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Introduction
Previous research has shown that motion imagery draws on the same neural
circuits that are involved in perception of motion, thus leading to a motion
aftereffect (Winawer et al., 2010). Imagined stimuli can induce a similar shift
in participants’ psychometric functions as neural adaptation due to a
perceived stimulus. However, these studies have been criticized on the
grounds that they fail to exclude the possibility that the subjects might have
guessed the experimental hypothesis, and behaved accordingly (Morgan
et al., 2012). In particular, the authors claim that participants can adopt
arbitrary response criteria, which results in similar changes of the central
tendency µ of psychometric curves as those shown by Winawer et al. (2010).

Goal of the study

The goal of this study is to demonstrate a novel paradigm for investigating
the behavioural effects of motion adaptation, which is not susceptible to
demand characteristics, based on a model of motion discrimination (Jazayeri
& Movshon, 2006). Furthermore, we introduce the use of Bayesian
techniques and multi-level modelling to obtain group-level and individual
parameter estimates simultaneously, rather than using the traditional
two-step approach to psychophysical data analysis.

Random Dot Task
Jazayeri & Movshon (2007) describe a version of the random dots paradigm
in which subjects perform a fine discrimination task. In this task, the two
alternatives are 10° to the left and right of the decision boundary.

direction discrimination task. Unbeknownst to the sub-
jects, we added subthreshold motion signals in directions
other than the two alternatives to perturb the responses of
direction-selective neurons. By varying the direction of
the subthreshold motion, we reveal the relative contribu-
tion of motion signals in different directions to the
subjects’ choice behavior. The pattern of biases induced
by different subthreshold motion signals indicates that for
the discrimination of opposite directions, the visual
system relies most strongly on the neurons tuned to the
two alternatives, but for fine discriminations, neurons with
preferences moderately shifted to the sides of the two
alternatives have the greatest influence.

Methods

Five subjects aged 19–35 years participated in this study
after giving informed consent. All had normal or
corrected-to-normal vision, and all were naive to the
purpose of the experiment. Subjects viewed all stimuli
binocularly on an Eizo T960 monitor at a refresh rate of
120 Hz driven by a Macintosh G5 computer in a dark,
quiet room from a distance of 71 cm.
In a single-interval two-alternative experimental design,

subjects discriminated the direction of motion in a
random-dot stimulus. Two experimental conditions were
separately tested. In the D180 condition, the two alter-
natives were leftward and rightward directions, whereas in
the D20 condition, they were 10- to the left and right of
the upward direction.
For both conditions, each trial began with the presenta-

tion of a fixation point. After 0.5 s, a static dot field was
presented below fixation. After another 0.5 s, the dots
began to move. Subjects were asked to keep fixation
during the presentation of the motion stimulus. After 1 s
of motion viewing, the stimulus was extinguished and
subjects pressed one of two keys to report the direction of
motion and received distinct auditory feedback for correct
and incorrect judgments.
All stimuli were presented on a dark grey background

of 11 cd/m2. The fixation point was a central circular
white point subtending 0.5- with a luminance of 77 cd/m2.
In the D20 condition, two peripheral black bars 0.7- by
0.12-, located 1.6- below and 0.6- to the left/right of the
fixation, cued the direction of the two alternatives. The
motion stimulus was a field of dots (each dot 0.12- in
diameter with a luminance of 77 cd/m2) contained within
a 5- circular aperture centered 5- below the fixation point.
On successive video frames, some dots moved coherently
in designated directions at a speed of 4 deg/s, whereas
others were replotted at random locations within the
aperture. The dot-field had an average density of
40 dots/deg2/s. On every trial, 0%, 3%, 6%, 12%, or
25% of dots moved coherently in the direction of one
of the alternatives (i.e., target signal), whereas another

percentage of dots could carry a subthreshold motion
signal in a direction other than the two alternatives. For
the D180 condition, when the subthreshold was present
(one condition with no subthreshold signal was also
included), its direction could vary around the circle in
steps of 30- (Figure 1a). For D20, the subthreshold signal,
if present, only included directions with no downward
component (Figure 1b). Considering all the variables
controlled independently (e.g., coherence, stimulus
motion direction, presence or absence of subthreshold
motion, and its several possible directions), the D180 and
the D20 tasks included a total of 110 and 80 randomly
interleaved conditions, respectively. In both tasks, feed-
back was given only based on motion toward the two
alternatives and not the subthreshold signals.
To determine the coherence at which the subthreshold

signal was not detectable, we did preliminary measure-
ments with a 2AFC motion detection task in which
subjects simply reported the presence of motion. For each
subject, the coherence at which his or her performance in
the motion detection task was near chance (not better than
60% correct) was then used for the subthreshold signal
throughout the main experiment. Conservatively, we also
asked our subjects about their impression of the motion
signal in the random-dot stimulus. Data for the one
observer who reported noticing weak motion signals
orthogonal to the discriminanda were excluded.
In the main experiments, subjects completed roughly

5,000 trials in five to seven sessions each lasting less than
an hour. Three subjects participated in each experiment.
One subject completed both experiments.

Figure 1. Experimental design. (a) Coarse direction discrimination
task, D180. Subjects viewed a field of moving random dots and
indicated whether its direction was to the left or right (black
arrows). On some trials, the stimulus also had subthreshold
motion in directions other than the two alternatives (nonblack
arrows). (b) Fine direction discrimination task, D20. The two
alternatives were 10- to the left and right of upward direction.
Subthreshold motion tested only included directions with no
downward component. Note that in panel a, 0- is aligned to the
right alternative, but in panel b, it marks the upward direction.
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Experimental design
• Participants perform random dot fine 

discrimination task at individual 
coherence level (determined prior to 
experiment). 

• Before the task, there is a 3 second 
adaptation period, during which 
participants passively view moving 
dots in 5 directions (L90, L45, Up, 
R45, R90). 

• Start of task is indicated by a tone. 

• Participants are instructed to 
response as quickly to motion 
direction after tone. Furthermore, they 
are instructed that direction of motion 
prior to task is not relevant to task.
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direction from its ‘‘anti-neuron’’ tuned to the opposite direction14. This
strategy would be optimal if the brain had access to these two neurons
only, but it is clearly suboptimal in that it ignores information from
neurons that are tuned to directions other than the two alternatives. A
later population-decoding model considered the possibility of includ-
ing such neurons by widening the range of neuronal preferred direc-
tions contributing to the decision23. But how wide should the range be?
Simply adding neurons tuned away from the two alternatives increases
both signal and noise, which might either help or harm performance.
Our model specifies an exact and optimal form of the pooling profile
that would compute the log likelihoods, and it specifies how each
neuron contributes to the log likelihood ratio.

To demonstrate this point, we use equation (4) to compute the log
likelihood ratio for two alternatives, say y1 and y2. The log likelihood
ratio is simply the difference between the two log likelihoods and can
be written:

log LR ¼ log Lðy1Þ $ log Lðy2Þ

¼ k
XN

i¼ 1

ni½cosðy1 $ yiÞ $ cosðy2 $ yiÞ& ð5Þ

This formulation shows that the contribution of each neuron to the
log likelihood ratio is determined by its activity ni and its preferred
direction yi relative to the two alternatives. Neurons with similar
weights in each of the log likelihoods cancel and do not contribute
strongly to the discrimination, whereas neurons with more dissimilar
weights in the two log likelihoods have a stronger influence on the
model’s discrimination behavior.

We implemented this operation in our model for three cases where
the two alternative directions are 1801, 901 and 121 apart (Fig. 4a–c).
Importantly, the readout rule is the same regardless of the two
directions that are to be discriminated: for each alternative, the
population activity is weighted by a cosine profile centered at that
alternative and the difference between the two log likelihoods, log LR,
is computed.

When discriminating opposite directions, since the two weighting
profiles are opposite cosines (Fig. 4a), the MT neurons tuned to the
two alternatives that are maximally activated would also have the most
dissimilar weights, and would therefore maximally contribute to the
measurement of the log LR. This contribution decreases for neurons
away from the two alternatives and is zero for neurons tuned to the
direction orthogonal to the two alternatives.

In contrast, when computing the log LR for two alternative direc-
tions that are 121 apart, the overall contribution of neurons tuned to
the two alternatives, despite their high firing rates (Fig. 4c, bottom
row), would be weakened because they have similar weights (Fig. 4c,
third row) and will cancel (Fig. 4c, top row). More generally, the
similarity between the two weighting profiles reduces the contribution
of neurons with preferences near the two alternatives and enhances
the contribution of neurons tuned away from the two alternatives
(Fig. 4b,c, top row). In other words, although for any two alternatives
the readout rule remains unchanged, for finer discriminations, our
model predicts that log LR should be more strongly determined by the
activity of neurons tuned to the flanking regions of the two alternatives.
This behavior is consistent with the widely assumed role of these ‘‘off-
optimal’’ neurons in fine discrimination24,25, but differs from earlier
ideas in making clear that the important influence of these flanking
neurons is an automatic consequence of how log likelihoods are
computed with neurons.

We show three example cases in which the two alternative directions
are 1801, 901 and 121 apart. More generally, as the two alternatives get
closer, the contribution of neurons tuned to the alternatives weakens
and neurons farther in the flanks become more and more important in
the computation of the likelihood ratio. Furthermore, the overall
magnitude of the log likelihood ratio is largest for opposite directions
where discrimination is easiest (Fig. 4a) and becomes progressively
smaller as the two alternatives get closer and discriminating between
them is more difficult (Fig. 4b,c). This change in the magnitude of the
log likelihood ratio directly determines the model’s performance for the
different conditions (Fig. 3c).

We have focused here on the model’s behavior for the case of
direction of motion, and we have presented its predictions for various
psychophysical and neurophysiological studies of motion perception.
As with the psychophysical predictions in the preceding section, our
model makes specific experimental predictions that can be tested
against data. In this case, the predicted relationship between neuronal
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Figure 4 Contributions of MT signals to two-choice motion discrimination.
The lower panels show example profiles of activity in area MT in response
to a strong motion stimulus, in one of the two directions that are being
discriminated. The dashed black line marks the neuron most responsive
to this stimulus. The alternatives are 1801, 901 and 121 apart in a, b
and c, respectively. The second panels from bottom (‘‘Weights’’) show the
cosinusoidal weighting profiles called for by the model. The contribution of
each neuron to the two log likelihoods is computed by multiplying the activity
of that neuron by its own weight. Panels in the third row from bottom show
the average contribution of each neuron to each of the two log likelihoods
(that is, neuron’s average firing rate multiplied by its own weight). The top
panels show the average contribution of each neuron to the log likelihood
ratio. For each neuron, this is computed as the difference between the
contribution of that neuron to the two log likelihoods, that is, the difference
between the blue and red curves in the third row from bottom. For all three
conditions, neurons preferring directions halfway between the two alternatives
have similar weights and therefore do not on average contribute to the log
LR. For finer discriminations, the overall log likelihood ratio is smaller and,
because of the overlap between the weighting profiles, the log likelihood ratio
is more strongly determined by neurons with preferences that are shifted
away from the two alternatives.
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Adaptation

2AFC task

According to Jazayeri & Movshon (2006), the contribution of neurons tuned to
flanking motion directions increases when computing the most likely
direction, as the alternatives approach the decision boundary. In this
experiment, participants performed a random dot fine discrimination task.
For each participant, we determined an individual coherence level prior to
experiment, at which the participant achieved an accuracy rate of 75%.
Before the 2AFC task, whose onset was indicated by a tone, there was a 3
second adaptation period, during which participants passively viewed a
cloud of coherently moving dots in one of 5 directions (L90, L45, 0, R45, R90),
whilst maintaining central fixation. Participants were instructed to respond as
quickly as possible to the direction of the dots after the tone.

Experimental Hypotheses

IH1: Adaption to L45 and R45 directions should induce strong biases toward
the opposite direction.

IH2: Adaptation to L90 and R90 directions should induce weak biases
toward the opposite direction.

IH3: Sensitivity should be high for L90 and R90 directions, and should be
reduced after adaptation to L45 and R45 directions.

Methods
We implemented an equal-variance Signal Detection Theory model as a
hierarchical Bayesian Generalized Linear Model with a probit link function, in
order to estimate group level bias and sensitivity parameters under each
adaptation condition. The probability of a rightward response is given by:

Pr(Response = Right|Right) = φ(−c+ d ∗ X) (1)
where the inverse link function φ is the inverse standard normal cumulative
density function, c is a measure of bias, and d is a measure of sensitivity. If
the stimulus is coded with the values −0.5 and 0.5 for left-ward and
right-ward directions, respectively, this Generalized Linear Model
corresponds to a traditional equal-variance Signal Detection model (DeCarlo,
1998). The following graphical model can be used to infer c (bias) and d′

(sensitivity) parameters jointly for J participants, and to simultaneously infer
group level parameters, for each adaptation condition.
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The joint posterior probability of all the parameters in the model was
estimated using Markov Chain Monte Carlo sampling in R (R Core Team,
2013) and JAGS (Plummer, 2003). 50,000 samples were drawn from each of
3 independent chains, and convergence of the chains was monitored. All
parameters were given minimally informative reference prior distributions
(David Lunn, 2013).

Results
In the left panel, marginal posterior estimates for the group level bias

parameters µ
(c)
j for each condition are shown ; the right panel depicts the

same for the group level sensitivity parameters µ
(d)
j (N = 10).
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Results (continued)

The dots show the medians, the thick lines show the 68% credible intervals,
and the thin lines show the 95% credible intervals for the parameters.
Negative values for c indicate a bias to give a ‘right’ response, positive
values indicate a bias towards ‘left’ responses.

I The hypotheses H1 and H2 are clearly borne out by the results: Under both
left and right conditions, adaptation to random dot motion at ± 45°of the
decision boundary induces a far greater bias to give a response in the
opposite direction than adaptation to motion at ± 90°.

I Hypothesis H3 is not conclusively supported by the data, although a
tendency can be detected that adaptation to random dot motion at ±
45°as well as motion along the decision boundary reduce participants’
sensitivity to discriminate between left and right ward motion directions,
compared to adaptation to motion at ± 90°. However, the parameter
estimates are very uncertain, resulting in an overlap of the distributions.
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The smoothed histograms offer an alternative view of posterior distributions
of the group level parameters; in the left panel, there is very little overlap
between the smoothed histograms of the ± 45°conditions and the ±
90°conditions for the bias estimates, whilst in the right panel the overlap
between the ± 45°conditions and the ± 90°conditions is much greater.

Conclusions

I We have provided behavioural evidence from a motion adaptation task
which shows that participants’ performance is in agreement with
predictions from a model of motion discrimination (Jazayeri & Movshon,
2006).

I These results provide an improved baseline with which to compare
participants’ performance in a task designed to measure adaptation to
imagined motion.

I We have introduced a Bayesian multi-level modelling approach to
estimating group-level parameters. This approach is very flexible, and can
be extended to allow for modelling of contaminant processes (e.g.
attentional lapses), as well as model comparison.

I We are currently using the paradigm to investigate neural adaptation due
to imagined motion.
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