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Abstract  

Background: Vitamin D deficiency is prevalent in HIV-infected individuals and vitamin D 

supplementation is proposed according to standard care. This study aimed at 

characterizing the kinetics of 25(OH)D in a cohort of HIV-infected individuals of European 

ancestry to better define the influence of genetic and non-genetic factors on 25(OH)D 

levels. These data were used for the optimization of vitamin D supplementation in order to 

reach therapeutic targets. 

Methods: 1,397 25(OH)D plasma levels and relevant clinical information were collected in 

664 participants during medical routine follow up visits. They were genotyped for 7 SNPs 

in 4 genes known to be associated with 25(OH)D levels. 25(OH)D concentrations were 

analyzed using a population pharmacokinetic approach. The percentage of individuals with 

25(OH)D concentrations within the recommended range of 20-40ng/ml during 12 months 

of follow up and several dosage regimens were evaluated by simulation. 

Results: A one-compartment model with linear absorption and elimination was used to 

describe 25(OH)D pharmacokinetics, while integrating endogenous baseline plasma 

concentrations. Covariate analyses confirmed the effect of seasonality, body mass index, 

smoking habits, the analytical method, darunavir and the genetic variant in GC 

(rs2282679) on 25(OH)D concentrations. 11% of the interindividual variability in 25(OH)D 

levels was explained by seasonality and other non-genetic covariates and 1% by genetics. 

The optimal supplementation for severe vitamin D deficient patients was 300000 IU 2/year.   

Conclusions: This analysis allowed identifying factors associated with 25(OH)D plasma 

levels in HIV-infected individuals. Improvement of dosage regimen and timing of vitamin D 

supplementation is proposed based on those results. 
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Introduction  

Vitamin D deficiency is highly prevalent in HIV-infected individuals [1-4]. There are multiple 

factors that influence vitamin D physiology, most importantly exposure to sunlight, and 

thus, seasonality. A study performed in the Swiss HIV Cohort Study (SHCS) estimated that 

42–52% of participants were deficient in vitamin D in spring and 14–18% in fall [5]. Other 

relevant factors in the general population are black skin, age, obesity, the presence of 

diseases and drugs influencing vitamin D metabolism and smoking habits [6].  

Vitamin D plays a central role in bone metabolism by binding to the vitamin D receptor that 

regulates transcription of many genes [7]. The primary source of vitamin D is exposure to 

sunlight, with a less important role of food intake. It is synthesized in the skin and 

metabolized in the liver to 25-hydroxyvitamin D (25(OH)D) and hydroxylated in the kidneys 

to its active form 1,25-dihydroxyvitamin D (1,25(OH)D) [8]. Vitamin D status is best 

assessed by 25(OH)D concentration ([25(OH)D]) measurements [6, 9-11]. There is no 

consensus regarding optimal vitamin D status although most experts define vitamin D 

deficiency if [25(OH)D] are<20 ng/ml (<50 nmol/l). Plasma levels of about 30-40 ng/ml (75-

100 nmol/l) have been associated with a decrease in mortality [6, 11-13]. An increase in 

mortality risk has been suggested at concentrations higher than 45 ng/ml (112.5 nmol/l) 

[14]. 

Three genome wide association studies (GWAS) have been performed in the general 

population of European ancestry, which consistently showed that single nucleotide 

polymorphisms (SNPs) in four loci (GC, CYP2R1, DHCR7/NADSYN1 and CYP24A1) 

influenced vitamin D physiology. [15-17]. All four loci have biological plausibility: GC 

encodes the vitamin D binding protein (DBP) [18]. CYP2R1 encodes a hepatic microsomal 
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enzyme involved in the 25-hydroxylation of vitamin D in the liver [19]. DHCR7 encodes the 

enzyme 7-dehydrocholesterol (7-DHC) reductase, which converts 7-DHC to cholesterol, 

thereby removing the precursor of 25(OH)D [20]. CYP24A1 encodes a 24-hydroxylase, 

which initiates degradation of both 25(OH)D and 1,25(OH)D [21]. 

Recently, Foissac et al. evaluated the impact of non-genetic factors on [25(OH)D] in HIV-

infected individuals. Seasonality and skin color were identified as the only significant 

factors influencing 25(OH)D pharmacokinetics. Their study proposes a dosage regimen of 

100000 IU of vitamin D monthly for optimal vitamin D status [22]. In the present study, we 

aim at characterizing the kinetics of [25(OH)D] in a cohort of HIV-infected individuals and 

to better define the influence of various genetic in addition to non-genetic factors on these 

levels. We then explored various vitamin D dosage regimens to propose adequate 

supplementation of vitamin D. 
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Material and Methods 

Study participants.  

Inclusion criteria were HIV-infected individuals of European ancestry, followed at 3 Swiss 

HIV Cohort Study (SHCS) centers that perform routine 25(OH)D testing during follow-up 

visits, who gave written informed consent for genetic testing and had at least one 25(OH)D 

plasma value between February 2009 - December 2012. The demographic, clinical and 

lifestyle characteristics, as well as the different vitamin D supplementation regimens, 

antiretroviral therapy (ART) and co-administered drugs were extracted from the SHCS 

database. The study was approved by the ethics committees of all participating centers.  

Measurement of vitamin D plasma levels.  

[25(OH)D] were quantified by either a liquid chromatography tandem-mass spectrometry 

(LC-MS/MS) (centers of Lausanne and Basel) or an automated chemiluminescent 

immunoassay (LIAISON® DiaSorin) (center of Bern) [23, 24]. 

Genotyping.  

We selected 7 SNPs in 4 genes significantly associated with vitamin D plasma levels in 

three GWAS: rs12785878 and rs3829251 in NADSYN1/DHCR7; rs12794714 and 

rs10741657 in CYP2R1; rs2282679 and rs7041 in GC; and rs6013897 in CYP24A1 [15-

17]. Other SNPs identified in GWASs were not included because they were in high linkage 

disequilibrium (r2>0.8) with those selected. Genotyping was performed by TaqMan allelic 

discrimination using an Assay-on-demand® from Applied Biosystems. Genotyping results 

were verified by PCR and direct sequencing for two individuals per genotype. The Assay-

on-demand® as well as the primers and PCR conditions are shown in supplemental table 

1.  
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Population pharmacokinetic analysis. 

The non-linear mixed effect modeling program (NONMEM®, version 7.2) [25] with the 

PSN-toolkit (version 3.5.3) [26, 27] was used to describe concentration-time profile.  

Structural and statistical model.  

[25(OH)D] collected at baseline and after vitamin D supplementation were employed for 

model development. A one-compartment model with first-order absorption and elimination 

was used the describe [25(OH)D], while incorporating endogenous production by 

estimating a baseline concentration (Figure 1), as follows:  

d[25(OH)D]vitD

dt
=K12*[vitD]-Ke*[25(OH)D]vitD Eq 1 

 

[25(OH)D]= Cbase +  [25(OH)D]vitD Eq 2 

 

where [VitD] represents the dose and [25(OH)D]vitD the resulting concentration, Cbase the 

baseline endogenous 25(OH)D concentrations, [25(OH)D] the total concentrations in the 

central compartment and Ke and K12 the elimination and the biotransformation rate 

constants. The latter describes vitamin D absorption and metabolization into 25(OH)D. 

Estimated parameters were Cbase, apparent volume of distribution of the central 

compartment (V) and apparent clearance (CL= Ke · V). The mean biotransformation time 

was calculated using 1/K12 and the mean elimination half-life using ln(2)/Ke. 

Interindividual variability was described by exponential errors following a log-normal 

distribution. Proportional, additive and combined proportional-additive error models were 

compared to describe 25(OH)D residual variability. Distinct error models were tested to 

account for potential differences related to SHCS centers. 
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Covariate Analyses.  

Demographic covariates (sex, age and body mass index (BMI)), seasonal variations, 

current smoking habits, alcohol consumption, HIV-infection status (duration of HIV 

infection, viral load (RNA) and CD4 cell count), chronic hepatitis C (HCV) and B (HBV), 

transaminases (alanine (ALT) and aspartase (AST) aminotransferases), ART medication 

and coadministration of rifampicin (the only drug reported in the SHCS database), genetic 

variants and the analytical method were tested on 25(OH)D kinetic parameters. The 

covariate analysis was performed using a stepwise insertion/deletion approach. All 

detected parameter/non-genetic covariate relationships were modeled using linear or non-

linear functions as appropriate (categorical covariates coded as 0 and 1, continuous 

covariates centered on their median value). Log and square root transformations were 

respectively used for RNA and CD4 count; ALT and AST were coded into dichotomous 

variables employing a boundary condition of 1.5 times the upper limit of normal (ULN); 

alcohol consumption was dichotomized using different cutoffs: 20g/day (the recommended 

maximum alcohol intake in Switzerland), 30g/day or 40g/day. The seasonal variation of 

Cbase was modeled by a cosine function of the day of the year (DAY) as illustrated by the 

following equation: 

𝐶𝑏𝑎𝑠𝑒=TV𝐶𝑏𝑎𝑠𝑒*(1+AMP*cos�2*π*
DAY-𝐷𝐴𝑌𝑝𝑒𝑎𝑘

365
� ) Eq 3 

 

where TVCbase represents the average concentration over a year and DAYpeak the day of 

the year at which the maximum covariate effect (AMP) occurs.  

Individuals were categorized into genetic groups (common alleles (Ref), heterozygous (Het 

LOF) and homozygous (Hom LOF) loss of function). Parameters values were estimated for 
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each genotypic group (rich model) or for further regrouped (reduced model) sub-

populations.  

Parameter estimation and model selection.  

The first-order conditional estimation (FOCE) method with INTERACTION was used for 

model fitting. The log-likelihood ratio test, based on the reduction of the objective function 

value (ΔOFV), was used to discriminate between hierarchical models. A change in the 

objective function was considered statistically significant if it exceeded 3.84 (p<0.05) and 

6.63 (p<0.01) for 1 additional parameter in the model-building and backward-deletion 

steps, respectively (ΔOFV between any two models approximates a χ2 distribution). 

Additional criteria for model selection were goodness-of-fit plots, precision of the 

parameters, and the reduction of interindividual variability. 

Model evaluation and assessment.  

The adequacy of the model was assessed by means of the bootstrap method (PsN), 

generating 2000 datasets by re-sampling from the original dataset. Mean parameters 

values with their 95% confidential interval (CI95%) were derived and compared with the final 

estimates. The predictive performance of the final model was evaluated by normalized 

prediction distribution errors (NPDEs) computation simulating each observation 3000 times 

[28].  

Simulations.  

Several vitamin D supplementation dosage regimens were simulated with NONMEM® for 

1000 individuals based on the final model estimates with variability. [25(OH)D] were 

predicted and compared to the suggested range of 20-40 ng/ml (50-100 nmol/l) associated 

with optimal vitamin D status. Simulated dosage regimens were: 2000 IU daily, 4000 IU 
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daily, 300000 IU once/twice/three times per year (assuming equi-spaced time intervals), 

800 IU daily with and without a 300000 IU loading dose and 100000 IU monthly as 

proposed by Foissac et al [22]. Simulations were performed considering either severe (10 

ng/ml (25 nmol/l), range: 7.5-12.5 ng/ml)) or mild (20 ng/ml (50 nmol/l), range: 15-25 

ng/ml) vitamin D deficiency. The range was derived from the estimated seasonal variation, 

which was the only covariate included in the model. Average and 95% prediction interval 

(PI95%) at minimal and maximal [25(OH)D] were calculated for each dosage regimen. 

Figures were generated with GraphPad Prism® (Version 6.00 http://www.graphpad.com/) 

and statistical analyses performed using R (Version 2.15.1, R Development Core Team, 

Foundation for Statistical Computing, Vienna, Austria, http://www.r-project.org/).  

 

  

http://www.graphpad.com/
http://www.r-project.org/
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Results 

Study population. 

A total of 664 participants provided 1,397 [25(OH)D], of which 783 were obtained before 

vitamin D supplementation (Supplemental figure 1). A median of two samples per 

individual (range: 1-5) was collected. Various vitamin D3 dosage regimens were utilized 

(300000 IU 1/year (n=493), 400-800 IU 1/day (n=33), 45000 IU 1/month (n=1) or in 

combined dosage regimens (n=15)). Data measurements were determined mostly by LC-

MS/MS (84%). The median (range) 25(OH)D plasma level before vitamin D 

supplementation was 17.0 ng/ml (4.6-91.2 ng/ml). Vitamin D deficiency, i.e. [25(OH)D]<20 

ng/ml (50 nmol/l), was present in 58% of the individuals, among whom 19% had levels<10 

ng/ml (25 nmol/l). The median (range) HIV disease duration was of 11 years (0-29 years). 

All participants received ART: 91% contained NRTI and 12% received at least one PI with 

one NNRTI. Ritonavir (RTV) was administered as booster at a dose of 100 mg once or 

twice daily, except for one individual that received saquinavir with 400 mg RTV twice daily 

and one individual that received RTV 600 mg twice daily as a single PI regimen. Baseline 

characteristics of the study population are summarized in Table 1. 

Genotyping. 

Genotyping was completed for 658 participants. The minor allele frequencies (MAF) of the 

7 SNPs were in Hardy-Weinberg equilibrium of p>0.05 except for rs10741657, which was 

excluded from the analysis. MAF was in accordance with results from HapMap for 

European populations: rs12785878 (MAF= 0.28), rs3829251 (MAF=0.16), rs12794714 

(MAF=0.49), rs2282679 (MAF=0.27), rs7041 (MAF=0.44), rs6013897 (MAF=0.24). 

Sequencing confirmed the genotyping results. Since all genetic variants are well validated, 
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we created an unweighted genetic score by counting the number of risk alleles [29]. 

Because the literature frequently refers to GC haplotypes, two SNPs in GC (rs7041 and 

rs2282679, that tags the functional variant rs4588) were also tested (Supplemental table 

2) [30]. 

Population pharmacokinetic analysis. 

Structural model. A one-compartment model integrating endogenous concentrations 

adequately described 25(OH)D kinetics (Figure 1). Owing to the long time interval 

between dose intake and 25(OH)D measurements, [25(OH)D] were assumed to be at 

equilibrium and K12 was set equal to Ke. Assignment of an interindividual variability on Cbase 

markedly improved the fit (ΔOFV =-579.1, p<0.001), but no additional variability on CL or V 

was significant (ΔOFV<0.04, p>0.83). A mixed error model was used to quantify residual 

variability, with different additive components according to the SHCS centers (ΔOFV=-

14.2, p<0.001). Comparison of the goodness-of-fit plots stratified on the different vitamin D 

regimen suggests that the model works equally well independently of the dosage scheme. 

The basic parameters estimates with interindividual variability (CV%) were a CL of 2.60 

L/day, a volume of 277 L and a Cbase of 17 ng/ml (44%). The estimated biotransformation 

rate constant, reflecting both the vitamin D absorption and its metabolism into 25(OH)D, 

was 0.01 h-1, resulting in a mean biotransformation time of approximately 100 days.  

Covariate analyses. Univariate analyses were initially performed by testing non-genetic 

covariates on Cbase. The effect of seasonality (Eq 3) resulted in a marked improvement of 

the model fit (ΔOFV=-196.3, p<0.001). Our model estimates a maximum change in 

[25(OH)D] of 48% between winter and summer, with peak concentration occurring in late 

August (Figure 2). A significant association was found between BMI and Cbase that could 

be equally described using linear or allometric power functions (ΔOFV<-19.1, p<0.001). 



14 
 

The linear model was retained based on graphical exploration. A decrease of 

approximately 2% in Cbase was predicted for one point increment of BMI with respect to the 

population median value (23.5 kg/m2). Body weight and height were highly correlated with 

BMI and not further tested and female had 12% higher Cbase compared to male subjects 

(ΔOFV=-6.1, p=0.014). A significant 9% reduction in Cbase was observed in smokers 

compared to non-smokers (ΔOFV=-7.7, p=0.005). It also appeared that [25(OH)D] 

measured by immunoassay were 41% lower than by LC-MS/MS (ΔOFV=-81.8, p<0.001). 

An important decrease of 60% in Cbase was observed under rifampicin administration, but it 

did not reach statistical significance, most probably due to power issues (n=2) (ΔOFV = -

3.7, p = 0.054). Finally, administration of tenofovir (TDF), boosted PIs (including the 

administration of RTV alone) or darunavir (DRV/r) solely increased Cbase by 9%, 10% and 

16%, respectively (ΔOFV<-6.5, p<0.01), while no other drugs were significant (ΔOFV>-1.3, 

p>0.3). Multivariate analyses of the significant ART drugs discarded all medications except 

DRV/r. To disentangle the effect of DRV/r and boosted PIs, we tested the influence of the 

latter covariate in the sub-set of participants that did not receive DRV/r (n=560). The 

influence of boosted PIs did not remain statistically significant on Cbase (ΔOFV = -2.6, p = 

0.11), suggesting that the effect was entirely due to DRV/r administration. All the remaining 

factors were not associated with Cbase (ΔOFV>-0.8, p>0.4). (Supplemental table 3).  

Genetic analyses revealed that solely rs2282679 in GC significantly affected Cbase 

(ΔOFV=-13.7, p=0.003). No impact of the other SNPs was observed (ΔOFV>-6.1, p>0.11). 

Hom LOF carriers of rs2282679 presented [25(OH)D] 25% lower than Ref and Het LOF 

individuals, and no difference could be observed between rs2282679 Ref and Het LOF 

individuals (ΔOFV=-0.6, p=0.44). The haplotype of the two GC SNPs, i.e. rs2282679 and 

rs7041, was also found to significantly influence Cbase (ΔOFV=-17.3, p=0.004). However, 

multivariate analyses showed that the genetic variant rs2282679 accounted for the effect 
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of GC haplotype. The use of the genetic score did not improve the fit (ΔOFV=-10.9, 

p=0.21) (Supplemental table 3). 

Multivariate analyses and backward deletion discarded the effect of gender and confirmed 

that of seasonality, BMI, smoking, the analytical method, DRV/r and the genetic variant 

rs2282679 on Cbase. These covariates explained 12% of the interindividual variability in 

[25(OH)D]. Most of it was due to seasonality and the analytical method (ca. 20%) while 

other factors contributed less than 10%. The final model parameters’ estimates together 

with their bootstrap estimations are given in Table 2. 

Model evaluation and assessment.  

The model was considered reliable since all the obtained parameter estimates lied within 

the bootstrap CI95% and differed in less than 4% from the bootstrap median values. In 

addition, the good predictive performance of our model was confirmed by the normality of 

the distribution of the computed NPDEs (Supplemental figure 2). 

Simulation.  

The model-based simulations predicting [25(OH)D] for the various dosage regimen are 

presented in Supplemental table 4 and Supplemental Figure 3. These simulations show 

that adequate yearly coverage (20-40 ng/ml or 50-100 nmol/l) can be achieved in 80% of 

the individuals with severe vitamin D deficiency by administration of 300000 IU 2/year or 

2000 IU/day. A 800 IU/day dosage regimen is insufficient to bring [25(OH)D] within the 

optimal range without a loading dose of 300000 IU. Adequate concentrations were 

achieved in 90% of the individuals with mild deficiency after administration of a single 

vitamin D 300000 IU or 800 IU daily. dosage regimen would bring [25(OH)D] higher than 

40 ng/ml for a prolonged time (more than six months) in at least 40% of the simulated 

individuals with mild or severe deficiency (Figure 3).  
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Discussion 

This study characterized the concentration-time profile of 25(OH)D in a large cohort of 

HIV-infected individuals of European ancestry and quantified the influence of genetic 

variants on vitamin D physiology in addition to other factors. The results of study allowed 

building a strategy for vitamin D supplementation dependent of the level of deficiency, 

while taking into account seasonality and residual variability.  

The estimated 25(OH)D elimination half-life of 62 days is in good agreement with 

previously reported data [9, 10, 22]. Average baseline concentrations were low and 

presented marked interindividual variability, revealing a substantial proportion of 

individuals with suboptimal 25(OH)D concentrations. As expected, exposure to sunlight 

had the strongest effect on 25(OH)D endogenous production, with highest values 

observed in August [31]. An important effect of BMI was observed as well. Vitamin D is a 

fat soluble prohormone that is stored in the adipose tissue, thus explaining the decrease in 

[25(OH)D] with increased BMI [3, 32, 33]. Smoking led to lower 25(OH)D levels, which 

could be potentially the consequence of increased hepatic metabolism [1, 34, 35]. The 4-

hydroxylation of 25-hydroxyvitamin D has been shown to involve a CYP3A4-dependent 

pathway [36, 37]. We hypothesize that the influence of DRV/r on 25(OH)D could thus be 

mediated by a CYP3A4 inhibition. This effect needs however to be confirmed since it is in 

disagreement with reported data showing no association with DRV/r co-administration and 

no influence of ritonavir was observed [1]. Rifampicin, administered to two individuals, was 

associated with a marked decrease in 25(OH)D, probably through induction of CYP3A4 or 

other cytochromes [38, 39].  
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Our study did not find any influence of EFV on [25(OH)D]. The EFV-induced decrease in 

[25(OH)D] is inconsistent in the literature [1-4, 22]. Fox et al. reported increased [25(OH)D] 

after switching from an EFV to a DRV/r containing regimen [40] but it was not possible to 

discriminate the effect of the two drugs. Finally our study confirms that immunoassay 

techniques provide concentrations measurements lower than LC-MS/MS methods [23, 24] 

Both immunoassays and LC–MS/MS are widely used [41]; thus, clinicians must be aware 

of this inter-assay difference for the interpretation of 25(OH)D levels. The inclusion of the 

assay type in our model allows predicting [25(OH)D] in clinical laboratories using either 

technique. Concerning genetic influence, only the SNP rs2282679 in GC was found to 

influence [25(OH)D]. This SNP presented the strongest signal in the 3 GWAS analyses 

previously performed and tags the functional variant rs4588 [15-17, 42]. GC encodes DBP, 

the major plasma transporter of 25(OH)D and 1,25(OH)D [18]. Wang et al. showed that 

rs2282679 was associated with reduced DBP concentration, thus possibly allowing for 

increased elimination [17]. Experiments in DBP deficient mice showed that 25(OH)D is 

more rapidly metabolized and excreted from the body than in animals with no deficiency 

[43]. How alleles modulating DBP levels can affect [25(OH)D] remains to be elucidated. 

Other SNPs did not contribute to [25(OH)D] because of their effect size and low allele 

frequency. While considering all significant covariates, only a small fraction of the 

variability in [25(OH)D] could be explained. Among all, seasonality explained a major part 

of the variation in the concentration. However, individuals with a high BMI, smokers, 

underexposed to sun and carriers of the genetic variation in GC could be at particular risk 

of presenting very low [25(OH)D].  

Mild or severe vitamin D deficiency is highly prevalent in HIV-infected individuals and 

vitamin D supplementation is largely prescribed by clinicians. However, there is a lack of 
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clear recommendations of optimal dosage regimen in this population. The recommended 

800IU/day for adults [6, 11] or high intermittent dose administrations were mostly used in 

our population. Our simulations suggest that individuals with severe vitamin D deficiency 

would reach adequate [25(OH)D] if administered with 300000 IU twice a year, 2000 IU 

daily or 800 IU daily with a single 300000 IU loading dose. On the other hand, a single 

vitamin D supplementation of 300000 IU per year would be appropriate for HIV-infected 

individuals with mild deficiency, independently of the season (summer or winter). Higher 

dosage regimens and more frequent administration could lead to [25(OH)D] much higher 

than 40 ng/ml (100 nmol/l) over a prolonged period of time, which might put individuals at 

risk of higher mortality [14]. Single oral dose is a convenient strategy in HIV-infected 

individuals because it ensures adherence and does not increase daily pill burden. 

The main limitations of the study are the lack of information about sunlight exposure, 

vitamin D dietary intake, no measure of DBP and no measure of parathyroid hormone that 

tightly regulates renal production of 1,25(OH)D. Since the GWAS data was only available 

for individuals of European ancestry, we limited our study to this population. The 

observational nature of the study generated sparse data that, associated with the 

prolonged time intervals between supplementation and measurement of 25(OH)D levels, 

limits the ability to distinguish between vitamin D absorption and conversion to 25(OH)D. 

However, the study was robust in terms of ascertainment, as the unbiased measurement 

of vitamin D levels was done for all participants during routine visits. In addition, optimal 

vitamin D status, consensually estimated to be 20-40 ng/ml (50-100 nmol/l) in the general 

population, remains a matter of debate and should be confirmed in the HIV population.  

In conclusion, this study shows that [25(OH)D] are highly variable and affected in particular 

by seasonality and several non-genetic factors and by a SNP in GC. Adequate 
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supplementation should consider the level of vitamin D deficiency so as to adjust dosage 

regimens. Vitamin D supplements may be important in the context of long term care of 

HIV-infected individuals, with the goal of preventing disorders in bone metabolism. A role 

of vitamin D has also been debated in the context of immune function [44], which is of 

additional relevance in the setting of HIV infection.  
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Table 1: Characteristics of the study population.  

Baseline Characteristic Value (% or range) 

Sex (men) 496 (75)  

Median age (yrs) 48 (18-80) 

Median body weight (kg) 71 (40-125) 

Median height (cm) 173 (145-196) 

Median BMI (kg/m2) 23.5 (14.9-44.7) 

Current Smoking (yes) 341 (51) 

Alcohol Consumption (yes) 304 (46) 

Average daily alcohol consumption (g/day) 10 (1-180) 

Analytical method   

LC-MS/MS 551 (83) 

Immunoassays 113 (17) 

Liver Transaminases (>1.5*ULN)  

ALT 64 (10) 

AST 37 (6) 

Chronic Hepatitis (yes)  

HBV 431 (65) 

HCV 174 (26) 

Viral load (log10 copies/mL) 1.9 (1.3-6.2) 

CD4 cell count (cells/µL) 585 (26-2325) 

Protease Inhibitors (yes)a  

Atazanavir 9 (1) 

Atazanavir/r 117 (18) 

Darunavir/r 104 (16) 

Fosamprenavir/r 4 (0.6) 
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Lopinavir/r 91 (14) 

Ritonavir (non-booster) 1 (0.1) 

Saquinavir 2 (0.3) 

Saquinavir/r 28 (4) 

Non-nucleoside Reverse Transcriptase Inhibitors a  

Efavirenz 267 (40) 

Etravirine 168 (25) 

Nevirapine 52 (8) 

Nucleoside Reverse Transcriptase Inhibitors (yes)a  

Abacavir 130 (20) 

Didanosine 5 (0.7) 

Emtricitabine 400 (60) 

Lamivudine 203 (31) 

Stavudine 3 (0.5) 

Tenofovir 379 (57) 

Zidovudine 68 (10) 

Entry and Integrase Inhibitors (yes)a  

Elvitegravir 2 (0.3) 

Maroviroc 9 (1.4) 

Enfuvirtide 2 (0.3) 

Raltegravir 114 (17) 

CYP3A4 inducers (yes)a  

Rifampicin 2 (0.3) 

Genetic polymorphisms (Ref/Het LOF/Hom LOF) b  

NADSYN1/DHCR7 rs12785878  350/250/58 (53/38/9) 

NADSYN1/DHCR7 rs3829251 468/173/17 (71/26/3) 

CYP2R1 rs12794714 170/335/153 (26/51/23) 
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ALT: alanine aminotransferase; AST: aspartase aminotransferase; BMI: body mass index; LC-MS/MS: liquid 

chromatography tandem-mass spectrometry; HBV: chronic hepatitis B; HCV: chronic hepatitis C; Ref: 

reference; LOF: loss of function; Het: heterozygous; Hom: homozygous. 

a Calculated using participants that receive at least once the HIV drug 

b Estimated in the genotyped subpopulation (n=658) 

CYP2R1 rs10741657 274/325/59 (42/49/9) 

GC rs2282679 353/260/45 (54/39/7) 

GC rs7041  194/348/116 (29/53/18) 

CYP24A1 rs6013897 386/230/42 (59/35/6) 
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Table 2: Final population pharmacokinetic parameter estimates of 25(OH)D and their bootstrap 

evaluations. 

 

Parameter a  

Population mean Bootstrap evaluation 

Estimate RSEb (%) Estimate 95%CI 

CL  (L/d) 2.7 6 2.7 (2.4; 3.0) 

V (L) 243 6 243 (203; 290) 

K12 (d-1) 0.01 -- 0.01 -- 

TVCbase (ng/ml) 20.6 3 20.6 (19.4; 21.8) 

AMPc  0.25 6 0.25 (0.21; 0.28) 

DAYpeak
c  (d) 226 2 226 (218; 235) 

θd
BMI  -0.46 15 -0.47 (-0.67; -0.28) 

θe
DRV/r   0.18 31 0.18 (0.08; 0.27) 

θf
Immunoassay  -0.39 8 -0.39 (-0.47; -0.32) 

θg
Hom LOF rs2282679  -0.24 26 -0.24 (-0.34; -0.14) 

θh
Smokers -0.13 22 -0.13 (-0.19; -0.07) 

IIVi
Cbase

 (CV%)  39 4 39 (35; 42) 

σj
prop (CV%) 26 4 25 (22; 28) 

σk
SHCS centers of Basel and Berne (ng/ml) 3.6 12 3.6 (2.6; 4.8) 

σk
SHCS center of Lausanne (ng/ml) 2.0 28 2.0 (1.1; 3.0) 

𝐶𝑏𝑎𝑠𝑒 = 𝑇𝑉𝐶𝑏𝑎𝑠𝑒 ∗ (1 + 𝐴𝑀𝑃 ∗ 𝑐𝑜𝑠 �2 ∗ 𝜋 ∗ 𝐷𝐴𝑌−𝐷𝐴𝑌𝑝𝑒𝑎𝑘
365

�) ∗ �1 + 𝜃𝐵𝑀𝐼
𝐵𝑀𝐼−23.5

23.5
� ∗ �1 + 𝜃𝐷𝑅𝑉

𝑟
� ∗ �1 + 𝜃𝑖𝑚𝑚𝑢𝑛𝑜𝑎𝑠𝑠𝑎𝑦� ∗

(1 + 𝜃𝐻𝑜𝑚 𝐿𝑂𝐹 𝑟𝑠2282679) ∗ (1 + 𝜃𝑆𝑚𝑜𝑘𝑒𝑟𝑠)  

a CL, mean apparent clearance; V, mean apparent volume of distribution; K12, mean absorption rate constant 

set equal to Ke=CL/V; TVCbase, average 25(OH)D plasma level over a year  
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 b Relative standard errors of the estimates (RSE) are defined as SE/estimate and are expressed as 

percentages. SE and estimate values were retrieved directly from the NONMEM® output files. 

c AMP is the maximal seasonal variation occurring at DAYpeak (Eq 1). 

d Decrease in Cbaseline under BMI doubling with respect to the population median BMI value. 

e Increase in Cbaseline due to DRV/r co-administration. 

f Decrease in Cbaseline if measurement performed by immunoassay. 

g Decrease in Cbaseline in Hom LOF rs2282679 individuals.  

h Decrease in Cbaseline in smokers 

i Interindividual variability defined as CVs (%). 

j Proportional component of the residual (intra-individual) variability defined as CVs (%). 

k Residual (intra-individual) concentration
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Figure 1: Compartmental model used to describe 25(OH)D plasma concentration-time profile. 

[25(OH)D]: total 25(OH)D concentration in the central compartment; CL: clearance; V: volume of 

distribution; K12: absorption rate constant; Ke: elimination rate constant; Cbase: endogenous 

production of 25(OH)D. 
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Figure 2: Observed baseline 25(OH)D concentrations (circles) versus time with 

average predicted concentrations (line) 
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Figure 3: Simulated average 25(OH)D plasma levels (solid lines) with PI95% (dashed lines) for 

various vitamin D supplementation dosage regimens in HIV-infected individuals with severe 

vitamin D deficiency. Panel A) 25(OH)D baseline concentrations ranging over a year from 7.5 to 

12.5 ng/ml (average value 10 ng/ml (25 nmol/l). Panel B: 25(OH)D baseline concentrations 

ranging over a year from 15 to 25 ng/ml (average value 20 ng/ml (50 nmol/l). The recommended 

25(OH)D concentrations range for optimal vitamin D status is shown (20-40 ng/ml or 50-100 

nmol/l). 
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