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Abstract

Information theory-based metric such as mutual information (MI) is widely
used as similarity measurement for multimodal registration. Nevertheless,
this metric may lead to matching ambiguity for non-rigid registration. More-
over, maximization of MI alone does not necessarily produce an optimal
solution. In this paper, we propose a segmentation-assisted similarity met-
ric based on point-wise mutual information (PMI). This similarity metric,
termed SPMI, enhances the registration accuracy by considering tissue clas-
sification probabilities as prior information, which is generated from an expec-
tation maximization (EM) algorithm. Diffeomorphic demons is then adopted
as the registration model and is optimized in a hierarchical framework (H-
SPMI) based on different levels of anatomical structure as prior knowledge.
The proposed method is evaluated using Brainweb synthetic data and clinical
fMRI images. Both qualitative and quantitative assessment were performed
as well as a sensitivity analysis to the segmentation error. Compared to the
pure intensity-based approaches which only maximize mutual information,
we show that the proposed algorithm provides significantly better accuracy
on both synthetic and clinical data.

Keywords:
Multimodal non-rigid registration, tissue classification, EPI distortion
correction

1. Introduction

Magnetic resonance imaging (MRI) is one of the most popular techniques
for human brain imaging due to its versatility and flexibility. In many MR
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brain analyses, multimodal non-rigid registration is widely used in applica-
tions such as image fusion, EPI distortion correction, etc. Although mul-
timodal non-rigid registration has been an active research area since past
few decades, more work is still needed in order to improve the accuracy, the
robustness and the computational time. The major difficulty in multimodal
registration compared to monomodal registration is the various intensity rep-
resentations of tissues between different modalities. This fact leads to the
non-linearity in the intensity mapping in the joint histogram, hence the cost
functions for monomodal registration such as sum of the squared differences
(SSD) and cross-correlation (CC) are no longer suitable in this case. There-
fore, finding a proper similarity metric is a key task in multimodal registra-
tion.

Since it is difficult to extract the intensity relationship directly from mul-
timodal images, information theory-based methods using statistical relations
of the intensities are widely employed to tackle multimodal registration prob-
lem. Mutual information (MI) is one of the most popular similarity metrics.
With its successful performance demonstrated in linear registration [1, 2],
MI is also applied in solving non-rigid registration problems. [3] proposed
a free-form deformation (FFD) registration using B-spline, in which MI is
maximized globally over the entire image space by optimizing iteratively the
parameters of the grid nodes. [4] presented a flow-based approach by comput-
ing the gradient of MI using a continuous and differentiable joint histogram
based on Parzen window. Recently, diffeomorphic demons algorithm was also
extended for multimodal registration purpose [5, 6]. Nevertheless, for MRI
images where intensity inhomogeneity exists, those algorithms searching to
maximize mutual information do not necessarily guarantee the optimal solu-
tion. In fact, MI is approximately built on the joint distribution of the inten-
sities between two images. Even though the images are perfectly registered,
it is still difficult to know a real intensity relationship, as matching ambiguity
often exists as exemplified in Fig. 1. Therefore, a typical maximization of
mutual information method only minimizes the global joint entropy without
considering the real tissue correspondence.

To address such limitation, different approaches have been proposed that
incorporate additional information, such as spatial information [7, 8, 9] and
anatomical landmark information [10, 11]. These methods can generally
improve the registration accuracy. However, spatial information does not
directly provide real correspondence between tissues, whereas anatomical
landmark information usually implies either manual annotation or difficulties
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Figure 1: Example of the matching ambiguity problem in a joint histogram between
perfectly aligned T1 and T2 brain images. The blue horizontal dashed line represents an
intensity value of gray matter (GM) in T2 image. This intensity has the probability of
matching both gray matter (GM) (yellow dashed line) and white matter (WM) (green
dashed line) in T1 image.

in automatic detection given poor image quality, especially for patient data
where the image quality is typically inferior to healthy subject populations
due to limited patient compliance and pathological brains.

A similar approach to the work presented hereby was proposed by [12], in
which two similarity measures using voxel classification are introduced. One
measure takes into account the voxel class probabilities from two images and
registers images so that the fuzzy overlap of corresponding voxel object labels
becomes similar to the ideal case where the tissue probability maps of both
images are identical. While better results compared to pure-intensity method
can be obtained, this measure assumes excellent tissue classification on both
images. The other measure uses intensities in one image to match the fuzzy
class labels in the other image by minimizing the conditional entropy given
the class label. However, this measure requires a segmented labeled image,
thus is only suitable for applications like atlas-to-image registration. In ad-
dition, the sensitivity of these measures to the classification or segmentation
accuracy is not provided.

In this work, we investigate a segmentation-assisted similarity metric,
termed SPMI, which encodes the tissue classification probability into the
point-wise mutual information (PMI) metric introduced by [13]. The mea-
surement is calculated by extending the joint histogram into 3D with the
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third dimension representing the probability of two intensity values being
the same tissue class. This provides tissue correspondence information that
modulates the joint distribution probability and is integrated into the dif-
feormorphic demons registration model. Note that instead of performing
simultaneous segmentation and registration [14, 15], we extract the proba-
bilities of voxel classification at the first step. This is because an initial severe
misalignment of the two images may potentially lead to local minima for seg-
mentation due to a larger optimization space, hence indirectly degrading the
registration accuracy.

We adopt a hierarchical model, which is originally designed for segmenta-
tion [16], to represent our multi-level registration framework. Unlike the con-
ventional multi-level registration approaches in [17] where multi-level refers
to different image resolutions, this hierarchical model uses a tree structure
with each node representing an anatomical structure computed from the voxel
classification results (e.g. see Fig. 2, the region of brain is a node that has
child nodes such as gray matter (GM), white matter (WM) and cerebrospinal
fluid (CSF)). Therefore, the registration is carried out by incorporating dif-
ferent classification information for different anatomical structure at each
level. The reason of using this model is two-fold: 1) Hierarchical structure
ensures the alignment at different levels of anatomical region. 2) It provides
the flexibility to cope with modalities representing different classifications
(e.g. EPI image has similar intensity representation of WM and GM. There-
fore the ensemble of these two tissues can be classified to an upper level node
as non-CSF, which has its corresponding node in T1).

To evaluate the proposed method, we compare it to two pure intensity-
based approaches - PMI Demons [6] and Elastix [18]. We first examine the
accuracy and performance on a set of synthetic data created from Brain-
web [19], which allows us to perform quantitative analysis on registration
accuracy. Furthermore, a sensitivity test is performed to investigate how
the voxel classification accuracy affects the final registration results. Then
the proposed method is tested with clinical EPI images to correct geometric
distortion and evaluated using brain volume recovery ratio and manually-
defined landmark distance error.

The details of the method are elaborated in the next section. Then, ex-
periments are presented in Section 3, followed by the discussion in Section 4.
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2. Method

2.1. Registration Model

We adopt the diffeomorphic demons algorithm as our registration model
[20]. The main advantage of this approach is the computation efficiency
since it uses optical flow as image forces instead of solving partial differential
equations or optimizing in a large parametric space. Besides, it also ensures
the diffeomorphism of the dense field transformation by mapping the update
field on the Lie Group, which has shown to allows accurate statistical mor-
phometry analysis [21]. Given two images F and M , the registration model
can be summarized by an energy function consisting of a similarity term and
a regularization term.

E(s) = Sim(F,M ◦ s) + αReg(s), (1)

where M ◦ s denotes the moving image M composed by transformation s,
Sim(F,M ◦ s) is the the similarity criterion measuring the resemblance of
two images, the regularization term Reg(s) regularize the dense field trans-
formation to a specific physical mode (e.g. fluid model, diffusion model, etc)
and α is a weighting factor controlling the amount of regularization.

2.2. Similarity Metric

Mutual information (MI) is a similarity metric based on information the-
ory, which is widely used to perform multimodal image registration. It
measures how much information is gained about one random variable by
the knowledge of another random variable. MI can be computed from the
marginal and joint entropies:

MI = H(F ) +H(M)−H(F,M) =
∑
iF ,iM

p(iF , iM) log

[
p(iF , iM)

p(iF )p(iM)

]
, (2)

where iF and iM are image intensities of image F and M , p(iF , iM) denotes
the joint probability, and p(iF ) and p(iM) are the marginal probabilities.

In order to incorporate MI as an energy function into a dense field regis-
tration model, in practice one has to transfer this global measurement into a
local metric. By rewriting Eq.(2), [13] introduced the point-wise form of MI:

MI =
1

N

∑
x∈Ω

PMI(x)

PMI(x) = log

[
p(iF (x), iM(x))

p(iF (x))p(iM(x))

]
,

(3)
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where x is the spatial coordinate of the voxel pair in the image space Ω.
From the above equation, we see that the final summation is taken over the
spatial image coordinates instead of the intensities in Eq.(2). Thus, point-
wise mutual information (PMI) can be regarded as the contribution from
each voxel pair to the global MI.

Note that the probability of intensities in the fixed image p(iF ) always
remains constant. By assuming that the intensity distribution in M merely
changes during the registration, p(iM) has also very little influence on the
energy function in Eq.(3). Therefore, the optimization of such similarity
metric can be approximately regarded as a maximization of the joint proba-
bility p(iF , iM). As shown in Fig. 1, a gray matter (GM) voxel in T2 image
might tend to match a white matter (WM) point in T1 image to achieve
better joint probability value even though they belong to different tissues.
Therefore, this maximization without considering the tissue correspondence
may lead the registration to a suboptimal solution.

To address this limitation, we extend the PMI metric by adding a con-
straint to ensure that two homologous voxels belong to the same biological
tissue. This is achieved by incorporating a term Cs into the joint probability
that represents the probability of being the same class, resulting in a 3D joint
histogram. The new similarity metric, termed SPMI, can be written as:

SPMI(x) = log

[
p(iF (x), iM(x), Cs)

p(iF (x))p(iM(x))

]
. (4)

By applying the Bayes rule, the new joint probability becomes

p(iF , iM , Cs) = p(Cs|iF , iM)p(iF , iM),

where p(Cs|iF , iM) denotes the probability of iF and iM belonging to the
same class. From the above equation, p(Cs|iF , iM) can be regarded as a
modulation function that constrains the optimization of the joint entropy.
This probability can be computed by summing up the probability of the
intensity pair belonging to each class k:

p(Cs|iF , iM) =
K∑
k

p(Ck|iF , iM).

where K is the number of classes.
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Since iF and iM are from two different images, therefore independent to
each other, Eq.(4) can be re-written as:

SPMI = log

[
p(iF , iM)

∑
k p(Ck|iF )p(Ck|iM)

p(iF )p(iM)

]
, (5)

where p(Ck|iF ) and p(Ck|iM) are posterior probabilities, which indicate the
probabilities that iF and iM belong to a particular class Ck, respectively.
According to Bayes rule, these posterior probabilities can be calculated as:

p(Ck|i){i=iF ,iM} =
p(Ck, i)∑K
l=0 p(Cl, i)

=
p(i|Ck)p(Ck)∑K
l=0 p(i|Cl)p(Cl)

, (6)

where p(i|Ck) denotes the probability of intensity i given class Ck and the
prior p(Ck) being the proportion of class Ck in the entire image. As we see
from the expanded form of p(Ck, i), this term can be expressed as a Gaussian
mixture model (GMM) G(i, µk, σk)ck with parameters µk, σk and ck being
the mean, the variance and the proportion of the Gaussian model of class k,
respectively. Eq.(6) can then be rewritten as follow:

p(Ck|i){i=iF ,iM} =
G(i, µk, σk)ck∑K
l=0 G(i, µl, σl)cl

, (7)

The parameters of the GMM can be computed using a typical expectation-
maximization (EM) segmentation algorithm [22], as the one used in our ex-
periments.

2.3. Optimization

In the original diffeomorphic demons algorithm, the sum of the squared
differences (SSD) is utilized as similarity metric, which allows the energy
function to be optimized using a simple Gauss-Newton method. However,
as a metric composed of joint intensity probability and joint classification
probability, it is not straightforward to apply the same strategy for the opti-
mization of SPMI. Thus, we employ the finite-difference approach presented
in [6] for the computation of the gradient to optimize the energy function of
SPMI as described below.

The update field u of the deformation is computed by averaging a for-
ward force Ff and a backward force Fb in order to ensure the registration
consistency [23]:

u = kE(Ff − Fb), (8)
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where the coefficient kE indicates the update step length; Ff is a gradient
of local similarity with respect to the reference image, which tends to move
the moving image voxels towards their better match in the fixed image; and
Fb is the reverse of Ff , which improves matching of the points in the fixed
image according to the moving image. Ff and Fb are computed using the
finite-difference method:

Ff (x) =
∂

∂ε

∣∣∣
ε=0
SPMI(iF (x+ ε), iM◦s(x))

Fb(x) =
∂

∂ε

∣∣∣
ε=0
SPMI(iF (x), iM◦s(x+ ε)).

(9)

where ε denotes a step of displacement of the voxel for computing the finite-
difference.

The resulting transformation s is then updated by composing u on the
Lie Group through the exponential operator to ensure the diffeomorphism,
and is regularized by a Gaussian kernel [20].

s← G ∗ (s ◦ exp(u)). (10)

2.4. Hierarchical Model Based on Anatomical Region

As described in Sec. 2.2, the anatomical structures are pre-segmented to
assist PMI. According to Eq.(5), the SPMI metric requires the same class
correspondences in both images. Nevertheless, it might not always be the
case for all MRI modalities. As we know, MRI is a flexible imaging technique
with different protocols to enhance the visualization of different tissues. One
tissue type visible in one modality might not have strong contrast in an-
other modality. This results in different voxel classes for different modalities.
Therefore class correspondences can not be ensured for all MR images.

To overcome this limitation, we adopt a tree model, which is originally
designed for single image segmentation [16], to represent all anatomical struc-
tures in both images for registration at different hierarchical levels. The root
of the tree describes the whole image region, the leaves represent all finest
structures from the pre-segmentation results and the inner nodes describe
intermediate coarser anatomical structures. Using this tree representation,
class correspondences can be guaranteed at least at one level of the hierarchi-
cal model. Fig. 2 shows an example of the hierarchical model. Even though
T1 image and EPI image has different leaves indicating different classifica-
tion of the finest structure, the class correspondences are identical at level 2.
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Figure 2: Scheme of the anatomical structure-based hierarchical model. The left tree
describes the hierarchical structure of a T1 image. The root represents the whole image.
At level 1, the image is divided into background (BG) and brain structure (BRAIN). At
level 2, the BRAIN is separated into non-CSF and CSF. Non-CSF is then partitioned into
WM and GM at level 3; In the right tree for echo-planar image (EPI), the structure is
equivalent to the one of T1 until level 2, whereas at level 3 non-CSF is partitioned into
the ensemble of WM and GM as well as the signal loss (SL).

The hierarchical registration, termed H-SPMI, can then be summarized
by Algorithm 1. The process starts by using the classification probabilities
of the coarsest structure as prior information at the top level, followed by
using lower level knowledge of the finer structures until the classes are no
longer corresponding in the two images. The classification probabilities of
the intermediate nodes can be calculated by summing up all their child nodes’
probabilities.

Input: Image F and M ; Nodes of the tree NF and NM

Find nodes NF (l) and NM(l) at level l = 1;
while NF (l) = NM(l) do

foreach voxel x do
Compute update field u using SPMI according to the
classification defined by NF (l) and NM(l);

end
Compute transformation s← G ∗ (s ◦ exp(u));
Let M ←M ◦ s;
Increment level l and refine nodes NF (l) and NM(l);

end

Algorithm 1: Hierarchical Registration Model
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3. Results

Validation of non-rigid registration has always been a difficult task since
ground truth deformation between the fixed image and moving image is sel-
dom available for real clinical cases. Therefore, to validate this methodology,
we conducted several experiments using different types of data varying from
phantom to clinical fMRI images. A comparison of different similarity met-
rics mentioned in Section 2 is presented, as well as Elastix [18] which is an
improved version of Free-form Deformation (FFD) [3] method for multimodal
registration.

The Elastix software was downloaded from the website (http://elastix.isi.uu.nl/).
The other compared methods were implemented in C++ using Insight Toolkit
library (http://www.itk.org). For Elastix, the optimization uses the optimal
parameter setting reported in [18], in which the control point spacing is 16
mm in each dimension and the number of resolution levels is four. For PMI,
we adopt σ = 2 for Gaussian kernel regularization and three levels of reso-
lution as image pyramid. We also compared the differences between SPMI
only using the finest classification (i.e. no hierarchy) and using the hierarchi-
cal structure (H-SPMI). For these two methods, the number of classes and
the hierarchical structure varies depending on the application, which will be
presented in each experiment. The regularization schemes are the same as
the one used for PMI.

3.1. Evaluation on Synthetic Data

In order to have a quantitative analysis, the algorithm was first validated
on simulated MR Brain images from BrainWeb [19], which provides the seg-
mentation ground truth. In this experiment, one T2 image with dimension
of 181 × 217 × 181 and isotropic voxel size of 1 × 1 × 1mm3 was used
as the fixed image. 20 T1 images with dimension of 256 × 256 × 181 and
isotropic voxel size of 1 × 1 × 1mm3 were registered to the reference T2
image. Both T1 and T2 images are classified into four classes using EM al-
gorithm (Background (BG), WM, GM and CSF) and two hierarchical levels
(level 1: BG and BRAIN, level 2: BG, WM, GM and CSF) for SPMI and
H-SPMI, respectively.

Visual Assessment

The registration results were first investigated by visual assessment. We
extracted the contour of the each brain volume and the ventricle on the fixed
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Table 1: p-value obtained from t-test between the proposed methods and pure intensity-
based methods on different tissue types and overall of the whole brain.

WM GM CSF

SPMI vs Elastix 1.0999e-011 0.3394 0.0252
SPMI vs PMI 1.95e-004 0.0013 1.3027e-007
H-SPMI vs Elastix 2.1586e-022 4.3283e-005 3.3476e-008
H-SPMI vs PMI 7.82e-021 1.06e-021 1.88e-014
H-SPMI vs SPMI 2.03e-021 1.87e-019 6.44e-004

T2 images (Fig. 3(a)), and overlaid on all registration results. Fig. 3 shows
the results of different methods on one case of the study images. One can see
in Fig. 3(b)-(e), Elastix gives fairly poor result compared to the other three
methods especially in the contour of the brain and the upper ventricle areas;
PMI was able to provide promising results in the ventricle area, while there is
a slight misalignment between the brain volume and the background. SPMI
and H-SPMI show more superior performance in discriminating the brain
volume and background giving almost perfect contour overlay and provide
better results around the ventricles. In order to visualize the differences
more clearly, we also generated the subtraction images. Due to the different
modality between the reference and the results, this is done by subtracting
the obtained results to the original Brainweb T1 image, which is perfectly
aligned with the T2 reference image. As shown in Fig. 4, similar observation
can be found from the subtraction images where stronger differences occur
in Elastix, PMI and SPMI compared to H-SPMI.

Quantitative measurement

We evaluated quantitatively the accuracy of our method by measuring
the DICE coefficient on WM, GM and CSF. As shown in the boxplots in
Fig. 5, remarkably, the H-SPMI yields best performance in all WM, GM
and CSF, indicating the improved accuracy and robustness of this method.
More importantly, statistical analysis were conducted showing the signifi-
cantly better accuracy of SPMI and H-SPMI than pure-intensity methods
Elastix and PMI (p < 0.01 in t-test) except for SPMI in GM, as shown in
Table 1. In addition, significant difference is also observed between SPMI
and H-SPMI.

Furthermore, we also compared the MI value of all results, see Table 2.
Interestingly, it is found that H-SPMI and SPMI have systematically higher
MI value than PMI, even though PMI is an algorithm greedily searching
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Figure 3: Visual assessment of the result on one case synthetic data. Contours of the brain
volume and the ventricle are extracted on the central axial slice of (a) fixed T2 image and
then overlaid on the image before registration (b), and different registration results: (c)
Elastix, (d) PMI, (e) SPMI and (f) H-SPMI.

higher MI while SPMI and H-SPMI have penalty constraint on the image
force. It is because this additional penalty can guide the image force to
bypass the potential local minima during the optimization.

The smoothness of the deformation is also an important criteria for as-
sessing the quality of the registration results. To this end, we computed
the harmonic energy to measure how smooth the obtained deformations are
from different registration methods. As shown in Fig. 6, Elastix produces
the least smooth deformation compared to the other three methods since no
diffeomorphism is incorporated in the algorithm. On the other hand, SPMI
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Figure 4: Subtraction image on the central axial slice between the Brainweb T1 image
and different registration results: (a) Elastix, (b) PMI, (c) SPMI and (d) H-SPMI.

Figure 5: Quantitative evaluation of the experiment on synthetic data. DICE coefficients of
Elastix, PMI, SPMI and H-SPMI are grouped according to different regions of interest.(a)
WM, (b) GM and (c) CSF.

and H-SPMI maintain similar smoothness of the deformation to the one of
PMI while achieving better accuracy.

Sensitivity Analysis

Various MR hardware and acquisition protocols generate different image
qualities. Thus, accurate segmentation of the brain is not always guaran-
teed. As our method incorporates classification knowledge as prior, the pur-
pose here is to investigated the sensitivity of the proposed method to the
segmentation results. To this end, we artificially generated three different
segmentation results by adding random noise on the GMM parameters from
the EM segmentation. The DICE coefficients of all the tissue types were
calculated to assess the segmentation accuracy, as shown in Fig. 7(d). Test

13



Table 2: MI value obtained with different registration results. Numbers in bold represent
the highest values.

Case Init Elastix PMI SPMI H-SPMI

1 0.535 0.656 0.675 0.686 0.746
2 0.523 0.687 0.669 0.681 0.744
3 0.496 0.691 0.659 0.684 0.728
4 0.545 0.672 0.674 0.683 0.741
5 0.520 0.611 0.673 0.684 0.741
6 0.526 0.689 0.673 0.683 0.743
7 0.530 0.645 0.672 0.683 0.742
8 0.509 0.687 0.671 0.681 0.735
9 0.473 0.663 0.667 0.657 0.739
10 0.526 0.614 0.671 0.686 0.744
11 0.514 0.657 0.675 0.687 0.747
12 0.512 0.675 0.665 0.679 0.738
13 0.517 0.641 0.668 0.680 0.743
14 0.513 0.663 0.668 0.686 0.744
15 0.488 0.689 0.660 0.679 0.736
16 0.524 0.674 0.674 0.680 0.744
17 0.536 0.676 0.672 0.686 0.741
18 0.526 0.638 0.677 0.674 0.745
19 0.515 0.694 0.668 0.660 0.727
20 0.531 0.639 0.675 0.685 0.743

Figure 6: Harmonic energy of the deformation field obtained by Elastix, PMI, SPMI and
H-SPMI. Lower harmonic energy indicates smoother deformation.

1 describes the worst scenario with average DICE value of 0.6497. Test 2 and
Test 3 achieve intermediate accuracy with DICE of 0.6948 and 0.7461, re-
spectively. Test 4 is the segmentation result without any added noise, whose
DICE value is 0.8312. In total 20 registrations, performed by H-SPMI, were
carried out in each test. Fig. 7 shows the DICE coefficients of WM, GM and
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Figure 7: Comparison of DICE coefficients obtained with H-SPMI with different segmen-
tation qualities on (a) WM, (b) GM and (c) CSF. Most left column shows the DICE
coefficient obtained from PMI multimodal demons. * means statistical significance with
the PMI results. (d) The DICE coefficient is computed per image modality and for each
tissue type in each test. The average of the overall DICE coefficient over both modalities
is further considered to facilitate the discussions.

CSF obtained from each test. At the DICE value of 0.7461, the results from
H-SPMI yields significant better performance in CSF and are slightly better
in WM and GM than the ones from PMI. When the DICE value drops to
0.6948, the performance of H-SPMI is still better in GM and CSF and is
comparable with the PMI results in WM. When the segmentation quality
decreases to the worst scenario in Test 1, the performance of SPMI drops
dramatically with lower DICE values than PMI.

3.2. EPI Distortion Correction

To have a more thorough validation, the proposed method was also ap-
plied on real clinical images. In this experiment, we employed the proposed
approach for correcting echo-planar imaging (EPI) distortion. Since EPI
images have geometric distortion along B0 axis due to the fast acquisition
protocol, multimodal non-rigid registration is often adopted to correct the
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distorted EPI image by registering it to a structural image (e.g. usually T1 or
T2 image). The challenges in this application are often the local distortions
occurred in sparse slices, rendering the registration task difficult.

In this experiment, two types of dataset were adopted from our clinical
partner. Due to largely varying patient compliance and brain pathology with
different artifact levels, one type provides generally good image quality with
high signal noise ratio (SNR > 50) while the other shows strong signal loss
and noise level (SNR < 17). We refer to these two types as “high quality
dataset” and “low quality dataset” in the following of the paper, respectively.
Each of the dataset contains 10 patient cases including one structural MRI
T1 image and one fMRI image acquired using EPI protocol. The T1 image
has FOV of 230 × 230 mm with matrix size of 256 × 256 × 256 and voxel
size of 0.9 × 0.9 × 0.9 mm3, while the EPI image has the same FOV of
230 × 230 mm with different matrix size of 128 × 128 and 34 axial slices of
3mm thickness. The “high quality dataset” is acquired with TR = 2500 ms,
TE = 28 ms, bandwidth = 2220 Hz, flip angle = 90◦, full Fourier encoding;
whereas the “low quality dataset” is acquired with TR = 2500 ms, TE = 22
ms, bandwidth = 1445 Hz (P1 = 1220 Hz, P4 = 1395 Hz), flip angle 80◦,
6/8 partial Fourier factor.

Bias field correction ([24]) was first applied on both T1 and EPI images
to remove the intensity inhomogeneity. Skull-stripping was done to facilitate
the registration process using BET2 software ([25]) and manual correction.
Then, the T1 image was aligned to EPI image using rigid registration to
remove motion artifacts and the unnecessary neck region. In this experiment,
the proposed H-SPMI method is compared with PMI and Elastix. Two
hierarchical levels (level 1: BG and BRAIN, level 2: BG, non-CSF and CSF)
is employed. Note that non-hierarchical SPMI is not included hereby due to
the inequivalent tree structures between T1 image and EPI image (WM and
GM are classified into one class in EPI due to similar intensity values).

For high quality dataset, the registration results show the clear advantage
of H-SPMI for all 10 cases. An example comparing different results is shown
in Fig. 8, including axial and sagittal views where severe distortion along
the anterior-posterior B0 axis can be observed in the frontal lobe. As seen
from Fig. 8(c)-(e), H-SPMI was able to recover this local distortion whereas
Elastix and PMI both failed.

For low quality dataset, H-SPMI still globally outperforms PMI and
Elastix, except for two cases that have rather low image quality resulting
in extremely poor classification from EM segmentation. Fig. 9 shows a
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Figure 8: EPI distortion correction results from different methods on one case in the high
quality dataset, with axial and sagittal view of (a) structural T1 image, (b) distorted EPI
image, as well as recovered image by (c) Elastix, (d) PMI, and (e) H-SPMI. Green line is
the contour of reference brain overlaid on each result. Blue cross represents one manually-
defined landmark in the T1 reference and yellow cross is the corresponding landmark in
the results.

failed case of H-SPMI. While PMI provides a fairly good alignment between
the T1 image and the EPI image, one can see that H-SPMI wrongly regis-
tered the frontal lobe part of the brain. This is due to the mis-classification
between the background and the signal dropout region.
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Figure 9: One case in low quality data with strong signal dropout and noise. Green line
is the contour of reference brain together with the lesion. It is overlaid on (a) structural
T1 image, (b) distorted EPI image, as well as the recovered images by (c) , (d) PMI, and
(e) H-SPMI.

Besides visual assessment, the registration accuracy was also quantita-
tively validated. We first measured brain shape recovery ratio. Ideally, an
EPI image without distortion should have 100% overlap over the structural
image. Therefore, we computed the DICE coefficient of the brain volume
between the T1 image and the EPI image. Note that due to the poor image
quality of EPI, segmenting fine structures remains a difficult target. Hence,
overlaps between WM, GM and CSF is not computed hereby. As shown in
Fig. 10, for high quality dataset, H-SPMI yields higher DICE coefficient in
most cases except for case 1 where PMI reaches higher overlap ratio. On the
other hand, Elastix has relatively poor results showing limited improvement
on brain shape overlapping. For low quality dataset, H-SPMI still outper-
forms Elastix and PMI in terms of brain shape recovery, except for case 5, 6
and 10 where PMI shows marginal improved overlap ratio.

The second quantitative metric is based on the geometric distance error
computed from 10 manually defined landmarks, which are uniformly located
in the regions where large distortion occurs as exemplified in Fig. 8. The
results are summarized in Fig. 11 and Table 3. For high quality dataset, it
can be seen that H-SPMI yields consistently lower error compared to Elastix
and PMI. However, in the low quality cases, despite overall better perfor-
mance, H-SPMI was not able to provide promising registration results for
case 6 and case 10 due to the strong signal dropout and noise, which reflects
the same observation as for the visual assessment. Statistical analysis re-
veals that H-SPMI outperforms Elastix and PMI (p = 0.0048 over Elastix
and p = 0.0236 over PMI) in high quality dataset. Nevertheless, with low
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Figure 10: DICE coefficient between the T1 structural images and the recovered images
using Elastix, PMI and H-SPMI for both (a) high quality data and (b) low quality data.

quality data, H-SPMI only show statistically significant better performance
over Elastix (p = 0.0321).

4. Discussion

Dense field multimodal registration using point-wise mutual information
metric is often hindered by the correspondence ambiguity where voxel match-
ing is achieved by only maximizing joint probability, even though two given
voxels do not necessarily belong to the same biological tissue class. This
fact usually causes optimization local minima during the registration process
leading to undesired results. In this work we present a registration frame-
work using hierarchical segmentation-assisted point-wise mutual information
(H-SPMI) for multimodal brain image registration.

Considering the true tissue type correspondence, prior knowledge of the
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Figure 11: Manually-defined mean geometrical distance errors of registration results from
Elastix, PMI and H-SPMI for both high quality data (a) and low quality data (b).

Table 3: Manually-defined geometrical distance errors of registration results from Elastix,
PMI and H-SPMI for both high quality data and low quality data. Numbers in bold
represent the lowest errors.

Case Init Elastix PMI H-SPMI

High Quality

1 4.03 ± 1.07 3.13 ± 1.01 2.34 ± 0.99 1.23 ± 0.82
2 3.01 ± 1.36 2.82 ± 1.31 2.33 ± 1.58 1.59 ± 1.36
3 4.81 ± 1.81 3.70 ± 2.05 3.49 ± 1.78 2.62 ± 1.82
4 3.24 ± 1.12 2.20 ± 1.06 1.42 ± 0.89 0.99 ± 0.94
5 3.22 ± 1.55 2.05 ± 1.30 2.26 ± 1.20 1.44 ± 1.26
6 3.35 ± 1.44 2.02 ± 1.61 1.51 ± 1.25 1.23 ± 0.55
7 3.90 ± 1.52 2.51 ± 1.43 1.97 ± 1.60 1.34 ± 1.37
8 2.28 ± 0.99 1.77 ± 0.88 0.88 ± 0.68 0.80 ± 0.63
9 2.71 ± 1.63 1.42 ± 1.13 1.64 ± 1.34 0.60 ± 0.97
10 5.52 ± 2.91 1.05 ± 1.03 2.43 ± 1.31 1.26 ± 1.18

Low Quality

1 4.56 ± 3.19 4.28 ± 5.05 3.12 ± 3.20 1.24 ± 1.27
2 4.12 ± 1.74 1.83 ± 1.27 1.73 ± 1.25 1.55 ± 1.06
3 5.49 ± 4.17 2.18 ± 0.96 4.16 ± 2.96 1.91 ± 1.13
4 7.24 ± 4.15 4.26 ± 2.77 5.08 ± 3.46 4.00 ± 1.41
5 2.76 ± 1.49 2.69 ± 1.47 2.14 ± 1.42 1.33 ± 1.08
6 2.98 ± 1.31 2.84 ± 1.45 1.90 ± 0.73 2.75 ± 1.45
7 4.84 ± 2.89 3.02 ± 1.84 2.72 ± 2.23 0.72 ± 0.92
8 4.45 ± 1.88 2.43 ± 1.56 1.88 ± 1.27 1.68 ± 0.98
9 3.66 ± 1.62 2.59 ± 0.92 2.56 ± 1.09 1.46 ± 1.04
10 2.62 ± 0.76 2.37 ± 1.41 2.36 ± 1.42 2.62 ± 1.60

voxel class probabilities, which are not directly available from the intensity
values, are computed from an EM segmentation algorithm. These probabil-
ities are combined with point-wise mutual information in a 3D joint distri-
bution and serve as penalty terms to the image forces. Incorporation of this
classification information can help to reduce the ambiguity of point matching
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Figure 12: The crosses describe the same voxel on (a) T1 fixed image, (b) PMI result and
(c) H-SPMI result. The intensities of this voxel represent CSF, PV and CSF in the three
images, respectively.

since the correspondence information introduced by segmentation is not avail-
able in the pure intensity-based multimodal registration. As already shown
in Fig. 3, H-SPMI provides consistently better alignment on the brain sur-
face. This is because MI-based methods are often confused by the partial
volume (PV) interpolation during the registration, whereas H-SPMI is able
to distinguish between the PV and the real brain volume. An example is
illustrated in Fig. 12, where the crosses describe the same voxel on all three
images. In T1 reference image (Fig. 12(a)) and H-SPMI result (Fig. 12(c)),
it represents a CSF voxel, whereas in PMI result (Fig. 12(b)) it has the value
of a PV voxel. Apparently, in this case PMI confuses the PV voxel as being
CSF, while SPMI is able to distinguish correctly.

In addition, using classification information allows us to perform hierar-
chical optimization based on different levels of anatomical structure, ensuring
the registration accuracy and robustness at all levels of anatomical region of
interest. In general, large shape variations are recovered at first level, while
finer structures are taken into account at next levels. Fig. 13 shows one
example of a result of registering a T2 image to a T1 image. At level 1,
the registration uses classification between background and brain volume.
Therefore, we see perfect contour alignment in result of level 1, while flaws
exist in inner structures (see green circles in Fig. 13(b)). This is because at
this level the SPMI forces in the inner structures can be regarded as quasi-
PMI forces since only all inner structures are classified into only one class.
At level 2, we see better alignment in the inner structures using classification
of WM, GM and CSF. In addition, the hierarchical structure also allows the
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Figure 13: An example showing the registration output at (b) level 1 and (c) level 2
from the Brainweb experiment using H-SPMI. In the first row, the edge from (a) T1
reference image is extracted and overlaid on both outputs. The green circles show the
major differences in internal structures between the outputs from two levels. The second
row shows subtraction images of the outputs from (d) level 1 and (e) level 2.

use of the proposed method on different clinical applications, as shown in the
second experiment where modalities representing various classifications can
be registered using the proposed method. In addition, the hierarchical opti-
mization provides the prossibilities of increasing the registration accuracy in
the lesions or abnormal regions in the brain (e.g. tumors or signal dropout)
by adding an additional class.

As incorporation of additional classification information might render the
registration sensitive to segmentation errors, we performed sensitivity test to
see how the segmentation results affect the final registration accuracy. We
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believe that it is an important aspect in order to bring the proposed technique
into practice. The results indicate that when using the hierarchical model,
the average RMS error increases slightly with worse segmentation, while ro-
bustness is still guaranteed showing low standard deviation. Nonetheless, the
accuracy remains consistently high even with segmentation DICE coefficients
at 0.7223, which can be achieved by the state-of-the-art EM segmentation
method given an acceptable image quality. This fact is also confirmed in the
EPI distortion correction experiment, in which two scenarios with different
image qualities were created. Even though the performance of the proposed
method is degraded with poor image quality, it still shows better results com-
pared to PMI. This demonstrates that the proposed algorithm can generally
provide significantly better accuracy than a pure MI-based method.

Regarding the optimization of the proposed method, different from the
optimization of MI-based methods where intensity probability is estimated
using kernel density functions such as Parzen window, we compute the joint
probability and marginal probability of the voxel intensity based on the joint
histogram. Although kernel density function is able to provide a differen-
tiable solution, the precision of the estimation relies greatly on the number
of samples and the parameters of the used function. In this work as the
proposed SPMI metric is a combination of the intensity probability and joint
classification probability computed from EM algorithm, it is not straightfor-
ward to apply the same strategy for the optimization of SPMI. Therefore,
symmetric finite-difference based approach is adopted in this work to achieve
not only the simplicity but also the consistency for the optimization.

On the other hand, one disadvantage of the proposed method compared
to PMI is the computation cost. The PMI took on average 293 s on an Inter
Xeon 3.2GHz computer for the synthetic data, whereas H-SPMI took 978 s
due to the additional information added in the metric and anatomical region-
based hierarchical optimization. However, MI-based Elastix also reaches 745
s in the same experiment.

Our future work will include further clinical validation. Moreover, it
would also be interesting to investigate our approach for the problem of
missing correspondences, especially in brain oncology where tumors with
various shape exist.
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