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[1] Upper-air observations are a fundamental data source for global atmospheric data
products, but uncertainties, particularly in the early years, are not well known. Most of
the early observations, which have now been digitized, are prone to a large variety of
undocumented uncertainties (errors) that need to be quantified, e.g., for their assimilation
in reanalysis projects. We apply a novel approach to estimate errors in upper-air
temperature, geopotential height, and wind observations from the Comprehensive
Historical Upper-Air Network for the time period from 1923 to 1966. We distinguish
between random errors, biases, and a term that quantifies the representativity of the
observations. The method is based on a comparison of neighboring observations and is
hence independent of metadata, making it applicable to a wide scope of observational
data sets. The estimated mean random errors for all observations within the study period
are 1.5 K for air temperature, 1.3 hPa for pressure, 3.0 ms–1 for wind speed, and 21.4ı for
wind direction. The estimates are compared to results of previous studies and analyzed
with respect to their spatial and temporal variability.

Citation: Wartenburger, R., S. Brönnimann, and A. Stickler (2013), Observation errors in early historical upper-air observations,
J. Geophys. Res. Atmos., 118, 12,012–12,028, doi:10.1002/2013JD020156.

1. Introduction
[2] Upper-air observations are crucial for the determina-

tion of the atmospheric state in data assimilation approaches.
In order to reach an optimal analysis, it is vital to quan-
tify the “uncertainty” (following the terminology used in
data assimilation, we henceforth use the term “error”) in
the observations themselves (“instrument errors”) and in the
so-called observation operator H that represents the obser-
vations in the model space. As the errors in data assimilation
systems are closely linked to the uncertainty and represen-
tativity of the observations, it is straightforward to use the
observations to produce reliable estimates of both the instru-
ment errors and the representativity errors in the assimilation
(note that our definition of the term “representativity error”
differs from the definition used in data assimilation; see
Figure 1).

[3] A major goal of this paper is to provide error statistics
that may be used in conjunction with the assimilation of his-
torical upper-air observations. This information is important
in the pre–satellite era, where upper-air observations from
radiosondes, balloons, airplanes, rocketsondes, and kites are
the only direct and regular measure of climate variables
in the free troposphere and lower stratosphere. For early
upper-air data, hardly any information on errors is available
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at all. Even for the past 30 years, radiosonde observation
errors in present-day assimilation schemes are assumed to
be merely constant in time and space for a given altitude (D.
Dee, ECMWF, personal communication, 2012). Estimates of
the observation error can be used to verify or comple-
ment the constant terms in the main diagonal of the error
covariance matrix, which potentially improves the quality of
the assimilation.

[4] A common issue for the quantification of observa-
tional errors in the pre–satellite era is the lack of suit-
able independent reference series. The Twentieth Century
Reanalysis [Compo et al., 2011] is not based on aerologi-
cal observations and would hence be a potential candidate.
However, the utility of this data set as a reference for
the detection of errors in observational data is limited due
to biases [e.g., Stickler and Brönnimann, 2011; Ferguson
and Villarini, 2012]. Biases are also found within and in
between different aerological data sets, even if they have
been homogenized [e.g., Xu and Powell, 2012; Thorne et al.,
2011; Francis, 2002], highlighting that none of them can be
used as a fully reliable reference.

[5] An alternative to the use of reference series for the
estimation of observational errors are metadata, yet histor-
ical upper-air measurements often lack of this information.
While efforts have been undertaken to compensate for some
of the missing metadata [e.g., Gaffen, 1993], the informa-
tion (which is still incomplete and partly erroneous) does
not allow for a systematic estimation of observational uncer-
tainties in historical upper-air data. Metadata also comprise
observational errors estimated in previous studies. Parallel
measurements are rare in the early decades and compar-
isons with nearby mountain sites are only possible at few
locations. Based on such information, Brönnimann et al.
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WARTENBURGER ET AL.: ERRORS IN UPPER-AIR OBSERVATIONS

Figure 1. Comparison of terminologies for errors and uncertainties in observational data common in
meteorology and data assimilation. The terms used in this paper (leftmost column) refer to observation-
based estimates (middle column) of errors relevant for data assimilation (rightmost column). Ox represents
an observation, which deviates from the unknown true state of the atmosphere x by a bias term b and a
random error term e. The difference of x at two spatially distinct locations (subscripts c and r) is expressed
as the representativity error of xc with respect to xr. The definition of the representativity error that is
used in this paper differs from the one used in data assimilation, where it depends on the observation
operator H, and hence on the model grid. Random errors and representativity errors are estimated from
the variance, biases are estimated from the mean. A mathematical definition of the error terms is provided
in section 3.2.

[2011] estimated random errors of 0.9–1.2ıC and 1.35 hPa
(standard deviations) for temperature and pressure measure-
ments in German radiosonde data from the late 1930s. First
comprehensive in-flight experiments for the determination
of observational errors were performed in the 1950s [(OMI)
Organisation Météorologique Internationale, 1951; (OMM)
Organisation Météorologique Mondiale, 1952]. Jasperson
[1982] experimentally estimated errors in wind speeds for
a Doppler-based tracking system of pilot balloons. A num-
ber of studies examined sonde drift errors in greater detail
[e.g., McGrath et al., 2006; Seidel et al., 2011], while others
focused on sonde-specific radiation errors [e.g., Brasefield,
1948; Rossi, 1954]. Kitchen [1989] applied a comprehen-
sive analysis of spatial and temporal representativity errors
for UK Meteorological Office RS3 sondes. Although all of
those studies provide valuable error statistics, they cannot
be used to infer error statistics for the full range of synoptic
historical upper-air observations.

[6] The issue of detecting and correcting systematic errors
in upper-air data is an active topic in climate research. Most
of the homogenization approaches are motivated by attempts
to produce homogenized observation series that are useful
for the analysis of long-term trends. A variety of tech-
niques for break detection and adjustment were investigated.
Lanzante et al. [2003] developed an absolute homogeniza-
tion method based on a semisubjective break detection.
Free et al. [2005] investigated the first differences technique
for the reduction of inhomogeneities. Thorne et al. [2005]
developed a relative homogenization method based on
neighbor composites. This method was expanded to a fully
automated homogenization by McCarthy et al. [2008]. Other

approaches make use of innovation statistics of the European
Centre for Medium Range Weather Forecast (ECWMF) 40
Year Reanalysis (ERA-40) to homogenize radiosonde tem-
peratures [Haimberger, 2007; Haimberger et al., 2008] and
upper-air winds [Gruber and Haimberger, 2008]. Sherwood
[2007] and Sherwood et al. [2008] address the homoge-
nization of upper-air temperatures and wind shear of data
sets that suffer from numerous gaps by applying a kriging
method. Although all of these approaches succeed to pro-
duce homogenized data sets, they all differ from the goal
of this paper, which is to quantify the errors of individual
upper-air observations.

[7] The error estimation approach presented in this paper
differs from the techniques mentioned so far. It is based
on a direct comparison of observations from a candidate
series to neighboring reference series using aerological
data of the Comprehensive Historical Upper-Air Network
(CHUAN) [Stickler et al., 2010]. By these means, we
avoid the shortcomings of independent reference series or
metadata of questionable quality. Moreover, we are able
to estimate errors more comprehensively than previously
by incorporating all observations that are available in the
data set.

[8] In the following section, we briefly describe the obser-
vational data that the error estimation method is applied
to. Section 3 describes the error estimation method both
mathematically and technically and discusses sensitivities to
parameter choices. In section 4, the method is tested against
a climatology and the estimated errors are discussed and
compared with independent estimates. The main findings are
summarized in the conclusions.
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Figure 2. Locations and platform types of stations in operation during four distinct time spans as
indicated on each map. Only stations with at least 30 observations are shown.

2. Observational Data
[9] We analyze errors in the CHUAN data set, version

1.70 [Stickler et al., 2010]. The data set covers air tempera-
ture, geopotential height, and wind observations from 4182
stations in operation from close to the beginning of oper-
ational upper-air observations in 1904 till the end of the
International Geophysical Year (IGY) in 1958 (Figure 2).
Continuous records were supplemented by observations
from the Integrated Global Radiosonde Archive (IGRA)
[Durre et al., 2006] using RAdiosone OBservation COr-
rection using REanalyses (RAOBCORE) 1.4 adjustments
(which for the time period studied here is quasi-identical to
RAOBCORE 1.5) [Haimberger et al., 2012]. To include the
transition time around the IGY, we analyze CHUAN obser-
vations from 1923 (the earliest year for which error estimates
are available) till 1966. Each CHUAN record contains obser-
vations from either aircraft, kites, pilot balloons, registering
balloons, or radiosondes. Due to different reporting prac-
tices, observations are given on pressure levels or geometric
altitude levels.

[10] The adjusted version of CHUAN is used for the
error analysis (see Appendix A for technical details of the
adjustment). For temperature and geopotential heights, sta-
tistical break detection was performed, but adjustments were
limited to breaks that were confirmed by metadata (which
was rare) or coincided with a change of source (merging
of different sources). Breaks were attributed to one of several
predefined causes (such as a radiation error or a pres-
sure offset) based on the shape of the vertical error profile
[Brönnimann, 2003; Grant et al., 2009]. No additional
breakpoints were used in order to circumvent the lack of
adequate metadata (e.g., unknown sonde types or on rare
occasions even unknown platform types). For winds, the
observations were compared to a reconstruction and manu-
ally screened [Stickler et al., 2010, online supporting infor-
mation]. Suspicious wind observations were flagged. The
resulting data set is considered to be free of large biases.
It is deemed to be more appropriate for a detailed estima-
tion of errors than the raw data, as the adjusted observations

resemble the characteristics of observations that would actu-
ally be assimilated (raw observations are usually quality-
screened prior to assimilation).

[11] Additional tests were performed on individual obser-
vations of CHUAN to supplement the earlier quality checks,
which were partly based on monthly means. The data set was
checked and corrected for inconsistencies in the file format.
Range checks were applied to detect physically implausible
observations, leading to an adjustment of the flags of sev-
eral observations. Duplicate profiles containing observations
on at least three altitude levels were removed (see remark in
Grant et al. [2009]). For the estimation of biases, we make
use of anomalies from a climatology based on 6-hourly fields
of the ERA-Interim reanalysis [Dee et al., 2011] (technical
details are provided in Appendix B).

3. Errors in Aerological Observations
3.1. Physical Error Sources

[12] Ideally, biases and random errors can be related to
their physical sources. Therefore, in order to better interpret
the errors, we briefly discuss the most important physical
error sources. It is necessary to distinguish between the
different observation platforms and between the different
measurands and derived quantities (temperature T, pressure
p, wind speed w, wind direction ‚, and geopotential height
Z). Errors (uncertainties) in these measurands are linked to
individual (partly overlapping) error sources.

[13] The magnitude of biases for both T and p is mainly
controlled by the instrumentation type and by observa-
tional practices common for an individual station network.
For example, stations within the same network are usually
equipped with the same sonde type, whose mean radiation
error differs from that common to other networks. Besides
that, biases in T and p are commonly caused by a lag of
the temperature sensor, by differences in the calibration, by
errors in the pressure sensor, or by deposition of ice or water
on the sensor [World Meteorological Organization (WMO),
2008]. For w and ‚, biases are typically related to the type
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Figure 3. Schematic illustration of the assumed linear
relation between s2

Oxc–Oxr
(y axis) and d2

c–r (x axis) for
500 hPa temperatures measured at the candidate station
3475 (Brunswick). The dashed line corresponds to the least
squares fit, the dot-dashed lines indicate standard devia-
tions of the residuals. The other lines illustrate the rela-
tion between the squared station separation distance d2

c–r13
(horizontal line) and the error terms used in equation (3)
(variances; arrows). "13 is the residual of the thirteenth data
point with respect to the least squares fit, and s2

xc–xr13
is the

variance of the representativity error of the candidate series
for the distance d2

c–r13
.

of balloon used, to the tracking device (optical theodolites
or radio-theodolites), or to the assumed ascent rate of the
balloon [WMO, 2008]. Large biases in ‚ can be due to
an incorrect calibration of the North direction (e.g., geo-
magnetic North instead of geographic North) [Gruber and
Haimberger, 2008].

[14] Some of the above-mentioned sources for system-
atic errors do also cause random errors. Random errors in
all variables can be caused by an imprecise assignment of
observation times or by reading measured values from dis-
crete scales [WMO, 2008]. For w and ‚, random errors are
also introduced by an imprecise tracking of the ascending
balloon and by the motion of the balloon relative to the
atmosphere [WMO, 2008].

[15] The list of error sources presented here only has the
intention to give a brief overview. Apart from the previously
cited literature, a more comprehensive listing of potential
error sources in upper-air observations is provided, e.g., by
Gaffen [1994] or Häberli [2006].

3.2. Mathematical Error Description
[16] An error is defined as the difference between an

observation Ox and the value of a measurand x (which
is unknown) [Bureau International des Poids et Mesures,
2008]. It can be partitioned into a systematic part or bias
b (time-invariant within the analyzed time window) and a
random part e, which is assumed to be symmetrically and
unimodally distributed around a zero mean

Ox – x = b + e, with b = Nb and Ne = 0

where an overbar denotes an average over time. In many
practical applications, because x is unknown, we compare
the observation with a grid point value from another data
set or another observation. For the difference between two
observations, we can write

Oxc – Oxr = (xc – xr) + (bc – br) + (ec – er) (1)

where (xc – xr) is termed representativity error. Apart from
rare exceptions (e.g., undetected copying of parts of the
observations from one station series to another one), it is
reasonable to assume that ec and er are independent. Con-
sequently, the variance (over time) of the difference can be
written as follows:

s2
Oxc–Oxr

= s2
xc–xr

+ s2
ec

+ s2
er

(2)

To ensure that s2
Oxc–Oxr

is a proper estimate for random
errors, it is necessary to test if the distribution of Oxc –
Oxr is normally distributed (which implies symmetry and
unimodality). We applied the Anderson Darling Test of
Goodness of Fit [Anderson and Darling, 1954] and the
Jarque-Bera tests [Jarque and Bera, 1980]. The tests
suggest that 82.0 % (82.2 %) of the temperature differ-
ences, 81.6 % (81.4 %) of the geopotential height differ-
ences, 73.7 % (78.2 %) of the wind speed differences, and
88.0 % (76.0 %) of the wind direction differences are nor-
mally distributed at a level of significance of ˛ = 10 %.
These results suggest that our approach is suitable for the
estimation of errors in T and Z, but less for the estimation of
errors in w and ‚. We still apply our approach to all vari-
ables, but advise to be cautious in the interpretation of the
estimated wind errors.

[17] The focus of this study is on random errors and
representativity errors. They are estimated for a given candi-
date observation (subscript c) from a number of neighboring
(or reference) observations (r1, : : : , rn). We further assume,
for each pair, that the random error of both observations
has the same distribution (we assume that the geographical
dependency of random errors from neighboring stations is
negligible). Thus, we can write for the variances

s2
Oxc–Oxr1

= s2
xc–xr1

+ 2s2
ec

...
s2
Oxc–Oxrn

= s2
xc–xrn

+ 2s2
ec

If we further assume that s2
Oxc–Oxri

depends linearly on the
squared Euclidean distance d2

c–ri
between a candidate obser-

vation and a neighboring observation i, i = 1, : : : , n (an
analysis of scatterplots suggests that such a relation can
indeed be postulated), a regression approach can be used to
estimate s2

ec
and s2

xc–xri

s2
Oxc–Oxri

= c0 + c1 � d2
c–ri

+ "i (3)

We interpret c0 as 2s2
ec

, c1 as s2
xc–xri
� d2

c–ri
, and "i as the uncer-

tainty inherent to the model. Equation (3) can be illustrated
geometrically (Figure 3). The uncertainty of the fit (which
is expressed as the standard deviation of the residuals ")
is typical for candidate series with a moderate number of
reference series.
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[18] Apart from random errors and representativity errors,
we also estimate the bias b, which we further partition into
a network-wide bias bn and a station bias bs. For the time-
average of equation (1) (Ne = 0), we get

Oxc – Oxr = (xc – xr) + (bnc – bnr ) + (bsc – bsr )

Within the same network (bnc = bnr ), we get

Oxc – Oxr = (Nxc – Nxr) + (bsc – bsr )
bsc – bsr = NOxc – NOxr – (Nxc – Nxr)

Considering many reference stations (which are usually
located uniformly around the candidate station), we assume
that bsr is statistically independent and the average over
all reference series (for a particular altitude level) is zero,
[bsr ] = 0

[bsc – bsr ] = NOxc – Nxc – [NOxr – Nxr]
bsc = NOxc – Nxc – [NOxr – Nxr]

For observations Oxnc and Oxnr , taken at all stations within two
adjacent networks, we thus get

h
Oxnc – Oxnr

i
=
�
Nxnc – Nxnr

�
+
�
bnc – bnr

�
+
�
bsc – bsr

�

where we assume that the mean of all contributing individ-
ual station biases relative to the respective network biases is
zero, [bsc ] = 0 and [bsr ] = 0

�
bnc – bnr

�
=
h
NOxnc – NOxnr

i
–
�
Nxnc – Nxnr

�

[19] The notation that is used in the rest of this paper
refers to the Euclidean distance between a candidate series
and an arbitrary location as d, to the random error of a
candidate series as se with s2

e = s2
ec

, and to the respective
representativity error as spd with s2

pd = s2
xc–xri

/d2
c–ri
� d2 (i.e.,

s2
xc–xri

normalized by distance; i = 1, : : : , n). We choose d2 =
104 km2 (d = 100 km) to approximate the mean length scales
of the resolution of an ordinary model grid as used in mod-
ern atmospheric reanalyses. To preserve the original units,
we show the square root of abs(s2

e) and abs(s2
pd). Values in

single square brackets ([]) correspond to spatial averages on
a single altitude level, while errors in double square brackets
([[]]) denote vertical averages.

3.3. Technical Error Description
[20] For the implementation of the theory (previous

section) to real-world data (i.e., to sparse historical obser-
vations), it is necessary to define a number of threshold
parameters. Obviously, the number of variance estimates
s2
Oxc–Oxri

, i = 1, : : : , n is limited by the number of reference
stations n in the neighborhood of a candidate station. We
hence need to define an upper limit for the neighbor search
radius, max(d), and a lower limit for the number of reference
series, min(rn). Individual reference series are only consid-
ered, if at least 30 of their observations overlap in time with
those of the candidate series (a temporal overlap is con-
strained by a time window �t centered at the observation
times of Oxc). Multiple observation pairs within the same time
window are allowed. To avoid large errors in wind direc-
tions due to low wind speeds, wind directions are only used,
if the corresponding wind speeds exceed 3 ms–1. For wind

directions, 360ı are subtracted from (added to) differences
that are above (below) + (–) 180ı.

[21] The determined set of optimal threshold parameters
is listed in Table A1. The parameters are defined by weigh-
ing the number of candidate series cn (which equals the num-
ber of error estimates) and the mean number of reference
series [rn] against a set of statistical measures that define the
overall quality of each individual least squares model (see
equation (3); details are provided in Appendix C). In paral-
lel to the parameter selection, we tested the sensitivity of the
error estimates with respect to various combinations of the
threshold parameters. It was found that the error estimates
are most sensitive to the choice of the neighbor search radius
(max(d)), while the other threshold parameters only play a
marginal role (see Appendix C). However, as the detected
optimal values of max(d) are well in agreement with influ-
ence radii determined from the average 0.5 decorrelation
distance (i.e., the average radius beyond which the spatial
correlation drops below 0.5) for CHUAN observations in a
previous study by Griesser et al. [2010], we can adopt the
suggested values.

[22] Gross errors in the observations (e.g., large and sys-
tematic processing or digitization errors) are likely to be
small in the analyzed (adjusted) version of CHUAN. How-
ever, as the quality control and homogenization procedures
that were previously applied to CHUAN were partly applied
on time scales greater than a month, some outliers are pos-
sibly still present in the single ascent data. For this reason,
we generate a subversion of the input data set for which
outliers in the observation differences Oxc – Oxr are removed
for all combinations of Oxc and Oxr for which an error esti-
mate could be computed. As a threshold for the detection
of outliers, we use the upper and lower fences fu and fl of
the distributions of all observation differences determined
per measurand, level, and distance interval (intervals range
from (0, 100] km to ((max(d)–100), max(d)] km). The fences
fu and fl are a function of the upper and lower quartiles Q1
and Q3: fu = Q3 + k � (Q3 – Q1), fl = Q1 – k � (Q3 – Q1)
[Frigge et al., 1989]. As in the case of small sample sizes,
the distribution of conventional quartile estimates may not
be strictly Gaussian, we use median-unbiased quartiles and
the standard value of 1.5 for the factor k [Hyndman and Fan,
1996]. Individual differences Oxc – Oxr above (below) the upper
(lower) thresholds are flagged for removal. The impact of
the outlier treatment on the error estimates is briefly outlined
in Appendix C.

[23] Station biases bsc are determined for all candidate
series with at least min(rn) reference series. Network biases
are computed for all stations with a valid network identifier
and min(rn) = 1 (stations using Vaisala sondes and stations
with unknown network identifier were considered to belong
to the Vaisala network) [Grant et al., 2009]. The climatolog-
ical difference Nxc – Nxr is computed using a climatology of the
ERA-Interim reanalysis (see Appendix B). We hereby make
the assumption that this climatology is a good estimate of
the mean state of the atmosphere during the study period.

4. Results
4.1. Test Against Climatology

[24] As the estimation of se and sp100 (i.e., spd for d =
100 km) is based on statistical concepts, it is useful to

12,016
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Figure 4. Profiles of mean random errors [se] (solid lines with filled symbols) and representativity errors
[sp100] (dashed lines with open symbols) for (a) temperature, (b) wind direction, (c) geopotential height,
and (d) wind speed estimated from the CHUAN observations (circles) and from the ERA-Interim clima-
tology interpolated to the locations of the CHUAN stations (squares). Shaded bands indicate the standard
deviations of the random errors estimated from the climatology (light gray) and from CHUAN observa-
tions (medium gray) for all stations; their overlap is printed in dark gray. Levels with less than 30 error
estimates were omitted.

validate the error estimation method. This can be achieved
by applying the method to data sets with known error
characteristics (the parameters are the same as for the obser-
vations, see Table A1). We make use of the interpolated
and smoothed ERA-Interim climatology (Appendix B). This
data set is preferred over a synthetic data set, as it contains
most of the statistical properties of real observational data,
but no random errors (i.e., se = 0). If our regression approach
fails to reproduce se = 0, its estimates (for a given variable
and altitude level) are less accurate.

[25] The error profiles are shown in Figure 4. Not surpris-
ingly, the observation-based estimates (both [se] and [sp100])
are substantially different from the values that were derived
from the climatology. For Z, w, and T above 850 hPa, the
estimated “random errors” of the climatology are approxi-
mately symmetric to zero. For wind directions, the mean of
[se] from the ERA-Interim climatology is shifted to the right,
indicating that error estimates for this variable are rather
pessimistic. The amplification of [se] for ‚ and T near the
earth surface can be explained by the biased sampling of
near-surface observations in mountainous areas. However,
substantial deviations from zero over the entire profile (‚)
indicate that the relationship between s2

Oxc–Oxri
and d2

c–ri
is not

strictly linear. Combining these results with the test of Oxc – Oxr
for normality (section 3.2), we can conclude that the error
estimates for both w and ‚ are potentially biased and have
to be interpreted with care. However, the test results indicate
that our method does succeed to produce reliable estimates
for T and Z.

4.2. Biases
[26] In the following, we discuss the station and network

biases, which were estimated for the entire study period.
Besides our general interest in the results, the bias estimates
are useful to verify the bias adjustments that were previously
applied to CHUAN (Appendix A). In this respect, the mag-
nitude of the biases indicates both the quality of the data set
and the performance of the applied adjustments.

[27] The spatial distribution of station biases of T, w, and
‚ on 500 hPa (5000 m) is shown in Figure 5. Only the North-
ern Hemisphere is shown, as the number of estimated biases
in the Southern Hemisphere is too low (the same applies to
se and spd). Based on the design of the applied method, bias
estimates in regions of high station densities are assumed
to be fully reliable, while they need to be interpreted with
care in regions where stations are not uniformly distributed
in space (e.g., at continental margins). Temperature biases
have no clear spatial patterns. Biases in winds are mostly
constrained to observations within North America, while the
density of overlapping observations in the other regions is
mostly too low (note that the current version of CHUAN
does not include a sufficient number of wind observations
from the former Soviet Union). The range of station biases in
wind speed and direction generally decreases with altitude,
which likely indicates local differences in surface roughness
that affect near-surface winds (not shown). Station biases
in w (Figure 5b) over the U.S. territory are marked by a
latitudinal gradient from mostly negative biases at 30ıN to
more positive biases at around 40ıN. Similar features can
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Figure 5. Spatial distribution of station biases (colored dots) for (a) 500 hPa temperatures, (b) 5000 m
wind speeds, and (c) 5000 m wind directions. Small black crosses denote the location of stations for which
errors were not determinable.

be found for ‚, where we find a prominent cluster of pos-
itive biases at around 45ıN. The more isolated biases in
‚ (which are constant throughout the entire profile) indi-
cate systematic differences that might arise from the choice
of the wrong North direction. While these isolated biases
are clear indicators of systematic instrument or processing
errors in individual observation series, the spatially more
coherent biases could also be related to biases in the ERA-
Interim reanalysis or to long-term changes in the patterns
of the observed atmospheric fields. The confidence in these

interpretations could certainly be increased by considering
additional data sets as a reference, which is certainly an
interesting perspective for future work.

[28] Figure A4 shows the profiles of network temperature
biases for all combinations of neighboring station networks.
The biases are generally low, but clearly depend on the
choice of the networks. The spread (˙1 standard deviation)
among the differences of each observation pair is substan-
tial, which underlines that the biases may be of different
magnitude when considering shorter time spans or regional

Table 1. List of Mean Estimates (Variances), Mean Standard Errors of the Estimates (SE), Mean Coeffi-
cients of Determination (R2, unitless), Mean Errors and Their Mean Horizontal Standard Deviations (sd)
for 500 hPa (T, Z, p) and 5000 m (w, ‚)a

T (K2) Z (m2) w ((ms–1)2) ‚ ((deg)2)

Estimates [s2
e ] 4.65 (2.76) 1299 (855) 17.8 (11.9) 1004 (189)

[s2
p100] 0.0011 (0.0008) 0.63 (0.46) 0.0039 (0.0032) 0.29 (0.36)

Standard errors [SE(s2
e )] 1.12 (0.66) 555 (351) 3.19 (1.75) 225 (157)

[SE(s2
p100)] 0.0002 (0.0001) 0.090 (0.056) 0.0009 (0.0005) 0.051 (0.035)

Model fit [R2] 0.65 (0.74) 0.68 (0.72) 0.48 (0.65) 0.64 (0.84)

T (K) p (hPa) w (ms–1) ‚ (deg)

Mean errors [se] 1.46 (1.14) 1.58 (1.33) 2.90 (2.40) 21.64 (8.59)
[sp100] 0.32 (0.28) 0.52 (0.44) 0.60 (0.56) 5.24 (5.91)

Horizontal sd [sd(se)] 0.45 (0.28) 0.74 (0.47) 0.77 (0.45) 6.05 (6.17)
of mean errors [sd(sp100)] 0.08 (0.06) 0.16 (0.12) 0.18 (0.13) 1.40 (1.12)

aValues outside parentheses correspond to RAW and NF, values in parentheses correspond to RAW+OC and NF+OC.
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Figure 6. Profiles of mean random errors [se] (solid lines with filled circles) and representativity errors
[sp100] (dashed lines with open circles) for (a) temperature, (b) wind direction, (c) geopotential height, and
(d) wind speed of the OC version. Open diamonds in Figure 6a correspond to observation errors assumed
in the ERA-Interim reanalysis (see text). Shaded bands indicate the standard deviations of the random
errors (medium gray) and representativity errors (light gray) for all stations; their overlap is printed in
dark gray. Levels with less than 30 error estimates were omitted.

subsets. Most of the temperature biases are in the range of
˙1 K from the mean (and hence within the range of the sta-
tion biases). However, for some combinations of networks,
the biases clearly exceed the magnitude of the station biases.
This indicates that, despite the previous adjustments applied
to CHUAN, systematic differences between the station net-
works still exist in the data set. Biases on the 70 hPa and
50 hPa levels are particularly large, which either indicates
persistent radiation errors in the Vaisala and U.S. networks,
or an overcorrection of radiation errors in observations from
the Soviet networks.

4.3. Random Errors and Representativity Errors
[29] This section presents and discusses the final version

of the error estimates (T and Z: all available observations
(RAW), w and ‚: all except flagged observations (NF); see
Appendix C). In cases where the focus is on the mean error
patterns, we also present the outlier-corrected (OC) esti-
mates. In the following, we first discuss the mean errors
and then analyze their spatial and temporal variability. If not
denoted explicitly, the presented estimates always refer to
the entire study period.
4.3.1. Mean Errors

[30] Table 1 lists the estimated variances, the correspond-
ing error estimates, their standard deviations (i.e., the spread
of all error estimates), and parameters that describe the
uncertainty of the error estimates for the 500 hPa (5000 m)
level. These levels were chosen, as they are often used to
represent the large-scale dynamic state of the atmosphere
and are neither influenced by the planetary boundary layer

nor by tropospheric jets. The pressure errors are derived by
conversion of the geopotential height errors using the 1976
U.S. Standard Atmosphere [NOAA et al., 1976]. Both the
standard error of the estimates and the coefficient of deter-
mination indicate that the error estimates of the OC version
are less noisy than the RAW (NF) estimates. In addition,
[s2

p100] is less sensitive to the outlier removal than [s2
e], which

underlines that the OC version can be used to analyze mean
error profiles. For all other analyses, we use RAW (NF), as
it captures the full magnitude of [sd(se)] and [sd(sp100)].

[31] The mean profiles of the random and representa-
tivity errors of the OC data allow for the identification
of factors that dominate the errors throughout time and
space (Figure6). For comparison, we also plotted the obser-
vation errors for temperatures that are used in the ERA-
Interim reanalysis. This error is assumed to be constant for
all assimilated radiosonde observations on a given pres-
sure level, whereas no distinction is made for different
sonde types or instrument designs (P. Poli, ECMWF, per-
sonal communication, 2012). The representativity error of
the data assimilation system (which is a component of the
observation error; cf. Figure 1) is arguably smaller than
the estimated representativity errors, as the horizontal res-
olution of ERA-Interim (T255) corresponds to grid cell
distances that are (in average) smaller than the separation
distance d = 100 km. Throughout the troposphere, the esti-
mated random errors are larger than the observation errors,
while their vertical structure is well resembled. Given that
the observation errors were specified at the time the ERA-
Interim reanalysis was built, this result is in agreement
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Figure 7. Spatial distribution of random errors (colored dots) and representativity errors (gray circles)
for (a) 500 hPa T and (b) 500 hPa Z. Small black crosses denote the location of stations for which errors
were not determinable.

with the long-term increase in the accuracy of observations
over time (cf. Figure 10). On altitudes above 200 hPa, we
find a substantial disagreement of the errors that requires
further attention.

[32] The mean temperature representativity errors [sp100]
(Figure 6a) show maxima on the 850 hPa and 200 hPa lev-
els. The 850 hPa peak is located within the global average
height of the planetary boundary layer (500–2000 m, accord-
ing to Seidel et al. [2010]), while the 200 hPa peak falls
within the annual mean height of the midlatitude tropopause
(� 150–250 hPa, according to Hoinka [1998]). Both peaks
are most likely caused by height variations in these atmo-
spheric features. In accordance to the high degree of spatial
homogeneity of the temperature fields in the upper tro-
posphere and lower stratosphere, representativity errors at
these altitudes are low. The mean random errors are largest
near ground and show no peak on 850 hPa, which indicate
that they are mostly dependent on the observing system.
They are, however, not fully independent of ambient weather
conditions. For instance, wrongly corrected instrument lags
may lead to lower errors in areas where lapse rates are
rather constant such as in the middle and upper troposphere.
The spread in [se] indicates the heterogeneity of the con-
tributing observations (note that the spread is larger in the
RAW version).

[33] The mean profile of [sp100] for‚ (Figure 6b) is mainly
characterized by a distinct decrease with height up to an alti-
tude of� 23 km interrupted by a secondary maximum at an
altitude of around 9–11 km (� 307–226 hPa), which is just
below the annual mean height of the midlatitude tropopause.
Despite the limited validity of the error estimation method
for use with wind directions, the large magnitude of the
vertical variation of [sp100] suggests a predominance of nat-
ural, i.e., climatological factors. Random errors of ‚ are
higher near ground, where wind directions are more hetero-
geneous due to different station altitudes and due to the influ-
ence of surface roughness. The standard deviation over all

stations is low above 20 km and largest in the middle and
upper troposphere.

[34] For geopotential height (Figure 6c), the strong
increase of the tropospheric representativity errors with alti-
tude is dominated by an increase of the mean heights with
altitude, which cause an increase in spatial differences of Z
measured within the radius max(d). Within the lower strato-
sphere, the geopotential height gradients decrease again. The
increase of [se] with altitude is due to the summation of the
errors in the pressure and temperature measurements dur-
ing the radiosonde ascents. The lower value on the 70 hPa
level is related to the fact that this pressure level was mainly
reported in radiosonde ascents from the end of the study
period (which are characterized by smaller random errors).
The spread of [se] is low compared to the heterogeneous
distribution of the respective representativity errors.

[35] The shape of the error profiles of w (Figure 6d) is
dominated by the average altitude of the maximum wind
speeds on � 12 km. The increase of [se] up to this altitude
can also be explained by the dependency of the angu-
lar errors on the total distance between the theodolite and
the balloon. In the stratosphere, however, wind speeds are
generally less strong and more homogeneous, causing a sub-
stantial decrease of both random errors and representativity
errors. The magnitude of the spread is correlated to the
magnitude of the mean errors.
4.3.2. Spatiotemporal Error Structure

[36] The analysis of spatial error patterns is assisted by
the use of error maps. Figures 7 and 8 show the individ-
ual random errors and representativity errors of all analyzed
variables on the 500 hPa (5000 m) level. Errors on this alti-
tude are not substantially different from the neighboring
levels and are therefore considered to be characteristic for
the midtroposphere. What stands out for T and Z is a mean
increase of the representativity errors from the subtropics
to the subpolar region (see also Figure 9). This feature is
in line with atmospheric circulation patterns that determine
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Figure 8. Spatial distribution of random errors (colored dots) and representativity errors (gray circles)
for (a) wind speed and (b) wind direction on 5000 m. There are no estimates for the former Soviet Union,
as radiosonde winds in CHUAN V1.7 are too sparse, and the Soviet network in CHUAN V1.7 does
not contain pilot balloons. Small black crosses denote the location of stations for which errors were not
determinable.

the degree of spatiotemporal variability of the atmospheric
fields (e.g., the position of the jet streams). No clear latitudi-
nal trend in [sp100] is found for w and ‚. Random errors of
T and Z are dominated by above-average values over large
parts of the former Soviet Union, while they are generally
low over China, south-western Europe, the USA, and the
Caribbean. This pattern is in agreement with the assump-
tions of the method (se is the same for any reference series
of a given candidate series), i.e., random errors are mostly
the same for neighboring stations, and differences mainly
occur on longer spatial scales. This does also correspond to
the expectation that random errors mainly differ in between
different station networks. For winds, a large number of
non-U.S. stations cover only short and nonoverlapping time
spans, impeding a global comparison. Random errors in w

(Figure 8a) tend to be very low in the (sub) tropical calm
zones and increase toward the North. This is in contrast to
random errors in ‚ (Figure 8b), which are spatially more
heterogeneous and large in both the subtropical and the sub-
polar regions. Considering the limited performance of the
error model for winds, these patterns should, however, not
be overinterpreted.

[37] In order to quantify the dependency of the error esti-
mates on the station latitude, all estimates were zonally
averaged over 10 degree bins (see Figure 9 for errors in
geopotential heights). Both [se] and [sp100] tend to increase
with (Northern Hemisphere) latitude. This is linked to the
location of the dominating pressure cells and associated flow
features. The meridional gradient of atmospheric variabil-
ity obviously explains the gradients of both errors, as an

Figure 9. Zonal 10 degree mean (a) random errors and (b) representativity errors of geopotential height
on selected pressure levels. Errors are plotted in the middle of the 10 degree bands.
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Figure 10. Time series of running decadal mean (a) random errors and (b) representativity errors of
temperatures on selected pressure levels. Errors based on less than 30 error estimates were omitted. The
years on the abscissa correspond to the middle of each time window.

increase in atmospheric variability leads to a mean increase
in the spatial differences of the observed heights, while it
amplifies the risk of random errors. The zonal mean pattern
of the other variables is similar to the one of Z, though the
latitudinal differences are less pronounced (not shown).

[38] The errors that were presented so far are estimated for
observations from the entire study period. A deeper insight
into the temporal evolution of the errors is gained by estimat-
ing the errors over shorter time spans. We choose moving
10 year windows to estimate the errors, although it would
certainly be beneficial to select those periods according to
the dates of potential breakpoints, which could be provided
by concise metadata. Figure 10 demonstrates the evolution
of [se] and [sp100] for temperatures on selected pressure lev-
els. Due to the extremely low station density before the
1940s, no error estimates are available from decades before
1938–1947. While [se] is almost time independent near the
earth surface and on the average altitude of the midlatitude
tropopause (200 hPa), it decreases with time on most of the
other levels. In contrast, [sp100] is mostly constant over all
subperiods and all levels, which supports the correctness of
the estimates. The substantial increase of [se] in the early
1950s in the stratosphere can only be explained by a sudden
increase in the number of radiosonde ascents that reach lev-
els above 300 hPa, indicating that the estimated se for earlier
periods are too small. Whether the variations in the 1940s
are an actual result of changing instruments or measurement
procedures could only be answered, if more comprehensive
and reliable metadata was available.

[39] We also analyzed the effect of the intra-annual sam-
pling of observations on the error estimates. Figure 11 shows
the seasonal variation of [se] and [sp100] for temperatures
together with the corresponding standard deviations. While
the representativity errors are characterized by a strong sea-
sonal cycle, the random errors are less affected. In the
troposphere, the largest random errors occur in NH winter
(DJF), while the smallest errors occur in NH summer (JJA).
This result is inverse to the seasonal pattern of biases (which
contain radiation errors that are highest during NH sum-
mer) and can be explained by the dependency of random
errors on the intra-annual cycle of atmospheric flow features

and related weather conditions. Consequently, random errors
above the 300 hPa level are mostly insensitive to the season.

4.4. Comparison to Other Studies
[40] The mean estimates of all errors can (to some extent)

be compared to independent error estimates for historical
aerological observations from previous studies. As most of
these studies follow a less comprehensive approach than our
method, differences to our results may in part be due to
sampling errors or to methodological differences. Table 2
provides a direct comparison of the estimated errors.

[41] Temperature and pressure biases in OMM [1952]
were estimated from in-flight comparisons that were per-
formed in May 1950 using radiosonde types that were in

a

b

Figure 11. Profiles of seasonal mean of (a) random errors
and (b) representativity errors and corresponding standard
deviations (vertically displaced error bars) for DJF (blue
squares), MAM (green triangles), JJA (red circles), and SON
(orange diamonds) temperatures.
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Table 2. Error Estimates for (Historical) Aerological Observations for Given Pressure Levels (in hPa)a

Error Type and Vertical 900– 700– 500– 300–
Source Variable Mean > 300 < 300 700 500 300 200 100 50 700 500 300 200

RAW [bnFI – bnr ] T (K) 0.13 0.18 0.23 0.15 0.17
OMM [bnFI – bnr ] T (K) 0.79 0.60 0.60 0.75 1.05
RAW [bnU.S. – bnr ] T (K) –0.22 0.10 –0.18 –0.50 –0.46
OMM [bnU.S. – bnr ] T (K) –0.28 0.03 –0.10 –0.43 –0.58
RAW [bnFI – bnr ] p (hPa) 0.49 0.59 0.70 0.63 0.41
OMM [bnFI – bnr ] p (hPa) 4.4 1.5 1.5 5.5 6.5
RAW [bnU.S. – bnr ] p (hPa) –0.04 0.48 0.44 0.11 –0.29
OMM [bnU.S. – bnr ] p (hPa) –0.56 –2.30 –1.00 –0.30 0.80
RAW [se] T (K) 1.50 1.58 1.41 1.49 1.46 1.49 1.41 1.27
Brönn. [se] T (K) 0.9–1.2
OMM [se] T (K) 0.77 1.25
Zait. [se]b T (K) 0.50 0.70 0.90 0.65 0.40
RAW [se] p (hPa) 1.26 1.57 0.77
Brönn. [se] p (hPa) 1.35
OMM [se] p (hPa) 5.75 8.33
RAW [se] Z (m) 15.3 23.3 36.2 43.9 48.1
Zait. [se]b Z (m) 5.0 9.5 26.0 38.0 48.0
RAW [sp220] T (K) 0.8 0.7 0.5 0.8 0.6 0.4
Kit. [sp220]b T (K) 11.5 16.7 24.3 23.4 16.6 15.5
RAW [sp220] Z (m) 11.5 16.7 24.3 23.4 16.6 15.5
Kit. [sp220]b Z (m) 26 37 55 50 40 38

aThe source of the data is indicated in the first column (OMM: [OMM (Organisation Météorologique Mondiale), 1952], Brönn.: Brönnimann et al.
[2011], Zait.: Zaitseva [1993], Kit.: Kitchen [1989]). The subscript FI used for the network biases indicates the Finnish (Vaisala) network, the subscript
U.S. indicates the U.S. network, the subscript r indicates all other networks.

bError estimates are root-mean-square errors.

operation at that time. The biases were calculated as mean
differences from one sonde type with respect to all other
sonde types for daytime and nighttime ascents below and
above the 300 hPa level. Biases in T for the U.S. sonde
type are very close to our estimates, while the magnitudes
of the other biases are clearly larger, possibly owing to the
adjustments applied in CHUAN.

[42] The random errors of Brönnimann et al. [2011] are
within the range of our estimates, while there is considerable
disagreement to the estimates of OMM [1952] (in particular
for pressure). The large magnitude of the pressure error esti-
mates in the OMM intercomparison could be related to unit
errors. Zaitseva [1993] estimated random errors for temper-
atures observed by historical sonde types used in the former
Soviet Union, which are considerably lower than our mean
estimates. This difference is even more evident if we only
consider stations located within the former Soviet Union (cf.
Figure 7).

[43] The representativity errors estimated by Kitchen
[1989] for temperatures and geopotential heights are sub-
stantially higher than our estimates of [sp220], while their
vertical structure is the same. The disagreement in the error
magnitudes can be explained by methodological differences
(use of root mean squared differences instead of variances)
and by the smaller number of soundings that the estimates of
Kitchen [1989] are based on.

5. Conclusions
[44] We developed an algorithm to systematically esti-

mate random errors and representativity errors of historical
upper-air wind, air temperature, and geopotential height
(pressure) observations which we applied to observations
from the Comprehensive Historical Upper-Air Network
(CHUAN) from 1904 till 1966 (earliest error estimates

possible from 1923). The error estimation method is based
on a comparison of neighbor series which neither requires
comprehensive metadata nor other independent data sets,
but complements and confirms metadata-based analyses. It
can readily be applied to other four-dimensional atmospheric
observational data sets.

[45] The estimated error magnitudes are in good agree-
ment with some studies [e.g., Brönnimann et al., 2011], but
not others (which mainly estimated errors of lower magni-
tude). The spatiotemporal dependence of the errors agrees
with theoretical expectations and also shows new features.
Biases between station networks generally exceed biases
between neighboring station series, indicating the presence
of systematic differences between the networks. The esti-
mated representativity errors show substantial latitudinal
and seasonal variations for most of the variables. Their mean
profile is in agreement with the mean vertical structure of the
atmosphere, while random errors are much less dependent
on the atmospheric state. The random errors of the histor-
ical observations are mostly larger than observation errors
assumed in a modern reanalysis product.

[46] Both the error estimation method and the estimated
error statistics can be used for data assimilation approaches.
We provide information about the spatial and temporal
relations of random errors and representativity errors,
which is important when attempting to assimilate historical
upper-air data. In additional analyses, spatial and tempo-
ral error covariances could be computed from the estimated
errors, which are assumed to be zero in current assim-
ilation schemes.

[47] Apart from its utility for the reanalysis community,
the results can be applied to estimate errors in existing data
sets by providing uncertainty measures for (historical) data
sets that do not yet contain such information. Moreover, the
error estimates are suitable for a qualitative comparison to
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Figure A1. Partial dendrogram of the individual decisions
I to VI (connecting lines) made for all parameters (gray
boxes) and individual values that were tested (white boxes).
Displayed are only the branches that were used for fur-
ther analysis. The abbreviations in capital letters correspond
to individual versions of the data sets: RAW (all available
CHUAN observations), NF (CHUAN observations exclud-
ing flagged observations), and OC (CHUAN observations
excluding outliers). Dashed lines correspond to decisions
related to wind observations only.

error estimates of reanalysis products (e.g., the ensemble
spread or analysis departures of assimilated observations).
Certainly, it would be rewarding for more expansive data
validation efforts to develop a gridded data product from the
current point data (comparable to, e.g., Hadley Centre Atmo-
spheric Temperature Data Set Version 2 (HadAT2); Thorne
et al., 2005).

[48] The method that was presented in this paper is
designed to be applied to other compilations of upper-air
data. A very promising candidate is the IGRA data set, which
contains more extensive metadata that may aid to examine
random errors and biases in greater detail. Another prospec-
tive data sets are new compilations of historical upper-air
observations from the ongoing ERA-CLIM project. This
data set (which is planned to be included in the next version
of CHUAN (version 2.0)) will possibly allow for the estima-
tion and analysis of observation and representativity errors
in regions that are currently blank.

Appendix A: CHUAN Adjustments
[49] The adjusted versions of the CHUAN data set that

are used in this paper (C.DC for wind, C.DCR for tempera-
ture, and geopotential height) were generated from the raw
data by applying a number of preprocessing steps. Suspi-
cious observations of geopotential height and temperature
observations were flagged according to their quality [Stickler
et al., 2010, online supporting information]. Monthly means
of air temperature, geopotential height, wind direction, and
wind speed were reconstructed using a variety of indepen-
dent predictors [Brönnimann, 2003]. In order to test the
geopotential height and temperature observations for the
presence of artificial breakpoints, each of the station series
was compared to reconstructed fields [Grant et al., 2009;
Griesser et al., 2010]. Depending on the magnitude of the
errors, as well as on the skill of the statistical models,
the station records were either (entirely or partly) rejected,
adjusted, or accepted without adjustments. In addition to sta-
tistical tests based on the comparison with a reconstruction

Figure A2. Profiles of mean random errors [se] (solid
lines with filled symbols) and representativity errors [sp100]
(dashed lines with open symbols) for (a) wind direction and
(b) wind speed of RAW (circles) and NF (squares). Shaded
bands indicate the standard deviations of the random errors
estimated from RAW (medium gray) and NF (light gray) for
all stations; their overlap is printed in dark gray. Levels with
less than 30 error estimates were omitted.
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Table A1. Optimal Values for the Threshold Parameters Used in the Error Estimation Method
(Minimum Number of Reference Series min(rn), Maximum Separation Distance max(d), and
Time Window Used to Treat Observations as Simultaneous �t) Determined by the Total Num-
ber of Error Estimates cn, the Mean Number of Reference Series [rn], the Mean Coefficient of
Determination [[R2]], the Mean Coefficient of Variation [[cv]], and the Mean p Value of the F
Test of Goodness of Fit [[pF]]a

Variable Parameter cn " [rn] " [[R2]] " [[cv]] # [[pF]] # Decision

T min(rn) 4 10 7 4 10 6
Z min(rn) 4 10 6 4 10 6
w min(rn) 4 10 9 4 10 6
‚ min(rn) 4 10 10 4 10 6
T max(d) (km) 2000 2000 1500 1000 2000 1500
Z max(d) (km) 2000 2000 1600 1000 2000 1500
w max(d) (km) 2000 2000 1100 700 1800 1200
‚ max(d) (km) 2000 2000 1300 800 1900 1300
T �t (h) 6 6 0 1 0 3
Z �t (h) 6 6 0 6 0 4
w �t (h) 4 6 2 6 6 5
‚ �t (h) 1 1 1 6 1 2

aThe range of tested values is indicated in Figure A1. Arrows indicate whether the threshold parameters
were selected for the lowest (arrow pointing downward) or highest (arrow pointing upward) values that
were tested. The final selection of a threshold parameter (rightmost column) corresponds to the average of
columns 3–7 rounded to the next tested value. Values printed in italics were not considered, while values
printed in bold were weighted times 4.

similar to Griesser et al. [2010], wind observations were also
evaluated by means of a detailed visual inspection [Stickler
et al., 2010]. The applied adjustments for air temperature and
geopotential height compensate for radiation and lag errors
(i.e., an error due to the lagged response time of the sen-
sor), erroneous units, pressure errors, as well as for constant
temperature offsets [Grant et al., 2009; Brönnimann, 2003].
If possible, physics-based adjustments were applied to the
radiosonde observations to account for sonde-specific error
characteristics [Stickler et al., 2010].

Appendix B: ERA-Interim Climatology
[50] We used 6-hourly ERA-Interim fields to generate

a climatology of the same spatiotemporal resolution that

is based on the reference period 1981–2010. The u and
v wind fields were converted to wind speed and direction
and linearly interpolated to the height of the geometric alti-
tude levels used in CHUAN by using the gravity-corrected
geopotential height fields as a reference. After this step,
all fields were spatially (bilinearly) interpolated to the geo-
graphical locations of the CHUAN stations. Then, the inter-
polated climatologies for each of the main synoptic hours
(00, 06, 12, and 18 UTC) were filtered using a circular
31 day running mean filter with equal weighting. For each
observation series, the smoothed climatologies were then
interpolated to the respective ascent times by using natural
splines to simulate the daily cycle. Anomalies were gener-
ated by subtracting the difference between the observations
and the climatology.

Table A2. Range of [se] and [sp100] for All Variables on Selected Pressure (Geometric Altitude) Levels
Under Variation of the Threshold Parameters min(rn), max(d), and �t

min(rn) 2 [4, : : : , 10] max(d) 2 [500, : : : , 2000] km �t 2 [0, : : : , 6] h
[se] [sp100] [se] [sp100] [se] [sp100]

T850 (K) [1.43, 1.46] [0.48, 0.49] [1.18, 2.08] [0.32, 0.66] [1.77, 1.78] [0.39, 0.39]
T500 (K) [1.18, 1.25] [0.38, 0.39] [0.93, 1.75] [0.26, 0.47] [1.46, 1.48] [0.32, 0.32]
T300 (K) [1.25, 1.34] [0.30, 0.31] [0.96, 1.68] [0.19, 0.40] [1.49, 1.51] [0.24, 0.24]
T100 (K) [1.28, 1.32] [0.30, 0.31] [1.10, 1.58] [0.24, 0.38] [1.41, 1.42] [0.27, 0.28]
T50 (K) [1.12, 1.24] [0.18, 0.23] [1.00, 1.38] [0.18, 0.24] [1.25, 1.29] [0.20, 0.20]
Z850 (m) [10.4, 11.1] [4.8, 0.50] [8.7, 17.9] [3.8, 5.3] [13.7, 14.2] [4.4, 4.4]
Z500 (m) [17.9, 18.9] [8.4, 8.8] [15.4, 31.3] [6.6, 9.3] [23.9, 24.6] [7.7, 7.7]
Z300 (m) [28.8, 29.8] [12.5, 12.8] [23.2, 48.0] [9.5, 14.1] [37.2, 38.1] [11.1, 11.1]
Z100 (m) [39.3, 43.0] [8.1, 8.5] [34.4, 47.1] [7.3, 9.7] [43.8, 44.6] [7.8, 7.8]
Z50 (m) [40.3, 48.6] [6.4, 8.4] [35.6, 52.2] [7.0, 10.1] [48.3, 49.4] [7.5, 7.6]
‚1500 (ı) [24.5, 25.1] [7.0, 7.1] [19.4, 32.3] [4.3, 9.9] [26.2, 26.9] [6.0, 6.4]
‚5000 (ı) [18.7, 19.6] [6.2, 6.3] [14.3, 27.2] [4.0, 8.4] [20.9, 21.7] [5.3, 5.6]
‚9000 (ı) [19.4, 20.2] [6.1, 6.1] [14.1, 27.7] [3.6, 8.7] [21.7, 22.7] [5.1, 5.4]
‚16000 (ı) [14.8, 15.3] [5.0, 5.2] [14.0, 21.5] [3.5, 5.9] [16.1, 16.9] [4.5, 4.7]
‚22000 (ı) [20.3, 20.9] [3.5, 3.7] [19.5, 22.3] [2.7, 6.1] [20.4, 20.8] [3.3, 3.4]
w1500 (ms–1) [2.29, 2.37] [0.41, 0.43] [2.03, 2.59] [0.22, 0.76] [2.37, 2.39] [0.35, 0.36]
w5000 (ms–1) [2.76, 2.8] [0.69, 0.72] [2.26, 3.43] [0.38, 1.11] [2.94, 2.97] [0.61, 0.62]
w9000 (ms–1) [4.10, 4.16] [1.12, 1.12] [3.22, 5.30] [0.62, 1.76] [4.44, 4.48] [0.96, 0.98]
w16000 (ms–1) [3.32, 3.47] [0.66, 0.68] [3.02, 3.93] [0.41, 0.97] [3.45, 3.55] [0.59, 0.60]
w22000 (ms–1) [2.21, 2.34] [0.34, 0.39] [2.19, 2.53] [0.23, 0.69] [2.31, 2.34] [0.35, 0.36]
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Figure A3. Temperature error estimates for stations from the contiguous United States: (a) se as a
function of station density, (b) sp100 as a function of the total number of stations used to compute
error estimates.

Appendix C: Parameter Choice
and Sensitivity Analysis

[51] All parameters and decisions relevant for the error
estimation method were tested by following a decision tree
(Figure A1). For the decisions II, III, and IV, we tested
the sensitivity of the method with respect to variations of
the individual parameters used by our model. The optimal
parameters detected in an individual decision step i were
implicit for all steps j, with j > i. For j � i, we used
min(nr) = 5, max(d) = 1000, and �t = 6 for each unknown
optimal parameter.

[52] We detected significant (˛ = 0.05) differences
between random errors in wind speed and direction esti-
mated from the RAW version and those estimated from
the NF version (decision I; Figure A1), where the NF ver-
sion contains all wind observations that were not vertically
interpolated [see Stickler et al., 2010]. The high vertical
variability of the mean error profiles in RAW is obviously
linked to levels to which a subset of observations was inter-
polated, as this variability is smoothed out in the NF version
(Figure A2). In order to exclude interpolation errors, we
decided to use NF for w and ‚ and RAW for T and Z (no
significant differences in the means).

[53] In decisions II to IV, we examined a number of statis-
tics to find a combination of the parameters min(rn), max(d),
and �t that optimizes the average performance of the error
estimation method for each of the analyzed climate vari-
ables. Assuming normality of the residuals, the quality and
significance of the individual linear models were estimated
by the coefficient of determination (R2), by the F test of
goodness of fit to test the significance of R2 (associated p
values, pF), and by the coefficient of variation of the model
residuals (cv). The selection of the error estimation param-
eters was based on a weighing of these statistical indicators
against the total number of error estimates (i.e., the number
of candidate series cn) and the overall mean number of refer-
ence series [rn]. For min(rn), cn was weighted times 4 (which
is equal to the number of the other parameters), as high val-
ues of min(rn) heavily limit the number of error estimates.
The results are aggregated in Table A1.

[54] Decision V tests the influence of choosing a single
observation platform in favor of using observations from all

platforms. Only radiosondes (T and Z) and piballs (w and‚)
were tested, as other platforms are too sparse as to allow for
any error estimates to be calculated (cf. Figure 2). The dif-
ferences to the original estimates of RAW (NF) were found
to be not statistically significant (˛ = 0.05).

[55] In decision VI, we tested the influence of the outlier
removal (cf. section 3.3). This data treatment clearly reduces
much of the variability of both the random error and the
representativity error estimates. As it also leads to a con-
siderable increase in the statistical significance of the linear
models, we decided to use the OC version for the discussion
of mean error profiles.

[56] Parallel to the estimation of the optimal parameters
in decisions II to IV, we estimated the sensitivity of the
error estimates with respect to variations of each individ-
ual parameter. Due to the computational complexity of the
error estimation method and due to the large number of
observations, it was only feasible to test the method with

Figure A4. Profiles of mean network biases for temper-
atures (colored diamonds) and standard deviations of the
individual difference series (bars of the same color) between
all unique combinations of neighboring station networks
(color key). The network “Soviet strong” contains stations
from the former Soviet Union that required stronger-than-
published corrections [Grant et al., 2009]. Also indicated
is the number of ascents available for each network pair.
Values above +7 K and below –7 K are not displayed to
enhance readability.
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a predefined range of parameter values, as indicated in the
white boxes in Figure A1. Table A2 lists the range of values
of [se] and [sp100] on selected altitude levels under variation
of a single test parameter. It is obvious that the estimated
errors are most sensitive to the choice of the neighbor search
radius (max(d)), while the other threshold parameters only
play a marginal role.

[57] Using the previously determined model parameters,
an additional experiment was performed to test the robust-
ness of the error estimates with respect to changes in the
station density. We used stations from the comparatively
dense U.S. radiosonde network operated in the contiguous
United States, iteratively removed 10 randomly selected sta-
tions and recomputed the error estimates. Figure A3 reveals
that the mean temperature errors (averages over each avail-
able station) within the U.S. network are mostly insensitive
to changes in the number of remaining neighbors (the same
is true for geopotential heights; not shown). Substantial vari-
ations of the estimates can only be observed when the total
number of neighbor stations drops below 25, and only for a
subset of pressure levels. Note that it cannot be ruled out that
the variations are influenced by the spatial distribution of the
remaining stations.

[58] Acknowledgments. R. Wartenburger and S. Brönnimann were
funded by the Swiss National Science Foundation project EVALUATE
(SNF 200021-130407). A. Stickler was funded through the EU FP-7 project
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