side corresponds to permutations in the right-
hand side. The invariance with respect to the latter is equivalent to the lift swap invariance of
κ̃1(η) under P1, since the right-hand side identifies the distribution of κ̃1(η).

It is easy to see that (a) implies (c) for all j , since the exchangeability is a weaker property
than (b). Assuming (c) for j = 1,2 without loss of generality, we see that (η2/η1, . . . , ηd/η1) is
P1-exchangeable and (η1/η2, η3/η2, . . . , ηd/η2) is P2-exchangeable. The first fact implies that
E|〈u,η〉| is invariant with respect to permutation all but first coordinates of u, while the second
fact implies the invariance with respect to permutations of all coordinates excluding the second
one, so η is swap-invariant. �

6. Equality of zonoids

6.1. Location-scale families

Consider family of random variables ξ = μ+σX for an integrable random variable X and μ ∈ R,
σ > 0. These random variables are said to form a location-scale family.

Theorem 29. Assume that the distribution of X has infinite essential infimum and essential
supremum. Then the zonoid Zξ of a random variable ξ from the location-scale family gener-
ated by X uniquely determines the location and scale parameters of the distribution.

Proof. Without loss of generality, set EX = 0. Assume that the random variables μ + σX and
μ∗ + σ ∗X share the same zonoid. By Proposition 26, μ = μ∗.

In order to finish the proof, we show that E(μ+σX)+ is strictly increasing in σ for each fixed
μ ∈ R. This is obvious if μ = 0, since E(σX)+ = σEX+, which is strictly increasing in σ since
EX+ > 0.

Assume that μ < 0 and σ1 > σ2. Then

E
(
(μ + σ1X)+ − (μ + σ2X)+

)
= E

(
(μ + σ1X)1{−μ/σ1<X≤−μ/σ2}

) + (σ1 − σ2)E(X1{−μ/σ2<X}) > 0,
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where the last expectation is positive because X has unbounded support and EX = 0.
If μ > 0, the same argument applied to E(μ+σ1X)− yields that the expectation of the negative

part is strictly decreasing in σ and the equality E(μ + σ1X)+ = μ − E(μ + σ1X)− concludes
the proof. �

Note that Theorem 29 does not hold for the centred zonoid Zo
ξ unless it is assumed that the

expectation of ξ is known and so Zξ is also identified.

Corollary 30. Assume that random variable ξ has infinite essential infimum and essential supre-
mum. If Zξ = Zσξ+μ, then μ = 0 and σ = 1.

Corollary 31. Two normally distributed d-dimensional random vectors ξ and ξ∗ coincide in
distribution if and only if Zξ = Zξ∗ .

Proof. For u ∈ R
d the random variables 〈ξ,u〉 and 〈ξ∗, u〉 belong to the same location-scale

family. The proof is finished by referring to Theorem 29 and noticing that all one-dimensional
projection of a random vector uniquely determine its distribution. �

The uniqueness holds also for the location scale family obtained as μ + σX for a symmetric
stable random variable X.

Example 32 (Distribution with bounded support). Assume that EX = 0 and that X has finite
essential infinum, that is, there exists a constant c such that X ≥ c a.s. Choose μ > 0. Then for all
σ < −μ/c the random variable ξ = μ+ σX is a.s. positive and so the expectation of its negative
part is zero and the expectation of its positive part is μ. Thus, the zonoid Zξ does not uniquely
determine the scale parameter σ .

Note that all above results are formulated for non-centred zonoids. In the rest of this section,
we consider centred zonoids, and the corresponding zonoid equivalence concept. The following
result concerns random vectors that can be represented as product of a scaling random variable
and an independent random vector.

Proposition 33. Two random vectors ξ = Rζ and ξ∗ = R∗ζ ∗, where R and R∗ are positive
random variables independent of ζ and ζ ∗, respectively, are zonoid equivalent if and only if
(ER)ζ and (ER∗)ζ ∗ are zonoid equivalent.

Proof. It suffices to note that

E
∣∣〈u, ξ 〉∣∣ = ERE

∣∣〈u, ζ 〉∣∣ = E
∣∣〈u, (ER)ζ

〉∣∣. �

Consider random vectors with centred elliptical distributions, that is, assume that ξ = R(AU),
where U is uniformly distributed on the unit sphere, A is a (deterministic) matrix and R is a
positive random variable independent of U .
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Proposition 34. Two centred elliptically distributed random vectors ξ = R(AU) and ξ∗ =
R∗(A∗U) are zonoid equivalent if and only if (ER)2AA = (ER∗)2A∗(A∗).

Proof. Using rescaling, it is possible to assume that ER = ER∗. By Proposition 33, it suffices
to consider zonoid equivalence of AU and A∗U . By Proposition 5, this is the case if and only
if random variables 〈Au,U 〉 and 〈(A∗)u,U 〉 are zonoid equivalent. Since U is uniformly
distributed on the unit sphere, 〈v,U 〉 is distributed as a certain random variable with a fixed
distribution scaled by ‖v‖ for all v. Thus, ‖Au‖ = ‖(A∗)u‖ for all u, which implies the
statement. �

Corollary 35. Two symmetric normally distributed random vectors ξ and ξ∗ coincide in distri-
bution if and only if they are zonoid equivalent.

Zonoid of SαS random ξ with α ∈ (1,2] is computed in [25], Section 6.4, as

Zξ = 1

π
�

(
1 − 1

α

)
K,

where � is the gamma-function and K is a convex body that, together with α, characterises
the distribution of ξ . Thus, if α is fixed, then the zonoid determines uniquely the corresponding
symmetric α-stable distribution. However, two symmetric stable vectors with the same zonoid
are not necessarily identically distributed if their stability indices are different.

6.2. Log-infinitely divisible distributions with equal zonoids

A random vector with positive components can be written as the coordinate-wise exponential
η = eξ . In the following, ϕξ stands for the characteristic function of ξ . The following result
immediately follows from [17], Proposition 6, see also [27], Theorem 3.2.

Theorem 36. Two integrable random vectors eξ and eξ∗
are zonoid equivalent if and only if

ϕξ (u − ıw) = ϕξ∗(u − ıw) (6.1)

for all u ∈ R
d with

∑
ui = 0 and for at least one (and then necessarily for all) w, such that∑

wk = 1 and both sides in (6.1) are finite.

Assume that eξ and eξ∗
are two random vectors, where ξ and ξ∗ are infinitely divisible random

variables. Then

ϕξ (u) = Eeı〈u,ξ〉 = exp

{
ı〈b,u〉 − 1

2
〈u,Au〉 +

∫
Rd

(
eı〈u,x〉 − 1 − ı〈u,x〉1‖x‖≤1

)
dν(x)

}

for u ∈ R
d , where A = (aij ) is a symmetric non-negative definite d × d matrix, b ∈ R

d is a
constant vector and ν is a measure on R

d (called the Lévy measure) satisfying ν({0}) = 0 and∫
Rd

min
(‖x‖2,1

)
dν(x) < ∞.
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Then ξ is said to have the Lévy triplet (A, ν, b). In this section, we translate the equality of the
zonoids of two log-infinitely divisible random vectors into conditions on their Lévy triplets. Note
that the conditions on the Lévy triplet of infinitely divisible random vectors apply also for Lévy
processes with time one values ξ and ξ∗.

In order to formulate the condition on the Gaussian terms in a compact form it is helpful to
use the variogram

γij = aii + ajj − 2aij .

If ξ is normally distributed, then γij is the variance of ξi − ξj . In order to state the condition on
the Lévy measure define (d − 1) × d-dimensional matrix, d ≥ 2

U =

⎛
⎜⎜⎝

1 0 · · · 0 −1
0 1 · · · 0 −1
...

...
. . .

...
...

0 0 · · · 1 −1

⎞
⎟⎟⎠ . (6.2)

Theorem 37. Let eξ and eξ∗
be integrable random vectors such that ξ and ξ∗ are infinitely

divisible with characteristic triplets (A, ν, γ ) and (A∗, ν∗, γ ∗). Then for d ≥ 2 eξ and eξ∗
are

zonoid equivalent if and only if the following three conditions hold.

(a) γij = γ ∗
ij for all i, j ∈ {1, . . . , d}.

(b) The images ν̂U−1 and ν̂∗U−1 under U of measures dν̂(x) = exd dν(x) and dν̂∗(x) =
exd dν∗(x), x ∈ R

d , restricted to R
d−1 \ {0} coincide.

(c) Eeξi = Eeξ∗
i for all i = 1, . . . , d , that is,

bi + 1

2
aii +

∫
Rd

(
exi − 1 − xi1‖x‖≤1

)
dν(x)

(6.3)

= b∗
i + 1

2
a∗
ii +

∫
Rd

(
exi − 1 − xi1‖x‖≤1

)
dν∗(x).

For d = 1, eξ and eξ∗
are zonoid equivalent if and only if (c) holds.

The following result is closely related to and can be alternatively derived following the proof
of [17], Theorem 10, see also [16], Theorem 1.1.

Corollary 38. Two lognormal random vectors eξ and eξ∗
are zonoid equivalent if and only

if μi + 1
2aii = μ∗

i + 1
2a∗

ii for all i and γij = γ ∗
ij for all i, j , that is, ξ and ξ∗ have identical

variogram.

In particular, in the lognormal case the zonoid equivalence does not even imply the equality of
the marginal distributions, quite differently to the case of normal distributions where the zonoid
uniquely determines the joint distribution, see Corollary 35.

Furthermore, note that the kernel of U given by (6.2) is the family of vectors with all equal
components. Hence, if the support of ν is a subset of the kernel of U , then the corresponding log-
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infinitely divisible distribution shares the same zonoid with a lognormal distribution, meaning
that two rather different distributions are zonoid equivalent.

Proof of Theorem 37. For d ≥ 2, the zonoid equivalence of eξ and eξ∗
implies Eeξ = Eeξ∗

, see
Proposition 6, and in particular c = Eeξd = Eeξ∗

d . Note that this is also implied by (c). Since also
Zeξ = Zeξ∗ by Proposition 6,

E
(
u1eξ1 + · · · + udeξd

)
+ = Eeξd

(
u1eξ1−ξd + · · · + ud−1eξd−1−ξ1 + ud

)
+,

the zonoid of eξ uniquely determines and is uniquely determined by the probability distribution
of Uξ = (ξ1 − ξd, . . . , ξd−1 − ξd) under the probability measure Pd with density eξd /c.

In order to identify the distribution of Uξ under Pd first note that the distribution of ξ under
Pd has the characteristic triplet (A, ν̂, b̂), where dν̂(x) = exd dν(x) and

b̂ = b +
∫

‖x‖≤1
x
(
exd − 1

)
ν(dx) + Aed,

where ed is the d th standard basis vector, see [35], Example 7.3. By [34], Proposition 11.10, the
Lévy triplet of Uξ under Pd is given by AU = UAU, ν̂U−1 restricted onto R

d−1 \ {0} and

bU = Ub̂ +
∫

Rd

Ux(1‖Ux‖≤1 − 1‖x‖≤1)ν̂(dx).

The corresponding formula holds for ξ∗.
Equating the centred Gaussian terms, the Lévy measures, and simplifying bU = b∗

U yields that
Uξ under Pd coincides in distribution with Uξ∗ under Pd∗ if and only if

aij + add − adi − ajd = a∗
ij + a∗

dd − a∗
di − a∗

jd , i, j = 1, . . . , d − 1, (6.4)

condition (b) holds and, for all i = 1, . . . , d − 1,

bi − bd + aid − add +
∫

Rd

(xi − xd)
(
1‖Ux‖≤1exd − 1‖x‖≤1

)
dν(x)

(6.5)

= b∗
i − b∗

d + a∗
id − a∗

dd +
∫

Rd

(xi − xd)
(
1‖Ux‖≤1exd − 1‖x‖≤1

)
dν∗(x).

Adding equations (6.4) with k, l = i, i; k, l = j, j (for given i and j ), and subtracting (6.4)
multiplied by two, we arrive at the equality of the variograms. Furthermore, noticing that

(aij + add − adi − ajd)d−1
ij=1 = 1

2 (γid + γjd − γij )
d−1
ij=1

we obtain that the equality of variograms implies (6.4). The equality of zonoids implies the
equality of expectations, which exactly corresponds to (6.3). It remains to show that (6.3) together
with other two conditions (a) and (b) imply (6.5).
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By (6.3), we have for all i = 1, . . . , d − 1

bi + 1

2
aii +

∫
Rd

(
exi − 1 − xi1‖x‖≤1

)
dν(x)

(6.6)

= b∗
i + 1

2
a∗
ii +

∫
Rd

(
exi − 1 − xi1‖x‖≤1

)
dν∗(x),

bd + 1

2
add +

∫
Rd

(
exd − 1 − xd1‖x‖≤1

)
dν(x)

(6.7)

= b∗
d + 1

2
a∗
dd +

∫
Rd

(
exd − 1 − xd1‖x‖≤1

)
dν∗(x),

while condition (a) implies

aii + add − 2aid = a∗
ii + a∗

dd − 2a∗
id (6.8)

for all i = 1, . . . , d − 1. Furthermore, condition (b) implies∫
Rd

(
exi−xd − 1 − (xi − xd)1‖Ux‖≤1

)
dν̂(x) (6.9)

=
∫

Rd

(
exi−xd − 1 − (xi − xd)1‖Ux‖≤1

)
dν̂∗(x),

where dν̂(x) = exd dν(x), since by changing variables∫
Rd−1

(
ey − 1 − y1‖y‖≤1

)
d
(
ν̂U−1)(y) =

∫
Rd−1

(
ey − 1 − y1‖y‖≤1

)
d
(
ν̂∗U−1)(y).

Now (6.5) is obtained by subtracting from (6.6) the sum of (6.9), (6.7) and a half of (6.8).
Recall that equality of the zonoids is equivalent to equality of their support functions for all

u on the unite sphere. Hence, for positive random variables eξ and eξ∗
(d = 1) equality of their

zonoids is equivalent to equality of their expectations, which in turn, is equivalent to condi-
tion (c). �
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