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ABSTRACT

We present SUSY FLAVOR — a Fortran 77 program that calculates important leptonic and

semi-leptonic low-energy observables in the general R-parity conserving MSSM. For a set

of input MSSM parameters, the code gives predictions for the K̄0K0, D̄D, B̄dBd and B̄sBs

mixing parameters; B → Xsγ, Bs,d → l+l−, K0
L → π0ν̄ν and K+ → π+ν̄ν decay branching

ratios; and the electric dipole moments of the leptons and the neutron. All these quantities

are calculated at one-loop level (with some higher-order QCD corrections included) in the

exact sfermion mass eigenbasis, without resorting to mass insertion approximations. The

program can be obtained from http://www.fuw.edu.pl/susy flavor.
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1 Introduction

Flavor changing neutral currents (FCNCs) in the Minimal Supersymmetric Standard Model

(MSSM) [1] originate from the fact that one cannot, in general, simultaneously diagonal-

ize the mass matrices of fermions and their supersymmetric partners. The misalignment

between these mass matrices leads to FCNCs at tree level. Moreover a large number of

the MSSM parameters which can take complex values is a potential source of CP violation.

Thus supersymmetric contributions to amplitudes of processes violating flavor and to quan-

tities measuring CP violation, like Electric Dipole Moments (EDMs), can exceed by orders

of magnitudes the ones of the SM particles. Such large effects are ruled out by experimen-

tal measurements which generally agree with the SM predictions and thus provide strong

bounds on the amount of flavor and CP violation in the MSSM. For instance, measure-

ments of the kaon system properties prohibit FCNC couplings between the first and second

generation of down-type squarks larger than 10−3. These strong limits are often called the

“SUSY flavor problem”. However, there are also areas where current experiments still leave

room for large SUSY contributions. For example, constraints from B-meson experiments

allow an O(1) mixing between the second and third generation down-type squarks. Such a

large mixing could produce FCNC effects that could be observed in the future at B-factories

and/or hadron colliders, like the Tevatron and LHC [2].

Even assuming the so-called Minimal Flavor Violation (MFV) scenario in which all FCNC

effects originate from the superpotential Yukawa couplings, the flavor conserving soft SUSY

breaking parameters can still contain complex phases that cannot be absorbed by a redef-

inition of fields and can, for example, give large contributions to the electron and neutron

EDMs.

As the accuracy of rare decay experiments improves, it is important to have a universal

computational tool which would help compare new data with the predictions of the MSSM.

Constructing such a tool is a non-trivial task because finding SUSY contribution to each

rare decay requires tedious calculations, especially when one wishes to have fully general

formulae that do not rely on the restrictive assumptions of the MFV scenario. Numer-

ous analyses have been published in the literature, but because of the complexity of the

problem, they mostly take into account one, or at most few, rare decays simultaneously.

Furthermore, most analyses done for general flavor violation in the MSSM soft terms use

the mass insertion approximation (MIA) (see e.g. [3]) which significantly simplifies calcula-

tions but does not produce correct results when flavor violation in the superpartner sector

becomes strong.

In a series of papers since 1997 [3–13], many supersymmetric FCNC and CP-violating

observables were analyzed with loop-level accuracy within the setup of the fully general R-

parity conserving MSSM without resorting to any MIA-type expansions. A FORTRAN 77

computer programs based on the common set of Feynman rules of Ref. [14] were developed

for each process. Because these programs use the same conventions, input parameters, and
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Observable Experiment

∆F = 0

|de|(ecm) < 1.6 × 10−27 [16]

|dµ|(ecm) < 2.8 × 10−19 [17]

|dτ |(ecm) < 1.1 × 10−17 [18]

|dn|(ecm) < 2.9 × 10−26 [19]

∆F = 1

Br(KL → π0νν) < 6.7 × 10−8 [20]

Br(K+ → π+νν) 17.3+11.5
−10.5 × 10−11 [21]

Br(Bd → ee) < 1.13 × 10−7 [22]

Br(Bd → µµ) < 1.8 × 10−8 [23]

Br(Bd → ττ) < 4.1 × 10−3 [24]

Br(Bs → ee) < 7.0 × 10−5 [25]

Br(Bs → µµ) < 5.8 × 10−8 [23]

Br(Bs → ττ) −−
Br(B → Xsγ) (3.52 ± 0.25) × 10−4 [26]

∆F = 2

|ǫK | (2.229 ± 0.010) × 10−3 [18]

∆MK (5.292 ± 0.009) × 10−3 ps−1 [18]

∆MD (2.37+0.66
−0.71) × 10−2 ps−1 [18]

∆MBd
(0.507 ± 0.005) ps−1 [26]

∆MBs
(17.77 ± 0.12) ps−1 [27]

Table 1: List of observables calculated by SUSY FLAVOR and their currently measured values

or 95% C.L bounds (except for Br(Bd → ee) and Br(Bd → ττ) for which the 90% C.L

bounds are given.).

internal data structures, they can naturally interface with one another. Combining these

works, we present in this article SUSY FLAVOR - a publicly available computer code that

simultaneously calculates the set of important ∆F = 0, 1, 2 FCNC and CPV observables in

the framework of the general MSSM. The current version (1.0) of the program takes a set

of MSSM parameters and calculates the processes1 listed in Table 1.

Several programs allowing to analyze various aspects of the MSSM flavor phenomenology

have been published. The most relevant to SUSY FLAVOR are: CPsuperH [28], SusyBSG [29]

and SuperIso [30]. SusyBSG is dedicated to high-precision predictions for B → sγ while

CPsuperH and SuperIso calculate processes similar to the ones computed by SUSY FLAVOR.

1In the current version SUSY FLAVOR calculates also the full one-loop corrections to lepton flavor violating

B-meson decays such as B → µτ . However, it is known that contributions to the amplitudes of these

processes are greatly enhanced at large tanβ by formally two loop double penguin diagrams [15] which

currently are not included in the code. Thus, SUSY FLAVOR can be used to estimate such decay rates only

at low tanβ <∼ 10.
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However, these existing codes are restricted to the Minimal Flavor Violation scenario. Thus,

to the best of the authors’ knowledge, SUSY FLAVOR is the first program which can simul-

taneously calculate the set of rare decays listed in Table 1 without any (apart from the

R-parity conservation) restrictions on the choice of MSSM parameters. Other publicly

available codes that are relevant to SUSY FLAVOR (which can e.g. calculate the MSSM soft

parameters used as input to SUSY FLAVOR, or for the same set of input parameters cal-

culate non-FCNC related observables) are FeynHiggs [31], SoftSUSY [32], SuSpect [33],

SPheno [34], MicrOMEGAs [35], DarkSUSY [36] and NMHDECAY [37].

In summary, the basic features of SUSY FLAVOR are:

• The program utilizes the most general R-parity conserving Lagrangian for the MSSM.

In addition to standard soft breaking terms, it can even accommodate additional non-

holomorphic terms, such as

A
′IJ
d H2⋆

i QI
iD

J + A
′IJ
u H1⋆

i QI
iU

J + H.c. , (1)

that, for example, do not appear in the minimal supergravity scenario but are present

in the most general softly broken supersymmetric effective Lagrangian [38].

• There is no limit on the size of flavor violating parameters because the calculation

does not rely on the MIA expansion. Complex “mass insertions” of the form

δIJQXY =
(M2

Q)IJXY
√

(M2
Q)IIXX(M2

Q)JJY Y

, (2)

(I, J denote quark flavors, X, Y denote superfield chirality, and Q indicates either

the up or down quark superfield sector, similarly for slepton superfields) are taken

as inputs, but they only serve to conveniently parametrize the sfermion mass matri-

ces. SUSY FLAVOR numerically calculates the exact tree-level spectrum and mixing

matrices, which are later used in loop calculations.

• As an intermediate step, parton-level form factors for quark and lepton 2-, 3- and

4-point Green functions are calculated. They are later dressed in hadronic matrix

elements (see Table 3 in Section 3) to obtain predictions for the physical quantities

listed in Table 1. The set of Green’s functions computed by SUSY FLAVOR as inter-

mediate “building blocks” is quite universal and can be used by other authors to

calculate other processes.

• The program runs fairly quickly. On a Mac PowerBook G4 with GNU FORTRAN

g77 it returns the output for a single parameter set run within a second.

We note that the current SUSY FLAVOR version does not resum higher-order corrections in

the limit of large tan β. Such corrections in the MFV scenario can easily dominate the

SM result for tan β >∼ 30 − 40. However, even in that case new sources of flavor violation

often give comparable or more significant contributions than the MFV-type tan β-enhanced
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corrections. Thus, for large tanβ one should perform the resummation of leading higher-

order terms in the presence of the non-vanishing flavor violation in the sfermion mass

matrices. Unfortunately, such resummation is not yet fully understood, i.e., although there

are theoretical ideas [10, 39–41] on how to resum these contributions beyond MFV, it is

quite difficult to implement them into SUSY FLAVOR without losing numerical stability for

large mass insertions. Thus, even though some parts of SUSY FLAVOR (e.g. B̄B mixing and

the B → l+l− decays) were originally devised to perform a large tanβ resummation for

the MSSM parameter choice restricted to the MFV case, in the present version this option

has been deactivated for consistency. We hope to improve this in future versions of the

code. The current version of SUSY FLAVOR should be used for low to moderate values of

tan β (tanβ <∼ 30), however even in the case of significant supersymmetric flavor violation

it should still produce reasonably accurate results even for tan β beyond this range.

The rest of the paper is organized as follows. In Section 2 we define the general structure of

the MSSM Lagrangian following Ref. [14] to facilitate comparison of the conventions used

in SUSY FLAVOR with others used in the literature and to connect the variables used in the

code with physical quantities. Section 3 describes the internal structure of SUSY FLAVOR,

the most important steps of calculations, and the file structure of the library. In Section 4

we carefully present the initialization sequence for SUSY FLAVOR, defining input parameters

and how they are used. Routines for calculating the FCNC and CPV observables collected

in Table 1 are described in Section 5. We conclude with a summary of the presentation.

Appendix A contains brief instructions on how to install and run the SUSY FLAVOR package.

In Appendices B and C we provide templates for initializing SUSY FLAVOR from within the

program and using an external file in the SLHA2 format [42], respectively. Both of these

templates produce the set of test results listed in Appendix D.

SUSY FLAVOR can be downloaded from the following address:

http://www.fuw.edu.pl/susy flavor

2 Lagrangian, conventions and the tree level masses

2.1 Lagrangian parameters

SUSY FLAVOR follows the conventions for the MSSM Lagrangian and Feynman rules for the

most general R-parity conserving version of the MSSM Lagrangian given in [14]. Over 100

Lagrangian parameters are taken as input to SUSY FLAVOR and can be initialized indepen-

dently.

For completeness and for easier comparison with conventions used in other sources, we

present here the full list of the general MSSM couplings. They can be classified by sectors

of the theory:

4
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1. Gauge sector. g1, g2, g3 denote the coupling constants of gauge groups U(1)Y , SU(2)L,

SU(3)c, respectively.

2. Superpotential and Yukawa couplings. The superpotential and the soft breaking

sfermion couplings are written after the rotations of superfields to the super-KM basis in

which the Yukawa couplings are diagonal and the soft parameters are redefined accordingly

to account for accommodate these flavor rotations (see e.g. [3]).

We do not assume the existence of the heavy right-handed neutrino/sneutrino supermul-

tiplet and neglect related terms in the Lagrangian.2 Then the most general form of the

R-parity conserving MSSM superpotential takes the form:

W = µǫijH
1
i H

2
j + ǫijY

I
l H

1
i L

I
jR

I + ǫijY
I
d H

1
i Q

I
jD

I + ǫijY
I
uH

2
i Q

I
jU

I . (3)

Capital indices (I, J,K . . .) label matter field generations and run from 1 to 3. Lower-case

indices (i, j, . . .) are SU(2)L indices (we use ǫ12 = −1). SU(3)c indices are not written

explicitly; we assume that the Q supermultiplets are QCD triplets and the D and U super-

multiplets are anti-triplets. At tree level, quark and lepton masses are related to Yukawa

couplings by (note that Y I
l , Y

I
d are negative in our convention):

mI
e = −v1Y

I
l√
2

, mI
d = −v1Y

I
d√
2

, mI
u =

v2Y
I
u√
2

. (4)

It follows that in SUSY FLAVOR the fermion masses and the elements of the Cabibbo-

Kobayashi-Maskawa (CKM) matrix, rather than the Yukawa couplings, are used as input

parameters.

3. Soft gaugino mass terms for the U(1)Y , SU(2)L and SU(3)c gauge groups

1

2
M1λBλB +

1

2
M2λ

i
Aλ

i
A +

1

2
M3λ

a
Gλ

a
G + h.c. (5)

4. Soft-breaking mass terms for the scalar fields.

−m2
H1
H1⋆

i H1
i −m2

H2
H2⋆

i H2
i − (m2

L)IJLI⋆
i LJ

i − (m2
E)IJEI⋆EJ

−(Km2
QK

†)IJQI⋆
1 QJ

1 − (m2
Q)IJQI⋆

2 QJ
2 − (m2

D)IJDI⋆DJ − (m2
U)IJU I⋆UJ . (6)

5. Trilinear scalar couplings corresponding to superpotential Yukawa terms.

m2
12ǫijH

1
i H

2
j + ǫijA

IJ
l H1

i L
I
jE

J + ǫijA
IJ
d H1

i Q
I
jD

J + ǫijA
IJ
u H2

i Q
I
jU

J + h.c. (7)

6. Non-standard trilinear scalar couplings involving complex conjugated Higgs fields

(sometimes called “non-analytic terms”).

A
′IJ
l H2⋆

i LI
iE

J + A
′IJ
d H2⋆

i QI
iD

J + A
′IJ
u H1⋆

i QI
iU

J + h.c. (8)

2The modifications to the phenomenology of the MSSM from the presence of a heavy right neutrino

supermultiplet are discussed in [43]. Some numerical codes concerning the problem can be obtained from

its authors.
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Usually these couplings are not considered as they are not generated in standard SUSY

breaking models. However, for completeness they are included in SUSY FLAVOR and by

default initialized to zero. Users of SUSY FLAVOR may decide to set them to some non-

vanishing values in order to check their impact on rare decay phenomenology.

In general, the mass parameters µ, m2
12, m

2
Q, M1,2,3, and the trilinear soft couplings may

be complex. Global rephasing of all fermion fields of the theory and of one of the Higgs

multiplets can render two of these parameters real [4]. We choose them to be the gluino

mass M3 and the soft Higgs mixing term m2
12. The latter choice keeps the Higgs vacuum

expectation values (VEV) and, therefore, the parameter tan β real at tree level.

2.2 Physical tree level masses and mixing angles

Mass matrices of the MSSM particles can be written in terms of the parameters of Sec-

tion 2.1. In SUSY FLAVOR, following [14], we consistently use matrix notation for all fields,

including neutral and charged Higgs bosons. Such a notation simplifies the expressions for

loop calculations. In this Section we explicitly write down all mass matrices to fix our sign

conventions relative to other choices in the literature.

1. Higgs sector. We denote the CP-even and CP-odd neutral scalars as H0
i and A0

i ,

respectively, with i = 1, 2. In terms of more common notation, (H0
1 , H

0
2 ) ≡ (H0, h0) and

(A0
1, A

0
2) ≡ (A0, G0). These are related to the initial Higgs doublets by (no sum over i):

ℜeH i
i =

1√
2

(Z ij
RH

0
j + vi) ,

ℑmH i
i =

1√
2
Z ij

HA
0
j . (9)

In these formulae v1, v2 are the VEVs of the two neutral components of the Higgs doublets

and ZR, ZH are the mixing matrices in the CP-even and CP-odd Higgs sectors, respec-

tively.

The mixing matrix ZR and the masses of H0
i can be obtained by diagonalizing the CP-even

Higgs mass2 matrix:

ZT
R







−m2
12

v2
v1

+
e2v21

4s2
W

c2
W

m2
12 − e2v1v2

4s2
W

c2
W

m2
12 − e2v1v2

4s2
W

c2
W

−m2
12

v1
v2

+
e2v22

4s2
W

c2
W





ZR =





M2
H0

1
0

0 M2
H0

2



 ≡
(

M2
H 0

0 M2
h

)

. (10)

A0
1(≡ A0) has mass M2

A = m2
H1

+ m2
H2

+ 2|µ|2. SUSY FLAVOR assumes Rξ gauge with ξ = 1,

so the neutral Goldstone boson A0
2(≡ G0) has the mass MG0 = MZ .

The mixing matrices ZH , ZR are parametrized as follows:

ZH =

(

sinβ −cosβ

cosβ sinβ

)

, ZR =

(

cosα −sinα

sinα cosα

)

, (11)
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with the angles α and β determined by

tanβ =
v2
v1

, 0 ≤ β ≤ π

2
,

tan 2α = tan 2β
M2

A + M2
Z

M2
A −M2

Z

, −π

2
≤ α ≤ 0. (12)

Charged Higgs scalars are denoted by H±
i ≡ H±, G± and are related to the initial Higgs

doublet again by the matrix ZH :
(

H1⋆
2

H2
1

)

= ZH

(

H+
1

H+
2

)

. (13)

The physical charged Higgs boson has mass

M2
H±

1
= M2

W + m2
H1

+ m2
H2

+ 2|µ|2, (14)

while the charged Goldstone bosons G± have masses MG± = MW .

2. Gaugino sector. The chargino masses and mixing matrices Z+ and Z− are defined by

the relation

(Z−)T





M2
ev2√
2sW

ev1√
2sW

µ



Z+ =

(

Mχ1 0

0 Mχ2

)

. (15)

In SUSY FLAVOR we choose Z−, Z+ such that both masses Mχi
are real positive and Mχ2 >

Mχ1 .

The neutralino tree level masses are given by

ZT
N















M1 0 −ev1
2cW

ev2
2cW

0 M2
ev1
2sW

−ev2
2sW

−ev1
2cW

ev1
2sW

0 −µ
ev2
2cW

−ev2
2sW

−µ 0















ZN =









Mχ0
1

0
. . .

0 Mχ0
4









, (16)

where again we use the ambiguity in the definition of the ZN matrix to choose to make all

Mχ0
i

real positive and increasingly ordered.

3. Slepton sector. The three complex sneutrino fields have tree level masses and the

mixing matrix Zν̃ defined by:

Z†
ν̃

(

e2(v21 − v22)

8s2W c2W
1̂ + m2

L

)

Zν̃ =









M2
ν̃1

0
. . .

0 M2
ν̃3









. (17)

The mass matrix for the six charged sleptons

M2
L =







e2(v21−v22)(1−2c2
W

)

8s2
W

c2
W

+
v21Y

2
l

2
+ (m2

L)T v2√
2
(Ylµ

⋆ − A
′

l) + v1√
2
Al

v2√
2
(Ylµ−A

′†
l ) + v1√

2
A†

l −e2(v21−v22)

4c2
W

+
v21Y

2
l

2
+ m2

E





 (18)
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is diagonalized by the unitary matrix ZL,

Z†
LM2

LZL =









M2
L1

0
. . .

0 M2
L6









. (19)

4. Squark sector. Analogously, for the up and down squarks one has:

M2
U =







e2(v21−v22)(4c
2
W

−1)

24s2
W

c2
W

+
v22Y

2
u

2
+ (Km2

QK
†)T − v1√

2
(Yuµ

⋆ + A
′

u) − v2√
2
Au

− v1√
2
(Yuµ + A

′†
u ) − v2√

2
A†

u
e2(v21−v22)

6c2
W

+
v22Y

2
u

2
+ m2

U





 , (20)

ZT
UM2

UZ
⋆
U =









M2
U1

0
. . .

0 M2
U6









. (21)

M2
D =







−e2(v21−v22)(1+2c2
W

)

24s2
W

c2
W

+
v21Y

2
d

2
+ (m2

Q)T v2√
2
(Ydµ

⋆ −A
′

d) + v1√
2
Ad

v2√
2
(Ydµ−A

′†
d ) + v1√

2
A†

d −e2(v21−v22)

12c2
W

+
v21Y

2
d

2
+ m2

D





 , (22)

Z†
DM2

DZD =









M2
D1

0
. . .

0 M2
D6









. (23)

Note that ZU is defined with a complex conjugate compared to the definitions of ZL and

ZD. Thus all positively charged sfermion mass eigenstates are multiplied by Z ij
X , while

negatively charged eigenstates are multiplied by Z ij⋆
X .

2.3 Interfacing with the Les Houches Accord

SUSY FLAVOR has been in development since 1996, long before the Les Houches Accord [44]

(SLHA) for common MSSM Lagrangian conventions was agreed. Because of that, it was not

feasible to change the internal SUSY FLAVOR structure as it would require careful checking

and rewriting of thousands of lines of a complicated code. Therefore we have decided to

keep the conventions of [14] for the internal calculations in SUSY FLAVOR. In Table 2 we

summarize the differences of our conventions and those of the latest extended SLHA 2 [42].

These differences are quite minor and translation can be done by changing few signs and/or

transposing matrices in the soft SUSY breaking sector. Thus, for the input parameters of

SUSY FLAVOR we leave the choice of convention as a user-defined option.
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SLHA 2 [42] Ref. [14]

T̂U , T̂D, T̂E −AT
u , +AT

d , +AT
l

m̂2
Q̃

, m̂2
L̃

m2
Q, m2

L

m̂2
ũ, m̂2

d̃
, m̂2

l̃
(m2

U)T , (m2
D)T , (m2

E)T

M2
ũ, M2

d̃
(M2

U)T , (M2
D)T

Table 2: Comparison of SLHA [42] and Ref. [14] conventions.

Currently SUSY FLAVOR does not use the super-PMNS basis for the lepton and slepton

sector; only the charged lepton Yukawa matrix (and not the neutrino mass matrix) is

diagonalized. The super-PMNS basis can become helpful once new experiments are able

to identify the flavor of the neutrinos produced in rare decays, but at present this is not

experimentally feasible.

3 Structure of the code

Calculations in SUSY FLAVOR take the following steps:

1. Parameter initialization. This is the most important step for SUSY FLAVOR users

and is described in detail Section 4. Users can adjust the basic Standard Model parameters

according to latest experimental data and initialize all (or the chosen subset of) supersym-

metric soft masses and couplings and Higgs sector parameters listed in Section 2.1.

2. Calculation of the physical masses and the mixing angles. After setting the

input parameters, SUSY FLAVOR calculates the eigenvalues of the mass matrices of all MSSM

particles and their mixing matrices at the tree level. Diagonalization is done numerically

without any approximations.

3. Calculation of Wilson coefficients at the SUSY scale. Physical tree-level masses

and mixing matrices are used to evaluate exact one-loop Wilson coefficients of the effective

operators required for a given process. Again, the formulae used in the code are exact, i.e.

do not rely on any approximations, such as the MIA expansion. In the current version,

SUSY FLAVOR calculates Wilson coefficients generated by the diagrams listed in Table 3. All

Wilson coefficients are calculated at the high energy scale, assumed to be the average mass

of SUSY particles contributing to a given process or the top quark scale.

It is important to stress that SUSY FLAVOR accepts fermion generation indices and Higgs

boson indices as input parameters. Thus in Table 3 d and u, l and ν denote quarks or leptons

of any generation and, similarly, H0
i and A0

i denote any type of the neutral Higgs bosons.

Hence, the actual number of amplitudes which can be calculated using combinations of these

form factors is much larger than needed for the rare decay rates currently implemented fully

in SUSY FLAVOR. We plan to add new processes in future releases of our library.
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Box Penguin Self energy

dddd Zd̄d, γd̄d, gd̄d d-quark

uuuu H0
i d̄d, A0

i d̄d u-quark

ddll H0
i ūu, A0

i ūu

ddνν

Table 3: One loop parton level diagrams implemented in SUSY FLAVOR.

4. Strong corrections. In its final step SUSY FLAVOR performs (when necessary) the QCD

evolution of Wilson coefficients from the high energy (SUSY or top quark mass) scale to

the low energy scale appropriate for a given rare decay, calculates the relevant hadronic ma-

trix elements, and outputs predictions for physical quantities. The formulae for QCD and

hadronic corrections are primarily based on calculations performed in the SM and supple-

mented, when necessary, with contributions from non-standard operators which usually are

neglected in the SM, because they are suppressed by powers of the light quark Yukawa cou-

plings. This part of SUSY FLAVOR is based on analyses published by other authors, whereas

points 1-3 are implemented using our own calculations. The accuracy of strong corrections

differ from process to process, from negligible or small (leptonic EDM, “gold-plated” de-

cay modes K → πν̄ν [45]) to order of magnitude uncertainties (unknown long distance

contributions to ∆mK or ∆mD). Even in the case of large QCD uncertainties, the result

of the calculation performed by SUSY FLAVOR can be of some use. Flavor violation in the

sfermion sector can lead to huge modifications of many observables, sometimes by several

orders of magnitude, so that comparison with experimental data can help to constrain the

soft flavor-violating terms even if strong corrections are not very well known.

Below we list the files included in the SUSY FLAVOR library with a brief description of their

content and purpose.

eisch1.f: auxiliary numerical routine - hermitian matrix diagonalization

vegas.f: auxiliary numerical routine - Vegas Monte Carlo integration

rombint.f: auxiliary numerical routine - Romberg numerical integration

sflav io.f: input routine for reading of the SLHA2 format; test output routines

b fun.f: general 2-point loop functions

db fun.f: derivatives of general 2-point loop functions

c fun.f: general 3-point loop functions

cd fun.f: 3-, 4- and some 5-point loop functions at vanishing external momenta

vh def.f: definitions of Higgs boson tree-level vertices

vg def.f: definitions of gauge boson tree-level vertices
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vf def.f definitions of fermion tree-level vertices

mh init.f: initialization of MSSM parameters

mh diag.f: diagonalization of tree level mass matrices; outputs physical masses and mixing angles

qcd fun.f: auxiliary QCD calculations - running αs, running quark masses etc.

d self0.f: d-quark self-energy

u self0.f: u-quark self-energy

sff fun0.f: form factors of the general scalar-fermion-fermion 1-loop triangle diagram

sdd vert0.f: CP-even Higgs-d quark-d quark 1-loop triangle diagram

pdd vert0.f: CP-odd Higgs-d quark-d quark 1-loop triangle diagram

suu vert0.f: CP-even Higgs-u quark-u quark 1-loop triangle diagram

puu vert0.f: CP-odd Higgs-u quark-u quark 1-loop triangle diagram

zdd vert0.f: Z boson-d quark-d quark 1-loop triangle diagram

ddg fun.f: form factors for the general gauge boson-fermion-fermion 1-loop triangle diagram

dd gluon.f: d quark-d quark-gluon 1-loop triangle diagram

dd gamma.f: d quark-d quark-photon 1-loop triangle diagram

bsg nl.f: formulae for Br(B → Xsγ), including QCD corrections

dd ll.f: d quark-d quark-lepton-lepton 1-loop box diagram

dd vv.f: d quark-d quark-neutrino-neutrino 1-loop box diagram

phen 2q.f: formulae for Br(K0
L → π0ν̄ν), Br(K+ → π+ν̄ν) and Br(Bs(d) → l+l−) including QCD

corrections and hadronic matrix elements

dd mix.f: 4-d quark 1-loop box diagram

uu mix.f: 4-u quark 1-loop box diagram

phen 4q.f: formulae for the meson mixing observables: ∆mK , ǫK , ∆mD, ∆mBd(s)
including QCD

corrections and hadronic matrix elements

edm l.f: lepton electric dipole moment

cdm d.f: d-quark chromoelectric dipole moment

cdm u.f: u-quark chromoelectric dipole moment

cdm g.f: gluon chromoelectric dipole moment

edm d.f: d-quark electric dipole moment
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edm u.f: u-quark electric dipole moment

edm n.f: u-quark electric dipole moment

All the 2-, 3- and 4-point Green functions are calculated for vanishing external momenta.

As mentioned before, by “u quark” and “d quark” we mean all generations of quarks.

In addition to the files listed above, the library contains the master driver file susy flavor.f

which illustrates the proper initialization sequence for SUSY FLAVOR parameters and pro-

duces a set of test results for the implemented observables.

4 Parameter initialization in SUSY FLAVOR

We now list the input parameters used by SUSY FLAVOR. These are not always directly the

MSSM Lagrangian parameters given in Section 2.1 – for example, instead of using the µ

parameter and the soft Higgs masses m2
Hi
, m2

12, it is customary to use tanβ and the CP-

odd Higgs mass MA to parametrize MSSM Higgs sector. In its first step, SUSY FLAVOR

restores the Lagrangian parameters of Section 2.1 for the given set of more human-friendly

input parameters. Then, the remaining routines use the “raw” Lagrangian parameters—if

necessary they can also be directly modified by (experienced!) users.

In the rest of this section we describe step-by-step the basic initialization routines used by

SUSY FLAVOR, their arguments and, when necessary, the FORTRAN common blocks storing

the most important data (other common blocks serve for the internal purposes and usually

do not need to be accessed by users).

By default, SUSY FLAVOR uses the following implicit type declaration in all routines:

implicit double precision (a-h,o-z)

so that all variables in SUSY FLAVOR with the names starting from a to h and from o to z are

automatically defined as double precision and those with names starting from i to n are

of integer type. In what follows we explicitly indicate variables that do not obey this rule.

Such variables are always listed in explicit type statements inside the procedures. Complex

parameters mentioned in this article are declared in SUSY FLAVOR as double complex type.

Mass parameters are always given in GeV.

SUSY FLAVOR provides two ways of initializing input parameters. As the first option, they

can be read from the file susy flavor.in. The structure of this file follows the SLHA2 con-

vention [42], with some extensions which we describe in Section 4.1. Initializing parameters

in the input file is simple, it is done by a call to single subroutine sflav input and does not

require detailed knowledge of the program internal structure. This option is particularly

convenient for testing a single parameter set but can be cumbersome for scans over the

MSSM parameter space. Therefore, as a second option, SUSY FLAVOR also provides a set of

routines designed to initialize parameters defined in the program, which can easily be used
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to prepare programs that scan over large parameter sets. As described in Section 4.2, these

routines require more care in use, as they should be initialized in the proper order, i.e. the

gauge sector first, then the fermion sector, Higgs sector, and SUSY sectors at the end (the

initialization sequences for the gaugino, slepton and squark sectors are independent).

An example of a full initialization sequence for SUSY FLAVOR, illustrating both options

mentioned above, is presented Appendix B. The sample input file susy flavor.in is given

in Appendix C. Test output generated for parameters used in Appendices B and C is

enclosed in Appendix D.

4.1 Parameter initialization from the input file

Input parameters for SUSY FLAVOR can be set by editing appropriate entries of the file

susy flavor.in and subsequently calling the subroutine sflav input, which reads the

input file, stores the the MSSM Lagrangian parameters in FORTRAN common blocks and

calculates tree-level physical masses and mixing matrices. After calling sflav input, all

physical observable described in Section 5 can be calculated.

The input file susy flavor.in is written in the SLHA2 format, with some extensions which

we list below (for an example of a complete input file see Appendix C).

1. We define a non-standard Block SOFTINP. Currently it contains two control variables,

iconv and input type. These serve to choose input conventions in the sfermion sector (in

other sectors SLHA2 and Ref. [14] agree).

Variable value Sfermion sector parametrization

iconv = 1 MSSM parameters defined in SLHA 2 conventions.

iconv = 2 MSSM parameters defined in conventions of Ref. [14].

input type = 1 sfermion diagonal trilinear mixing terms given as dimensionless pa-

rameters; all off-diagonal soft terms are given as dimensionless mass

insertions—see comments below on the data blocks defining the

sfermion soft terms.

input type = 2 sfermion soft terms given as absolute values of dimension mass2.

2. SUSY FLAVOR uses the W boson mass as a basic parameter rather than Fermi constant

GF . Therefore, in susy flavor.in we use entry 30 of Block SMINPUTS (not used in the

standard SLHA2) to define MW .

3. We allow complex values for µ and two of the gaugino masses—chosen to be the U(1) and

SU(2) mass terms M1 and M2. Their real and imaginary parts are defined in blocks EXTPAR

and IMEXTPAR. We use tan β and the CP-odd Higgs mass MA as the input parameters for

the Higgs sector.

4. Following the SLHA2 convention, we only define the upper triangle of each of the

hermitian sfermion soft mass matrices in the MSL2IN, MSE2IN, MSQ2IN, MSD2IN, MSU2IN
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and IMMSL2IN, IMMSE2IN, IMMSQ2IN, IMMSD2IN, IMMSU2IN blocks. It is obligatory to

define all entries, both diagonal and upper off-diagonal, since SUSY FLAVOR does not read

diagonal sfermion masses from the EXTPAR block. The iconv parameter defined in the

SOFTINP block determines if sfermion parameters are given in SLHA2 or Ref. [14] conven-

tions (see Table 2). Finally, the input type parameter in the SOFTINP block defines the

format of the off-diagonal mass terms. If input type = 1, the off-diagonal entries given in

susy flavor.in are assumed to be dimensionless mass insertions and the flavor violating

sfermion mass terms are calculated as

(m2
X)IJ = (m2

X)⋆JI = δIJX

√

(m2
X)II(m2

X)JJ , (24)

where X = L,E,Q, U,D and I, J enumerate superpartners of the mass-eigenstate quarks.

5. The blocks TEIN, TDIN, TUIN and IMTEIN, IMTDIN, IMTUIN define the trilinear sfermion

mixing matrices which are generally non-hermitian. One is required to define all entries.

As for the soft mass terms, the iconv parameter chooses the input convention, SLHA2

or Ref. [14]. For the trilinear mixing, the parameter input type defines the format and

dimension of both the diagonal and off-diagonal terms. If input type = 1, then all rel-

evant susy flavor.in entries are treated as dimensionless numbers and expanded to full

trilinear mixing matrices using eqs. (25,26). For the diagonal LR terms, SUSY FLAVOR uses

the formulae

AII
l = Y I

l

(

(m2
L)II(m

2
E)II

)1/4
aIl ,

AII
d = Y I

d

(

(m2
Q)II(m

2
D)II

)1/4
aId ,

AII
u = Y I

u

(

(m2
Q)II(m

2
U)II

)1/4
aIu , (25)

where aIl , a
I
d, a

I
u are the diagonal trilinear mixing terms read from the input file.

For the off-diagonal LR terms, SUSY FLAVOR uses

AIJ
l = δIJLLR

√
2/v1

√

(m2
L)II(m2

E)JJ ,

AIJ
d = δIJDLR

√
2/v1

√

(m2
Q)II(m2

D)JJ ,

AIJ
u = δIJULR

√
2/v2

√

(m2
Q)II(m2

U)JJ . (26)

Note that in eqs. (25,26) for simplicity we use (m2
Q)II as the diagonal mass scale for both up

and down left squark fields (in general related by the CKM rotation, see eqs. (20,22)).

4.2 Parameter initialization inside the program

SUSY FLAVOR input parameters can also be initialized directly inside the driver program

using the set of routines described below. Before the proper initialization sequence, the

user can set the iconv variable value to choose the input convention:
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common/sf cont/eps,indx(3,3),iconv

iconv=1 SLHA2 [42] input conventions

iconv=2 [14] input conventions

After choosing the input conventions, one should subsequently initialize the gauge, matter

fermion, Higgs, SUSY fermion and sfermion sectors, using the procedures described in detail

in the following sections.

4.2.1 Gauge sector

As input, SUSY FLAVOR takes the gauge boson masses (MW ,MZ) and the gauge coupling

constants (electromagnetic and strong) at the MZ scale. They are initialized by:

Routine and arguments Purpose and MSSM parameters

vpar update(zm,wm,alpha em) Sets electromagnetic sector parameters

zm MZ , Z boson mass

wm MW , W boson mass

alpha em αem(MZ), QED coupling at MZ scale

lam fit(alpha s) Sets αs(MZ) and ΛQCD for 4-6 flavors at the NNLO

level

lam fit nlo(alpha s) Sets αs(MZ) and ΛQCD for 4-6 flavors at the NLO

level

alpha s αs(MZ), strong coupling at MZ scale

4.2.2 Matter fermion sector

SUSY FLAVOR assumes that neutrinos are massless. Pole masses of the charged leptons are

initialized in the file mh init.f in block data init phys. They are stored in the em

array in common/fmass/em(3),um(3),dm(3) and can be directly modified there. Their de-

fault values are:

Lepton mass Value

me em(1) = 0.000511

mµ em(2) = 0.105659

mτ em(3) = 1.777

In the quark sector the most important input parameters are the running top and bottom

masses at a given renormalization scale and the CKM matrix angles and phase. They can

be set by:
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Routine and arguments Purpose and MSSM parameters

init fermion sector(tm,tscale,bm,bscale) Sets running top and bottom quark mass

tm,tscale mt(µt), running MS top quark mass

bm,bscale mb(µb), running MS bottom quark mass

ckm init(s12,s23,s13,delta) Initialization of the CKM matrix

s12,s23,s13 sin θ12, sin θ23, sin θ13, sines of the CKM

angles

delta δ, the CKM phase in radians

The light quark masses are also initialized in the block data init phys of the file mh init.f

and stored in common/fmass high/umu(3),uml(3),amuu(3),dmu(3),dml(3),amud(3). The

arrays uml(dml) contain up(down) quark masses at the scale amuu(amud), respectively.

Their default values are:

Running quark mass Mass value Mass scale

md(µd) dml(1) = 0.007 amud(1) = 2

ms(µs) dml(2) = 0.11 amud(2) = 2

mb(µb) dml(3) = 4.17 amud(3) = 4.17

mu(µu) uml(1) = 0.004 amuu(1) = 2

mc(µc) uml(2) = 1.279 amuu(2) = 1.279

mt(µt) uml(3) = 163.5 amuu(3) = 163.5

The variables of the arrays uml, amuu, dml, amud can be directly accessed and modified

if necessary. However, for consistency, after such modifications the user should call the

routine init run qmass which calculates running quark masses at the high mt scale (stored

in common/fmass high/ in the arrays umu,dmu and in common/fmass/ in the arrays um,dm)

for later use in the running Yukawa couplings and in SUSY loop calculations.

4.2.3 Higgs sector

Following the common convention, we take the Higgs mixing parameter µ, the CP-odd

Higgs boson mass MA, and the ratio of vacuum expectation values tan β = v2/v1 as the

input parameters. Other Higgs sector parameters listed in Section 2.1 can be expressed

as:

m2
H1

=
1

2
(M2

A − 2|µ|2 − (M2
A + M2

Z) cos 2β) ,

m2
H2

=
1

2
(M2

A − 2|µ|2 + (M2
A + M2

Z) cos 2β) ,

m2
12 = − M2

A

2 sin 2β
. (27)

The MSSM Higgs sector at the tree level can be effectively parametrized in terms of just MA

and tanβ, but the µ parameter is necessary for the chargino and neutralino sectors. Here it
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is used to calculate the original Higgs soft mass parameters m2
H1

and m2
H2

for completeness

and future applications; they currently have no further use.

Routine and arguments Purpose and MSSM parameters

init higgs sector(pm,tb,amu,ierr) Higgs sector initialization

pm CP-odd Higgs mass MA

tb Ratio of Higgs VEVs, tan β = v2
v1

amu Higgs mixing parameter µ (complex)

ierr output error code: ierr 6= 0 if Higgs sector

initialization failed

init yukawa Initialization of the running Yukawa cou-

plings Yl, Yu, Yd for all generations (at the

same scale as the running quark masses)

4.2.4 Supersymmetric fermion sector

Initialization is done by the routine:

Routine and arguments Purpose and MSSM parameters

init ino sector(gm1,gm2,gm3,amu,tb,ierr) gaugino sector initialization

gm1,gm2 U(1), SU(2) gaugino masses (complex)

gm3 SU(3) gaugino mass

tb tanβ = v2
v1

, the ratio of Higgs VEVs

amu the Higgs mixing parameter µ (complex)

ierr output warning code: ierr 6= 0 if a char-

gino or a neutralino is lighter than MZ/2

If one sets M1 = 0 in the call to init ino sector then the GUT-derived relation M1 =
5
3

tan2 θWM2 is used in the gaugino mass calculations.

4.2.5 Sfermion sector

This is the most complicated MSSM sector; it contains a large number of free param-

eters. SUSY FLAVOR supplies two subroutines for the sfermion parameters initialization,

init slepton sector and init squark sector. They accept as input only dimension-

less mass insertions and dimensionless diagonal trilinear soft mixing terms, expanded in

SUSY FLAVOR to entries of the soft mass matrices as defined by eqs. (24,25,26) (this is only

a particular choice of parametrization and does not lead to any loss of generality). The

sfermion initialization routines have the following arguments:
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subroutine init slepton sector(sll,slr,asl,ierr,slmi l,slmi r)

Argument MSSM parameters

sll Array of the diagonal left slepton masses (m2
L)II = sll(I)2, I = 1 . . . 3

slr Array of the diagonal right slepton masses (m2
E)II = slr(I)2, I = 1 . . . 3

asl Array of the dimensionless diagonal slepton trilinear mixing terms aIl =

asl(I), I = 1 . . . 3 (complex parameters).

ierr output error code: ierr 6= 0 if slepton sector initialization failed

slmi l Array of the off-diagonal left slepton mass insertions δ12L = slmi l(1),

δ23L = slmi l(2), δ13L = slmi l(3) (complex parameters); remaining LL

mass insertions are initialized via hermitian conjugation

slmi r Array of the off-diagonal right slepton mass insertions δ12E = slmi r(1),

δ23E = slmi r(2), δ13E = slmi r(3) (complex parameters); remaining RR

mass insertions are initialized via hermitian conjugation

slmi lr Matrix with off-diagonal slepton trilinear LR mass insertions δIJLLR =

slmi lr(I, J), I, J = 1 . . . 3 (complex parameters)

subroutine init squark sector(sql,squ,sqd,asu,asd,ierr,

sqmi l,sumi r,sdmi r,sumi lr,sdmi lr)

Argument MSSM parameters

sql Array of the diagonal left squark masses (m2
Q)II = sql(I)2, I = 1 . . . 3

squ Array of the diagonal right up-squark masses (m2
U )II = squ(I)2, I = 1 . . . 3

sqd Array of the diagonal right down-squark masses (m2
D)II = sqd(I)2, I =

1 . . . 3

asu Array of the dimensionless diagonal soft LR up-squark mixing terms aIu =

asu(I), I = 1 . . . 3 (complex parameters)

asd Array of the dimensionless diagonal soft LR down-squark mixing terms

aId = asd(I), I = 1 . . . 3 (complex parameters)

ierr output error code: ierr 6= 0 if squark sector initialization failed

sqmi l Array of the off-diagonal left squark mass insertions δ12Q = sqmi l(1),

δ23Q = sqmi l(2), δ13Q = sqmi l(3) (complex parameters); remaining QLL

mass insertions are initialized via hermitian conjugation

sumi r Array of the off-diagonal right up-squark mass insertions δ12U = sumi r(1),

δ23U = sumi r(2), δ13U = sumi r(3) (complex parameters); remaining URR

mass insertions are initialized via hermitian conjugation

sdmi r Array of the off-diagonal right down-squark mass insertions δ12D =

sdmi r(1), δ23D = sdmi r(2), δ13D = sdmi r(3) (complex parameters); re-

maining DRR mass insertions are initialized via hermitian conjugation

sumi lr Matrix with off-diagonal up-squark trilinear LR mass insertions δIJULR =

sumi lr(I, J), I, J = 1 . . . 3 (complex parameters)

sdmi lr Matrix with off-diagonal down-squark trilinear LR mass insertions δIJDLR =

sdmi lr(I, J), I, J = 1 . . . 3 (complex parameters)
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If necessary, experienced SUSY FLAVOR users can directly modify the soft breaking sfermion

parameters stored in common blocks /msoft/ and /soft/ (see Table 4 in Section 4.3). One

must subsequently call the routines sldiag, sqdiag (see file mh diag.f) to recalculate

the tree-level sfermion masses and mixing matrices. This may, however, require a deeper

understanding of the SUSY FLAVOR initialization sequence and its data structure.

4.3 Tree-level physical masses and mixing angles

After performing the full initialization sequence in SUSY FLAVOR, all the MSSM Lagrangian

parameters listed in Section 2.1, physical tree-level particle masses (with the exception

of the running quark masses), and mixing matrices are calculated and stored in common

blocks. If necessary, they can be directly accessed and modified. Note, however, that after

any modifications of the Lagrangian parameters, relevant procedures calculating physical

masses and mixing angles have to called again. In Table 4 we list the important blocks

storing MSSM parameters. Common blocks containing masses and mixing angles are listed

in Table 5.

All parameters, tree-level masses, and mixing angles can be printed for test purposes, e.g.

by calling the subroutines print MSSM par and print MSSM masses.

5 List of processes

In this section we list the set observables whose computation is fully implemented in

SUSY FLAVOR v1.0. For all of them, SUSY FLAVOR takes into account one-loop supersym-

metric contributions. QCD corrections and hadronic matrix elements are extracted from

the papers of various authors, mostly from analyses done in the Standard Model. They are

assumed to work reasonably well also in the MSSM since supersymmetric strong corrections

from gluino and squarks are suppressed by large masses of these particles.

In most cases, QCD and hadronic corrections are known at the level of few to tens %, while

variations of supersymmetric flavor and CP violating parameters can change observables by

orders-of-magnitude. Thus, as long as the MSSM parameters are not measured very pre-

cisely, the current implementation of strong corrections is sufficient for analyses performed

in the framework of the general MSSM.

Calculations of the hadronic matrix elements are particularly difficult as they have to be

performed, at least partially, in the regime of strongly coupled QCD. Results of such cal-

culations can differ significantly depending on the methods used and thus carry significant

theoretical uncertainties. Therefore, in SUSY FLAVOR, quantities which requires hadronic

19



Common block and variables Lagrangian parameters

common/vpar/st,ct,st2,ct2,sct,sct2,e,e2,alpha,wm,wm2,zm,zm2,pi,sq2

st,ct,st2,ct2,sct,sct2 Weinberg angle functions, respectively sW , cW ,

s2W , c2W , sW cW , s2W c2W
e,e2,alpha electric charge powers at MZ scale: e, e2, αem

wm,wm2,zm,zm2 gauge boson masses: MW , M2
W , MZ , M2

Z

pi,sq2 numerical constants, π and
√

2

common/hpar/hm1,hm2,hm12,hmu

hm1,hm2 soft Higgs masses m2
H1
, m2

H2

hm12 soft Higgs mixing parameter m2
12

hmu Higgs mixing parameter µ (complex)

common/vev/v1,v2

v1,v2 Higgs vacuum expectation values v1, v2

common/yukawa/yl(3),yu(3),yd(3)

yl(3) charged lepton Yukawa couplings Ye, Yµ, Yτ

yu(3) Running MS up-quark Yukawa couplings at mt

scale: Yu, Yc, Yt

yd(3) Running MS down-quark Yukawa couplings at

mt scale: Yu, Yc, Yt

common/gmass/gm3,gm2,gm1

gm1,gm2 U(1), SU(2) gaugino masses M1,M2 (complex)

gm3 SU(3) gaugino mass M3

common/msoft/lms(3,3),rms(3,3),ums(3,3),dms(3,3),qms(3,3)

lms(3,3),rms(3,3) hermitian slepton soft mass matrices m2
L, m2

E

(complex)

ums(3,3),dms(3,3),qms(3,3) hermitian squark soft mass matrices m2
U , m2

D,

m2
Q (complex)

common/soft/ls(3,3),ks(3,3),ds(3,3),es(3,3),us(3,3),ws(3,3)

ls(3,3),ds(3,3),us(3,3) trilinear soft LR mixing matrices Al, Ad, Au

(complex)

ks(3,3),es(3,3),ws(3,3) trilinear “non-holomorphic” soft mixing matri-

ces A′
l, A

′
d, A

′
u (complex)

Table 4: Common blocks storing the MSSM Lagrangian parameters. We omit flavor indices

in the fermion and sfermion sectors.
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Common block and variables Masses and mixing matrices

common/fmass/em(3),um(3),dm(3)

em(3) Charged lepton pole masses me, mµ, mτ

um(3) Running MS up-quark masses at the mt scale:

mu, mc, mt

dm(3) Running MS down-quark masses at the mt

scale: mu, mc, mt

common/hmass/cm(2),rm(2),pm(2),zr(2,2),zh(2,2)

rm(2) neutral CP-even Higgs masses rm(1) = MH ,

rm(2) = Mh

pm(2) neutral CP-odd Higgs mass pm(1) and Gold-

stone mass pm(2)

cm(2) charged Higgs mass cm(1) and charged Gold-

stone mass cm(2)

zr(2,2) CP-even Higgs mixing matrix ZR

zh(2,2) CP-odd and charged Higgs mixing matrix ZH

common/charg/fcm(2),zpos(2,2),zneg(2,2)

fcm(2) chargino masses Mχ+
i

, i = 1, 2

zpos(2,2),zneg(2,2) chargino mixing matrices Z+, Z− (complex)

common/neut/fnm(4),zn(4,4)

fnm(4) neutralino masses Mχ0
i

, i = 1 . . . 4

zn(4,4) neutralino mixing matrix ZN (complex)

common/slmass/vm(3),slm(6),zv(3,3),zl(6,6)

vm(3) sneutrino masses Mν̃I , I = 1 . . . 3

slm(6) charged slepton masses MLi
, i = 1 . . . 6

zv(3,3) sneutrino mixing matrix Zν̃ (complex)

zl(6,6) charged slepton mixing matrix ZL (complex)

common/sqmass/sum(6),sdm(6),zu(6,6),zd(6,6)

sum(6) up-squark masses MUi
, i = 1 . . . 6

sdm(6) down-squark masses MDi
, i = 1 . . . 6

zu(6,6) up-squark mixing matrix ZU (complex)

zd(6,6) down-squark mixing matrix ZD (complex)

Table 5: Common blocks storing physical particle masses and mixing matrices.
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matrix element estimates and other QCD related quantities are treated as external param-

eters. They are initialized to the default values listed below for each observable and can be

directly modified by users by changing the relevant variables in the common blocks where

they are stored. Currently most of the hadronic (and related) input parameters used in

SUSY FLAVOR are taken from the Table 3 of Ref. [46].

5.1 Electric Dipole Moments of charged leptons

Lepton EDMs are defined as the coefficient dlI in the effective Hamiltonian for the flavor-

diagonal lepton-lepton-photon interaction:

He =
idlI

2
l̄Iσµνγ5l

IF µν , (28)

where I = 1, 2, 3 is the generation index of the lepton as usual. In SUSY FLAVOR lepton

EDM is calculated by:

Routine: double precision function edm l(I)

Input: I = 1, 2, 3 for e, µ, τ respectively

Output: EDM for the charged lepton specified by I

QCD related factors: none, QCD corrections are small and not included

Details of calculations: Ref. [4]

5.2 Neutron Electric Dipole Moment

The neutron EDM can be approximated by the sum of the electric dipole moments of

the constituent d and u quarks plus contributions of the chromoelectric dipole moments

(CDM) of quarks and gluons. The EDMs of the individual quarks are defined analogously

to eq. (28). The CDM cq of quark q is defined as:

Hc = −icq
2
q̄σµνγ5T

aqGµνa. (29)

The gluonic dipole moment cg is defined as:

Hg = −cg
6
fabcG

a
µρG

bρ
ν G

c
λσǫ

µνλσ. (30)

The exact calculation of the neutron EDM requires knowledge of its hadronic wave function.

SUSY FLAVOR uses the “näıve” chiral quark model approximation [47]:

En =
ηe
3

(4dd − du) +
eηc
4π

(4cd − cu) +
eηgΛX

4π
cg (31)

where ηi and ΛX are the QCD correction factors [48] and the chiral symmetry breaking

scale [47], respectively. Various models give significantly different ηi factors. As a result,

even the sign of the neutron EDM is not certain. Thus the SUSY FLAVOR result should be
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treated as an order of magnitude estimate only. The calculations are performed by calling

Routine double precision function edm n()

Input none

Output neutron EDM

QCD related factors:

common/edm qcd/eta e,eta c,eta g,alamx

ηe eta e = 1.53

ηg eta c = 3.4

ηg eta g = 3.4

ΛX alamx = 1.18

Details of calculations: Ref. [4]

5.3 K0
L → π0ν̄ν and K+ → π+ν̄ν decay rates

The relevant part of the effective Hamiltonian generated by the top quark and SUSY particle

exchanges can be written as

Heff =
GF√

2

α

2π sin2 θw

∑

l=e,µ,τ

[XL(s̄d)V−A(ν̄lνl)V−A + XR(s̄d)V+A(ν̄lνl)V−A] . (32)

The branching ratios for the K → πνν̄ decays are then given by

Br(K+ → π+ν̄ν) = κ+





(

ℑm(XL + XR)

λ5

)2

+

(

ℜe(K⋆
csKcd)

λ
Pc +

ℜe(XL + XR)

λ5

)2


 (33)

Br(K0
L → π0ν̄ν) = κL

(

ℑm(XL + XR)

λ5

)2

(34)

where κ [49], λ (one of the Wolfenstein parameters [50]), and the NLO charm quark con-

tribution Pc [45,51,52] can be modified by SUSY FLAVOR users (note that κ and Pc depend

on Vus, mc and αs) Branching ratio calculations are performed by calling

Routine subroutine k pivv(br k0,br kp)

Input none

Output br k0 = Br(K0
L → π0ν̄ν)

br kp = Br(K+ → π+ν̄ν)

QCD related factors

common/kpivv/ak0,del ak0,akp,del akp,pc,del pc,alam

κL ± ∆κL ak0 = 2.231 · 10−10, del ak0 = 0.013 · 10−10

κ+ ± ∆κ+ akp = 5.173 · 10−11, del akp = 0.025 · 10−11

Pc ± ∆Pc pc = 0.41, del pc = 0.03

λ alam = 0.225

Details of calculations: Ref. [11]
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5.4 B0
d → lI+lJ− and B0

s → lI+lJ− decay rates

The general expression for these branching ratios are rather complicated and can be found

in [12]. For most users it is sufficient to know that, in addition to the MSSM parameters,

the dilepton B decays depend on the B meson masses and the hadronic matrix elements of

the down quark vector and scalar currents:

〈0|bγµPL(R)s|Bs(d)(p)〉 = −(+)
i

2
pµfBs(d)

, (35)

〈0|bPL(R)s|Bs(d)(p)〉 = +(−)
i

2

M2
Bs(d)

fBs

mb + ms(d)
, (36)

where pµ is the momentum of the decaying Bs(d)-meson of mass MBs(d)
. The B0

d → lI+lJ−

and B0
s → lI+lJ− decay branching ratios are calculated by:

Routine double precision function b ll(K,L,I,J)

Input I, J = 1, 2, 3 - outgoing leptons generation indices

K,L - generation indices of the valence quarks of the

B0 meson: setting (K,L) = (3, 1), (1, 3), (3, 2) and (2, 3)

chooses respectively B0
d, B̄0

d , B0
s and B̄0

s decay

Output Branching ratios of the decay defined by K,L, I, J

QCD related factors

common/meson data/dmk,amk,epsk,fk,dmd,amd,fd,amb(2),dmb(2),gam b(2),fb(2)

MBd
amb(1) = 5.2794

MBs
amb(2) = 5.368

fBd
fb(1) = 0.2

fBs
fb(2) = 0.245

Details of calculations: Ref. [12]

5.5 K̄0K0 meson mixing parameters

SUSY FLAVOR calculates two parameters measuring the amount of CP-violation in neutral

K meson oscillations: εK and the K̄0 −K0 mass difference ∆MK .

∆MK = 2ℜe〈K̄0|H∆S=2
eff |K0〉 , (37)

εK =
exp(iπ/4)√

2∆MK

ℑm〈K̄0|H∆S=2
eff |K0〉 . (38)

QCD dependent corrections are known with reasonable accuracy for the εK parameter. The

long distance contributions to ∆MK are large and difficult to control. Thus the result given

by SUSY FLAVOR for ∆MK should be treated as an order of magnitude estimate only.
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Apart from the MSSM parameters, the calculation of the K̄0K0 meson mixing requires

knowledge of the meson masses and of the hadronic matrix elements of the following set of

four-quark operators:

QVLL
1 = (q̄IαγµPLq

J
α)(q̄Iβγ

µPLq
J
β ),

QLR
1 = (q̄IαγµPLq

J
α)(q̄Iβγ

µPRq
J
β ),

QLR
2 = (q̄IαPLq

J
α)(q̄IβPRq

J
β ),

QSLL
1 = (q̄IαPLq

J
α)(q̄IβPLq

J
β ),

QSLL
2 = (q̄IασµνPLq

J
α)(q̄iβσ

µνPLq
J
β ) (39)

where α, β are color indices, for the K̄0K0 mixing one should choose flavor indices I = 2

and J = 1. The matrix elements can be written as:

〈K̄0|QVLL
1 (µ)|K0〉 =

1

3
MKF

2
KB

VLL
1 (µ),

〈K̄0|QLR
1 (µ)|K0〉 = −1

6

(

MK

ms(µ) + md(µ)

)2

MKF
2
KB

LR
1 (µ),

〈K̄0|QLR
2 (µ)|K0〉 =

1

4

(

MK

ms(µ) + md(µ)

)2

MKF
2
KB

LR
2 (µ),

〈K̄0|QSLL
1 (µ)|K0〉 = − 5
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(

MK

ms(µ) + md(µ)

)2

MKF
2
KB

SLL
1 (µ),

〈K̄0|QSLL
2 (µ)|K0〉 = −1

2

(

MK

ms(µ) + md(µ)

)2

MKF
2
KB

SLL
2 (µ), (40)

where FK is the K-meson decay constant. By default, SUSY FLAVOR uses the BX
i values at

the scale µ = 2 GeV given in [53] using the NDR renormalization scheme (quark masses at

the scale 2 GeV are stored in common/fmass high/, see Section 4.2.2).

In addition to the hadronic matrix elements, QCD corrections depend also on the “η” factors

describing the evolution of the relevant Wilson coefficients from the high to low energy

scale. These factors are automatically calculated at NLO by SUSY FLAVOR. For the SM

contribution to the Wilson coefficient of the QVLL operator a separate careful calculation

of the evolution factors has been performed [54, 55]. Therefore SUSY FLAVOR treats this

contribution separately, setting BVLL
SM and the ηSM factor to default values given in [56]

(see [53] for a very detailed discussion of the structure of the QCD corrections in B̄0B0 and

K̄0K0 systems, including their renormalization scheme dependence and calculations of the

evolution factors “η” implemented in SUSY FLAVOR).

The kaon mass difference ∆MK and the εK parameter measuring the amount of CP viola-

tion in K̄0K0 mixing are calculated by
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Routine subroutine dd kaon(eps k,delta mk)

Input none

Output eps k = εK parameter

delta mk = ∆MK mass difference

QCD related factors:

common/meson data/dmk,amk,epsk,fk,dmd,amd,fd,amb(2),dmb(2),gam b(2),fb(2)

MK amk = 0.497672

Measured ∆Mexp
K dmk = 3.49 · 10−15

Measured εexpK epsk = 2.26 · 10−3

fK fk = 0.1598

common/bx 4q/bk(5),bd(5),bb(2,5),amu k,amu d,amu b

BVLL
1 (µK) bk(1) = 0.61

BSLL
1 (µK) bk(2) = 0.76

BSLL
2 (µK) bk(3) = 0.51

BLR
1 (µK) bk(4) = 0.96

BLR
2 (µK) bk(5) = 1.30

Renormalization scale µK amu k = 2

common/sm 4q/eta cc,eta ct,eta tt,eta b,bk sm,bd sm,bb sm(2)

BVLL
SM bk sm = 0.724

ηcc eta cc = 1.44

ηct eta ct = 0.47

ηtt eta tt = 0.57

Details of calculations: Ref. [10, 53]

5.6 D̄0D0 meson mass difference

Calculations of the mass difference ∆mD of the neutral D mesons have large theoretical

uncertainties due to unknown long-distance strong corrections. Thus, as in the case of

∆mK , the SUSY FLAVOR result for ∆mD should be treated as an order of magnitude estimate

only.

The structure of strong corrections is analogous to those in the K meson system. However,

in this case hadronic matrix elements and QCD evolution calculations available in the lit-

erature are much less refined. SUSY FLAVOR uses the NLO evolution for the “η” factors and

sets, by default, all the relevant hadronic matrix elements Bi = 1, i.e. it uses the “vacuum

saturation” approximation (this can be changed easily when new results become available).
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Routine subroutine uu bmeson(delta md)

Input none

Output delta md = ∆MD mass difference

QCD related factors:

common/meson data/dmk,amk,epsk,fk,dmd,amd,fd,amb(2),dmb(2),gam b(2),fb(2)

MD amd = 1.8645

Measured ∆Mexp
D dmd = 4.61 · 10−14

fD fd = 0.165

common/bx 4q/bk(5),bd(5),bb(2,5),amu k,amu d,amu b

BVLL
1 (µD) bd(1) = 1

BSLL
1 (µD) bd(2) = 1

BSLL
2 (µD) bd(3) = 1

BLR
1 (µD) bd(4) = 1

BLR
2 (µD) bd(5) = 1

Renormalization scale µD amu d = 2

common/sm 4q/eta cc,eta ct,eta tt,eta b,bk sm,bd sm,bb sm(2)

BVLL
SM bd sm = 1

Details of calculations: Performed by authors, unpublished

5.7 B̄0
dB

0
d and B̄0

sB
0
s mass differences

Mixing and CP violation phenomena are also observed in the neutral B meson systems.

In particular, the mass differences in the B̄0
dB

0
d and B̄0

sB
0
s oscillations have been mea-

sured,

∆MBd(s)
= 2|〈B̄0

d(s)|H∆B=2
eff |B0

d(s)〉| . (41)

In addition to the MSSM parameters, theoretical calculations of ∆mBd
and ∆mBs

depend,

as for K and D oscillations, on the relevant hadronic matrix elements and QCD evolution

factors. The formulae for B̄0B0 mixing can be obtained by making the obvious replacements

in the formulae presented in Section 5.5. Currently SUSY FLAVOR uses the same set of Bi

factors for both the Bd and Bs sectors, but it leaves the possibility to distinguish between

them in future, if necessary. For this one needs to independently initialize the arrays

bb(1,i) (Bd meson hadronic matrix elements) and bb(2,i) (Bs meson hadronic matrix

elements) stored in common/bx 4q/.

The values of the B meson masses and coupling constants are the same as those listed in

Section 5.4. SUSY FLAVOR calculates the mass differences ∆MBd(s)
as defined by eq. (41):
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Routine subroutine dd bmeson(i,delta mb)

Input i = 1, 2 - generation index of the lighter valence quark in

the B0 meson, i.e. i = 2 chooses B0
s and i = 1 chooses B0

d .

Output delta mb = ∆mBd
for i = 1

delta mb = ∆mBs
for i = 2

QCD related factors:

common/meson data/dmk,amk,epsk,fk,dmd,amd,fd,amb(2),dmb(2),gam b(2),fb(2)

Measured ∆Mexp
Bd

dmb(1) = 3.01 · 10−13

Measured ∆Mexp
Bs

dmb(2) = 1.2 · 10−11

Measured width Γexp
Bd

gam b(1) = 1.53 · 10−12

Measured width Γexp
Bs

gam b(1) = 1.466 · 10−12

common/bx 4q/bk(5),bd(5),bb(2,5),amu k,amu d,amu b

BVLL
1 (µB) bb(1, 1) = bb(2, 1) = 0.87

BSLL
1 (µB) bb(1, 2) = bb(2, 2) = 0.8

BSLL
2 (µB) bb(1, 3) = bb(2, 3) = 0.71

BLR
1 (µB) bb(1, 4) = bb(2, 4) = 1.71

BLR
2 (µB) bb(1, 5) = bb(2, 5) = 1.16

Renormalization scale µB amu b = 4.6

common/sm 4q/eta cc,eta ct,eta tt,eta b,bk sm,bd sm,bb sm(2)

BVLL
SMBd

bb sm(1) = 1.22

BVLL
SMBs

bb sm(2) = 1.22

ηb eta b = 0.55

Details of calculations: Ref. [10]

5.8 B0 → Xsγ decay rate

Both the SUSY contributions and the QCD corrections to the calculation of the B0 → Xsγ

decay rate are quite complex. Their implementation in SUSY FLAVOR is based on the SUSY

loop calculations performed by the authors (not published in a general form) and on the

QCD evolution published in [57]. There are no user-accessible QCD factors apart from the

arguments of the bxg nl routine.

Routine double precision function bxg nl(del,amiu b)

Input del - relative photon energy infrared cutoff scale,

Eγ ≥ (1 − del)Emax
γ , 0 < del < 1

amiu b - renormalization scale

Output Br(B → Xsγ).

Details of calculations: General SUSY diagrams unpublished, QCD correc-

tions based on [57]
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6 Summary and Outlook

We have presented SUSY FLAVOR, a tool for calculating the set of important FCNC and CPV

observables in the general R-parity conserving MSSM. All implemented physical quantities

(listed in Table 1) can be calculated simultaneously for a given set of MSSM parameters.

The calculations of the SUSY particle spectrum and flavor mixing matrices are performed

exactly, so the code can be used for a completely general pattern of soft SUSY flavor

violating terms and complex phases, without restrictions on the size of sfermion mass

insertions.

Besides complete routines for calculating the physical observables, SUSY FLAVOR also pro-

vides an extensive library of parton-level Green’s functions and Wilson coefficients of many

effective quark and lepton operators (see Table 3). This set actually contains many more

functions than are necessary to compute the quantities listed in Table 1. These intermedi-

ate building blocks can be used by SUSY FLAVOR users to construct amplitudes for processes

beyond those already fully implemented by dressing appropriate combinations of available

form factors in QCD corrections and hadronic matrix elements, without repeating tedious

one-loop SUSY calculations from scratch. For instance, the form factors implemented in

SUSY FLAVOR for the analysis of B → Xsγ and Bd(s) → l+l− decays [3, 12] are sufficient to

also calculate the B → Kl+l− decay rate.

SUSY FLAVOR internally uses the conventions of Ref. [14], however in order to facilitate com-

parison with other programs that analyze various sectors of MSSM, we have implemented

an option to input parameters in the SLHA2 format [42].

SUSY FLAVOR has been written in FORTRAN 77 and runs fairly quickly; it is capable of

producing a reasonably wide-range scan over the MSSM parameters within hours or days

on a typical personal computer.

The SUSY FLAVOR library is an open project. We want to gradually add more features in

its future versions. In particular, we plan to:

• add more observables in the B-meson system, like the CP asymmetries in B̄B meson

mixing and in B → Xsγ decay, as well as observables associated with B → Kl+l−

decay.

• add observables for lepton flavor-violating processes like ℓJ → ℓIγ, ℓJ → ℓKℓLℓM , and

for the lepton anomalous magnetic moments, (g − 2)I

• include quantities related to FCNCs in the top sector, like t → cX with X =

γ, Z, g,H , in order to probe the flavor violation in up-squark mass matrices that

are (almost) unconstrained to this moment.

• implement full resummation of leading large tanβ effects beyond the MFV scenario.

With the increasing accuracy of experimental data on flavor and CP violation in rare
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processes, it may eventually become possible to not only constrain the MSSM parameters,

but also, if significant deviations from the SM predictions are found, to recover their actual

values. For that multi-process analysis, such as the one performed by SUSY FLAVOR, will be

necessary. Therefore, we hope that SUSY FLAVOR becomes an important tool that is useful

not only to theorists working on MSSM but also to experimentalists fitting the MSSM onto

forthcoming data from the Tevatron, LHC, and B-factories.
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A Installation of the program

The installation and execution of SUSY FLAVOR is very simple. On Unix or Linux systems,

just follow these steps :

1. Download the code from http://www.fuw.edu.pl/susy flavor and unpack it.

2. Change directory into susy flavor.

3. Edit Makefile and change F77 = gfortran and FOPT = -O -fno-automatic -Wall

into your compiler name and options, respectively.

4. Exit Makefile and type make (or gmake).

5. If everything go through the code will ask you whether to read the input file susy flavor.in

or to use the parameters defined inside the driver file.

6. To run the code from now on just type ./sflav.

The authors tested SUSY FLAVOR on Linux machines. With few straightforward modifi-

cations the procedure describe above can be adapted to install program on other sys-

tems.
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The output of the program is displayed on the screen. In addition a file named mssm data.txt

is created. It contains information about the MSSM Lagrangian parameters and the tree-

level mass spectrum corresponding to the input parameter set. A sample set of input param-

eters and corresponding SUSY FLAVOR output are listed in the following appendices.

B Example of the SUSY FLAVOR initialization sequence

Below we present the contents of susy flavor.f, the master driver file for the SUSY FLAVOR

library. The driver program illustrates the correct initialization sequence for all relevant

MSSM parameters (see Section 4) and shows how to perform calls to the routines calculating

physical observables (Section 5).

The driver file asks if the input parameters should be given directly inside the program or

read from the default input file named susy flavor.in (in this case skipping the values

given in the program). Defining the input parameters in the separate file is probably more

straightforward, but the ability to initialize parameters from within the program could be

more useful for performing multi-dimensional scans over the MSSM parameter space.

program susy flavor

implicit double precision (a-h,o-z)

dimension sll(3),slr(3),sql(3),squ(3),sqd(3)

double complex asl(3),asu(3),asd(3)

double complex slmi l(3),slmi r(3),slmi lr(3,3)

double complex sqmi l(3),sdmi r(3),sumi r(3)

double complex sdmi lr(3,3),sumi lr(3,3)

double complex amg,amgg,amue

common/sf cont/eps,indx(3,3),iconv

c decide if input parameters are read from file susy flavor.in or defined inside the program

write(*,’(a,$)’)’Read input from file susy flavor.in (no=1,yes=2)? ’

read(*,*) input type

if (input type.eq.2) then

call sflav input ! Parameters read from file susy flavor.in

goto 100

end if

c Parameters defined inside the code. Start from input convention choice

c iconv = 1 ! SLHA2 input conventions

iconv = 2 ! hep-ph/9511250 input conventions

c SM basic input initialization

zm0 = 91.1876d0 ! M Z

wm0 = 80.398d0 ! M W
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alpha z = 1/127.934d0 ! alpha em(M Z)

call vpar update(zm0,wm0,alpha z)

c QCD parameters

alpha s = 0.1172d0 ! alpha s(M Z)

call lam fit(alpha s) ! fits Lambda QCD at 3 loop level

call lam fit nlo(alpha s) ! fits Lambda QCD at NLO level

c CKM matrix initialization

alam = 0.2258d0 ! lambda

apar = 0.808d0 ! A

rhobar = 0.177d0 ! rho bar

etabar = 0.360d0 ! eta bar

call ckm wolf(alam,apar,rhobar,etabar)

c Fermion mass initialization, input: MSbar running quark masses

top scale = 163.2d0

top = 163.2d0 ! m t(top scale)

bot scale = 4.17d0

bot = 4.17d0 ! m b(bot scale)

call init fermion sector(top,top scale,bot,bot scale)

c Higgs sector parameters

pm = 200 ! M A

tanbe = 10 ! tan(beta)

amue = (200.d0,100.d0) ! mu parameter

call init higgs sector(pm,tanbe,amue,ierr)

if (ierr.ne.0) stop ’negative tree level Higgs mass2?’

c Gaugino sector parameters: if M1=0 set here then program uses M1 = 5s2W /3c2W M2

amgg = (0.d0,0.d0) ! M1 (bino mass, complex)

amg = (200.d0,0.d0) ! M2 (wino mass, complex)

amglu = 3*abs(amg) ! M3 (gluino mass)

call init ino sector(amgg,amg,amglu,amue,tanbe,ierr)

if (ierr.ne.0) write(*,*) ’-ino mass below M Z/2?’

c Slepton diagonal soft breaking parameters

sll(1) = 300.d0 ! left selectron mass scale

sll(2) = 300.d0 ! left smuon mass scale

sll(3) = 300.d0 ! left stau mass scale

slr(1) = 300.d0 ! right selectron mass scale

slr(2) = 300.d0 ! right smuon mass scale

slr(3) = 300.d0 ! right stau mass scale

c Dimensionless (normalized to masses) slepton diagonal LR mixing
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asl(1) = (1.d0,0.d0) ! 1st generation

asl(2) = (1.d0,0.d0) ! 2nd generation

asl(3) = (1.d0,0.d0) ! 3rd generation

c Slepton LL and RR mass insertions (hermitian matrices, only upper part given)

c slmi x(1),slmi x(2), slmi x(3) are 12,23,31 entry, respectively

do i=1,3

slmi l(i) = (0.d0,0.d0) ! slepton LL mass insertion

slmi r(i) = (0.d0,0.d0) ! slepton RR mass insertion

end do

slmi l(2) = (2.d-2,1.d-2) ! example, non-vanishing LL 23 entry

c Slepton LR mass insertions, non-hermitian in general

do i=1,3

do j=1,3

slmi lr(i,j) = (0.d0,0.d0) ! slepton LR ij mass insertion

end do

end do

c Calculate slepton physical masses and mixing angles

call init slepton sector(sll,slr,asl,ierr,slmi l,slmi r,slmi lr)

if (ierr.ne.0) stop ’negative tree level slepton mass2?’

c Squark diagonal soft breaking parameters

sql(1) = 500.d0 ! left squark mass, 1st generation

sql(2) = 500.d0 ! left squark mass, 2nd generation

sql(3) = 400.d0 ! left squark mass, 3rd generation

sqd(1) = 550.d0 ! right down squark mass

sqd(2) = 550.d0 ! right strange squark mass

sqd(3) = 300.d0 ! right sbottom mass

squ(1) = 450.d0 ! right up squark mass

squ(2) = 450.d0 ! right charm squark mass

squ(3) = 200.d0 ! right stop mass

c Dimensionless (normalized to masses) squark diagonal LR mixing

asd(1) = (1.d0,0.d0) ! down squark LR mixing, 1st generation

asd(2) = (1.d0,0.d0) ! down squark LR mixing, 2nd generation

asd(3) = (1.d0,0.d0) ! down squark LR mixing, 3rd generation

asu(1) = (1.d0,0.d0) ! up squark LR mixing, 1st generation

asu(2) = (1.d0,0.d0) ! up squark LR mixing, 2nd generation

asu(3) = (1.d0,0.d0) ! up squark LR mixing, 3rd generation

c Squark LL and RR mass insertions (hermitian matrices, only upper part given)

c sqmi l(1),sqmi l(2), sqmi l(3) are 12,23,31 entry, respectively, etc.

do i=1,3

sqmi l(i) = (0.d0,0.d0) ! squark LL mass insertion

sumi r(i) = (0.d0,0.d0) ! up-squark RR mass insertion

sdmi r(i) = (0.d0,0.d0) ! down-squark RR mass insertion

end do
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sqmi l(2) = (2.d-2,-1.d-2) ! example, non-vanishing LL 23 entry

c Squark LR mass insertions, non-hermitian in general

do i=1,3

do j=1,3

sumi lr(i,j) = (0.d0,0.d0) ! up-squark LR ij mass insertion

sdmi lr(i,j) = (0.d0,0.d0) ! down-squark LR ij mass insertion

end do

end do

c Calculate squark physical masses and mixing angles

call init squark sector(sql,squ,sqd,asu,asd,ierr,sqmi l,sumi r,

$ sdmi r,sumi lr,sdmi lr)

if (ierr.ne.0) stop ’negative tree level squark mass2?’

c reset status of physical Higgs mass after parameter changes

call reset phys data

c Neutral CP-even Higgs masses in the 1-loop Effective Potential Approximation.

c Only real mu, A t, A b allowed - replace x→abs(x)

call fcorr EPA(tanbe,pm,top,abs(amue),sql(3),sqd(3),squ(3),

$ abs(asd(3)),abs(asu(3)),ierr)

if (ierr.ne.0) stop ’negative 1-loop EPA CP-even Higgs mass2?’

100 continue !!! End of input section !!!

c Control output: Lagrangian parameters and tree level masses written on file mssm data.txt

ifl = 1 ! output file number

open(ifl,file=’mssm data.txt’,status=’unknown’)

call print MSSM par(ifl) ! Lagrangian parameters

call print MSSM masses(ifl) ! tree level physical masses

close(ifl)

c Results for implemented rare decays:

write(*,99)’Electric dipole moments:’

write(*,99)’Electron EDM = ’,edm l(1)

write(*,99)’Muon EDM = ’,edm l(2)

write(*,99)’Tau EDM = ’,edm l(3)

write(*,99)’Neutron EDM = ’,edm n()

write(*,99)’Neutrino K decays:’

call k pivv(br k0,br kp)

write(*,99)’BR(K0L → pi0 vv) = ’,br k0

write(*,99)’BR(K+ → pi+ vv) = ’,br kp

write(*,99)’Leptonic B decays:’

write(*,99)’BR(B d → mu+ mu−) = ’,b ll(3,1,2,2)

write(*,99)’BR(B s → mu+ mu−) = ’,b ll(3,2,2,2)
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write(*,99)’B→ X s photon decay:’

c Physical quantities for BR(B→X s g) calculation

delb = 0.99d0 ! Photon energy infrared cutoff

amiu b= 4.8d0 ! Renormalization scale miu b

write(*,99)’BR(B → X S gamma) = ’,bxg nl(delb,amiu b)

write(*,99)’KK mixing:’

call dd kaon(eps k,delta mk)

write(*,99)’eps K = ’,eps k

write(*,99)’Delta m K = ’,delta mk

write(*,99)’DD mixing:’

call uu dmeson(delta md)

write(*,99)’Delta m D = ’,delta md

write(*,99)’BB mixing:’

call dd bmeson(1,delta mbd)

write(*,99)’Delta m B d = ’,delta mbd

call dd bmeson(2,delta mbs)

write(*,99)’Delta m B s = ’,delta mbs

99 format(a,1pe11.4)

end

C Example of SUSY FLAVOR input file

By default, the driver file susy flavor.f reads input parameters from the file susy flavor.in.

Below we provide an example input file defining a set of parameters equivalent to those in
the driver file presented in Appendix B.

# Example input of SUSY FLAVOR in Les Houches Accord-like format

#

# CAUTION: users can modify numerical data in this file but they

# should not remove existing data lines within blocks SMINPUTS,

# VCKMIN, EXTPAR, MSL2IN, MSE2IN, MSQ2IN, MSU2IN, MSD2IN, TEIN, TUIN,

# TDIN, IMMSL2IN, IMMSE2IN, IMMSQ2IN, IMMSU2IN, IMMSD2IN, IMTEIN,

# IMTUIN, IMTDIN. New data lines in each block can be added but only

# after the already defined ones. Also, comment-only lines starting

# from # as a first character can be added only just after or before

# Block XXX statements, i.e. not between data lines. Otherwise

# SUSY FLAVOR input routine sflav input will denounce input file as
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# corrupted or read incorrect values.

#

# Full new data blocks can be added, sflav input will ignore them.

#

Block MODSEL # Select model

1 0 # General MSSM

3 0 # MSSM particle content

4 0 # R-parity conserving MSSM

5 2 # CP violated

6 3 # Lepton and quark flavor violated

Block SOFTINP # Choose convention for the soft terms

# convention = 1:

# sfermion input parameters in SLHA2 conventions

# convention = 2:

# sfermion input parameters in conventions of hep-ph/9511250

# input type = 1:

# sfermion off-diagonal terms given as dimensionless mass insertions

# LR diagonal terms given as dimensionless parameters

# input type = 2:

# sfermion soft terms given as absolute values

# See comment in Blocks MSXIN2, TXIN below

1 2 # sfermion convention, SLHA2 or hep-ph/9511250

2 1 # input type (dimension of soft mass entries)

Block SMINPUTS # Standard Model inputs

1 1.279340000e+02 # alpha−1 SM MSbar(MZ)

3 1.172000000e-01 # alpha s(MZ) SM MSbar

4 9.118760000e+01 # MZ(pole)

5 4.170000000e+00 # mb(mb) SM MSbar

6 1.632000000e+02 # mtop(mt) SM MSbar

7 1.777000000e+00 # mtau(pole)

11 5.110000000e-04 # me(pole)

13 1.056590000e-01 # mmu(pole)

21 7.000000000e-03 # md(2 GeV) MSbar

22 4.000000000e-03 # mu(2 GeV) MSbar

23 1.100000000e-01 # ms(2 GeV) MSbar

24 1.279000000e+00 # mc(mc) MSbar

30 8.039800000e+01 # MW (pole), not standard SLHA2 entry!!!

Block VCKMIN # CKM matrix

1 2.258000000e-01 # lambda

2 8.080000000e-01 # A

3 1.770000000e-01 # rho bar

4 3.600000000e-01 # eta bar

Block EXTPAR # non-minimal input parameters, real part

1 0.000000000e+02 # Re(m1), U(1) gaugino mass
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2 2.000000000e+02 # Re(m2), SU(2) gaugino mass

3 6.000000000e+02 # m3, SU(3) gaugino mass

23 2.000000000e+02 # Re(mu)

25 1.000000000e+01 # tan(beta)

26 2.000000000e+02 # MA

Block IMEXTPAR # non-minimal input parameters, imaginary part

1 0.000000000e+00 # Im(m1), U(1) gaugino mass

2 0.000000000e+00 # Im(m2), SU(2) gaugino mass

23 1.000000000e+02 # Im(mu)

# if abs(m1) = 0 SUSY FLAVOR uses m1=5/3 s W2/c W2 m2

#

# Soft sfermion mass matrices

#

# Off-diagonal entries may be given as absolute entries or as

# dimensionless mass insertions - then real off-diagonal entries of

# SLHA2 blocks are calculated by SUSY FLAVOUR as

# M2(I,J) = (mass insertion)(I,J) sqrt(M2(I,I) M2(J,J))

# (see comments at the top of subroutine sflav input)

#

# Below we give an example of dimensionless off-diagonal entries

#

Block MSL2IN # left soft slepton mass matrix, real part

1 1 9.000000000e+04 # Left slepton diagonal mass2, 1st generation

2 2 9.000000000e+04 # Left slepton diagonal mass2, 2nd generation

3 3 9.000000000e+04 # Left slepton diagonal mass2, 3rd generation

1 2 0.000000000e+00 # Dimensionless left slepton mass insertion 12

2 3 2.000000000e-02 # Dimensionless left slepton mass insertion 23

1 3 0.000000000e+00 # Dimensionless left slepton mass insertion 13

Block IMMSL2IN # left soft slepton mass matrix, imaginary part

1 2 0.000000000e+00 # Dimensionless left slepton mass insertion 12

2 3 1.000000000e-02 # Dimensionless left slepton mass insertion 23

1 3 0.000000000e+00 # Dimensionless left slepton mass insertion 13

Block MSE2IN # right soft slepton mass matrix, real part

1 1 9.000000000e+04 # Right selectron diagonal mass2

2 2 9.000000000e+04 # Right smuon diagonal mass2

3 3 9.000000000e+04 # Right stau diagonal mass2

1 2 0.000000000e+00 # Dimensionless right slepton mass insertion 12

2 3 0.000000000e+00 # Dimensionless right slepton mass insertion 23

1 3 0.000000000e+00 # Dimensionless right slepton mass insertion 13

Block IMMSE2IN # right soft slepton mass matrix, imaginary part

1 2 0.000000000e+00 # Dimensionless right slepton mass insertion 12

2 3 0.000000000e+00 # Dimensionless right slepton mass insertion 23

1 3 0.000000000e+00 # Dimensionless right slepton mass insertion 13

Block MSQ2IN # left soft squark mass matrix, real part
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1 1 2.500000000e+05 # Left squark diagonal mass2, 1st generation

2 2 2.500000000e+05 # Left squark diagonal mass2, 2nd generation

3 3 1.600000000e+05 # Left squark diagonal mass2, 3rd generation

1 2 0.000000000e+00 # Dimensionless left squark mass insertion 12

2 3 2.000000000e-02 # Dimensionless left squark mass insertion 23

1 3 0.000000000e+00 # Dimensionless left squark mass insertion 13

Block IMMSQ2IN # left soft squark mass matrix, imaginary part

1 2 0.000000000e+00 # Dimensionless left squark mass insertion 12

2 3 -1.000000000e-02 # Dimensionless left squark mass insertion 23

1 3 0.000000000e+00 # Dimensionless left squark mass insertion 13

Block MSU2IN # right soft up-squark mass matrix, real part

1 1 2.025000000e+05 # Right u-squark diagonal mass2

2 2 2.025000000e+05 # Right c-squark diagonal mass2

3 3 4.000000000e+04 # Right stop diagonal mass2

1 2 0.000000000e+00 # Dimensionless right up-squark mass insertion 12

2 3 0.000000000e+00 # Dimensionless right up-squark mass insertion 23

1 3 0.000000000e+00 # Dimensionless right up-squark mass insertion 13

Block IMMSU2IN # right soft up-squark mass matrix, imaginary part

1 2 0.000000000e+00 # Dimensionless right up-squark mass insertion 12

2 3 0.000000000e+00 # Dimensionless right up-squark mass insertion 23

1 3 0.000000000e+00 # Dimensionless right up-squark mass insertion 13

Block MSD2IN # right soft down-squark mass matrix, real part

1 1 3.025000000e+05 # Right d-squark diagonal mass2

2 2 3.025000000e+05 # Right s-squark diagonal mass2

3 3 9.000000000e+04 # Right sbottom diagonal mass2

1 2 0.000000000e+00 # Dimensionless right down-squark mass insertion 12

2 3 0.000000000e+00 # Dimensionless right down-squark mass insertion 23

1 3 0.000000000e+00 # Dimensionless right down-squark mass insertion 13

Block IMMSD2IN # right soft down-squark mass matrix, imaginary part

1 2 0.000000000e+00 # Dimensionless right down-squark mass insertion 12

2 3 0.000000000e+00 # Dimensionless right down-squark mass insertion 23

1 3 0.000000000e+00 # Dimensionless right down-squark mass insertion 13

#

# Soft sfermion trilinear mixing matrices

#

# LR mixing parameters can be given as absolute entries or as

# dimensionless diagonal A-terms and dimensionless ff-diagonal mass

# insertions - see comments at the top of subroutine sflav input

#

# Below we give an example of dimensionless A terms.

#

# Diagonal entries below are dimensionless "A parameters"

# Diagonal entries of SLHA2 LR blocks are calculated by SUSY FLAVOUR as

# TL(I,I) = AL(I,I) Yukawa L(I) sqrt(ML2(I,I)*ME2(I,I))
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# TU(I,I) = AU(I,I) Yukawa U(I) sqrt(MQ2(I,I)*MU2(I,I))

# TD(I,I) = AD(I,I) Yukawa D(I) sqrt(MQ2(I,I)*MD2(I,I))

#

# Off-diagonal entries are dimensionless "mass insertions"

# Off-diagonal entries of SLHA2 LR blocks are calculated by SUSY FLAVOUR as

#

# TL(I,J) = AL(I,J) sqrt(2 ML2(I,I)*ME2(J,J))/v1

# TU(I,J) = AU(I,J) sqrt(2 MQ2(I,I)*MU2(J,J))/v2

# TD(I,J) = AD(I,J) sqrt(2 MQ2(I,I)*MD2(J,J))/v1

#

Block TEIN # slepton trilinear mixing, dimensionless, real part

1 1 1.000000000e+00 # Diagonal AL term, 1st generation

2 2 1.000000000e+00 # Diagonal AL term, 2nd generation

3 3 1.000000000e+00 # Diagonal AL term, 3rd generation

1 2 0.000000000e+00 # Slepton LR mass insertion 12

2 1 0.000000000e+00 # Slepton LR mass insertion 21

2 3 0.000000000e+00 # Slepton LR mass insertion 23

3 2 0.000000000e+00 # Slepton LR mass insertion 32

1 3 0.000000000e+00 # Slepton LR mass insertion 13

3 1 0.000000000e+00 # Slepton LR mass insertion 31

Block IMTEIN # slepton trilinear mixing, dimensionless, imag. part

1 1 0.000000000e+00 # Diagonal AL term, 1st generation

2 2 0.000000000e+00 # Diagonal AL term, 2nd generation

3 3 0.000000000e+00 # Diagonal AL term, 3rd generation

1 2 0.000000000e+00 # Slepton LR mass insertion 12

2 1 0.000000000e+00 # Slepton LR mass insertion 21

2 3 0.000000000e+00 # Slepton LR mass insertion 23

3 2 0.000000000e+00 # Slepton LR mass insertion 32

1 3 0.000000000e+00 # Slepton LR mass insertion 13

3 1 0.000000000e+00 # Slepton LR mass insertion 31

Block TUIN # up-squark trilinear mixing, dimensionless, real part

1 1 1.000000000e+00 # Diagonal AU term, 1st generation

2 2 1.000000000e+00 # Diagonal AU term, 2nd generation

3 3 1.000000000e+00 # Diagonal AU term, 3rd generation

1 2 0.000000000e+00 # Up-squark LR mass insertion 12

2 1 0.000000000e+00 # Up-squark LR mass insertion 21

2 3 0.000000000e+00 # Up-squark LR mass insertion 23

3 2 0.000000000e+00 # Up-squark LR mass insertion 32

1 3 0.000000000e+00 # Up-squark LR mass insertion 13

3 1 0.000000000e+00 # Up-squark LR mass insertion 31

Block IMTUIN # up-squark trilinear mixing, dimensionless, imag. part

1 1 0.000000000e+00 # Diagonal AU term, 1st generation

2 2 0.000000000e+00 # Diagonal AU term, 2nd generation

3 3 0.000000000e+00 # Diagonal AU term, 3rd generation
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1 2 0.000000000e+00 # Up-squark LR mass insertion 12

2 1 0.000000000e+00 # Up-squark LR mass insertion 21

2 3 0.000000000e+00 # Up-squark LR mass insertion 23

3 2 0.000000000e+00 # Up-squark LR mass insertion 32

1 3 0.000000000e+00 # Up-squark LR mass insertion 13

3 1 0.000000000e+00 # Up-squark LR mass insertion 31

Block TDIN # down-squark trilinear mixing, dimensionless, real part

1 1 1.000000000e+00 # Diagonal AD term, 1st generation

2 2 1.000000000e+00 # Diagonal AD term, 2nd generation

3 3 1.000000000e+00 # Diagonal AD term, 3rd generation

1 2 0.000000000e+00 # Down-squark LR mass insertion 12

2 1 0.000000000e+00 # Down-squark LR mass insertion 21

2 3 0.000000000e+00 # Down-squark LR mass insertion 23

3 2 0.000000000e+00 # Down-squark LR mass insertion 32

1 3 0.000000000e+00 # Down-squark LR mass insertion 13

3 1 0.000000000e+00 # Down-squark LR mass insertion 31

Block IMTDIN # down-squark trilinear mixing, dimensionless, imag. part

1 1 0.000000000e+00 # Diagonal AD term, 1st generation

2 2 0.000000000e+00 # Diagonal AD term, 2nd generation

3 3 0.000000000e+00 # Diagonal AD term, 3rd generation

1 2 0.000000000e+00 # Down-squark LR mass insertion 12

2 1 0.000000000e+00 # Down-squark LR mass insertion 21

2 3 0.000000000e+00 # Down-squark LR mass insertion 23

3 2 0.000000000e+00 # Down-squark LR mass insertion 32

1 3 0.000000000e+00 # Down-squark LR mass insertion 13

3 1 0.000000000e+00 # Down-squark LR mass insertion 31

D Example of SUSY FLAVOR output

The parameters defined inside the driver program in Appendix B and in the input file listed

in Appendix C should produce identical output. We enclose it here so that SUSY FLAVOR

users can check that the program gives the same result on their own computers and FOR-

TRAN compilers.

The driver file susy flavor.f writes the MSSM Lagrangian parameters and tree-level
particle masses to the file mssm data.txt. For the parameters defined in Appendices B
and C one has:

******* MSSM Lagrangian parameters *******

QED coupling 1/alpha em(M Z) = 1.2793E+02

Weinberg angle s W2 = 2.2265E-01

Z boson mass = 9.1188E+01
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W boson mass = 8.0398E+01

QCD coupling alpha s(M Z) = 1.1720E-01

Higgs mixing parameter mu (complex) = 2.0000E+02 1.0000E+02

Higgs soft mixing parameter m212 = -3.9604E+03

Higgs soft masses m2H1
,m2H2

= -6.3208E+03 -5.3679E+04

U(1) gaugino mass (complex) = 9.5472E+01 0.0000E+00

SU(2) gaugino mass (complex) = 2.0000E+02 0.0000E+00

SU(3) gaugino mass (real) = 6.0000E+02

Left slepton mass matrix, real part:

9.00009E+04 0.00000E+00 0.00000E+00

0.00000E+00 9.00018E+04 1.80004E+03

0.00000E+00 1.80004E+03 9.00027E+04

Left slepton mass matrix, imaginary part:

0.00000E+00 0.00000E+00 0.00000E+00

-0.00000E+00 0.00000E+00 9.00022E+02

-0.00000E+00 -9.00022E+02 0.00000E+00

Right slepton mass matrix, real part:

8.99991E+04 0.00000E+00 0.00000E+00

0.00000E+00 8.99982E+04 0.00000E+00

0.00000E+00 0.00000E+00 8.99973E+04

Right slepton mass matrix, imaginary part:

0.00000E+00 0.00000E+00 0.00000E+00

0.00000E+00 0.00000E+00 0.00000E+00

0.00000E+00 0.00000E+00 0.00000E+00

Slepton LR mixing matrix, real part:

-9.00010E-03 0.00000E+00 0.00000E+00

0.00000E+00 -1.86094E+00 0.00000E+00

0.00000E+00 0.00000E+00 -3.12978E+01

Slepton LR mixing matrix, imaginary part:

0.00000E+00 0.00000E+00 0.00000E+00

0.00000E+00 0.00000E+00 0.00000E+00

0.00000E+00 0.00000E+00 0.00000E+00

Left squark mass matrix, real part:

2.50003E+05 0.00000E+00 0.00000E+00

0.00000E+00 2.50005E+05 4.00010E+03

0.00000E+00 4.00010E+03 1.60005E+05

Left squark mass matrix, imaginary part:

0.00000E+00 0.00000E+00 0.00000E+00
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0.00000E+00 0.00000E+00 -2.00005E+03

0.00000E+00 2.00005E+03 0.00000E+00

Right up-squark mass matrix, real part:

2.02498E+05 0.00000E+00 0.00000E+00

0.00000E+00 2.02496E+05 0.00000E+00

0.00000E+00 0.00000E+00 3.99988E+04

Right up-squark mass matrix, imaginary part:

0.00000E+00 0.00000E+00 0.00000E+00

0.00000E+00 0.00000E+00 0.00000E+00

0.00000E+00 0.00000E+00 0.00000E+00

Right down-squark mass matrix, real part:

3.02497E+05 0.00000E+00 0.00000E+00

0.00000E+00 3.02494E+05 0.00000E+00

0.00000E+00 0.00000E+00 8.99973E+04

Right down-squark mass matrix, imaginary part:

0.00000E+00 0.00000E+00 0.00000E+00

0.00000E+00 0.00000E+00 0.00000E+00

0.00000E+00 0.00000E+00 0.00000E+00

Up-squark LR mixing matrix, real part:

6.18168E-03 0.00000E+00 0.00000E+00

0.00000E+00 1.79332E+00 0.00000E+00

0.00000E+00 0.00000E+00 2.71002E+02

Up-squark LR mixing matrix, imaginary part:

0.00000E+00 0.00000E+00 0.00000E+00

0.00000E+00 0.00000E+00 0.00000E+00

0.00000E+00 0.00000E+00 0.00000E+00

Down-squark LR mixing matrix, real part:

-1.19597E-01 0.00000E+00 0.00000E+00

0.00000E+00 -1.87938E+00 0.00000E+00

0.00000E+00 0.00000E+00 -5.56628E+01

Down-squark LR mixing matrix, imaginary part:

0.00000E+00 0.00000E+00 0.00000E+00

0.00000E+00 0.00000E+00 0.00000E+00

0.00000E+00 0.00000E+00 0.00000E+00

****** Particle masses in GeV: *******

* Fermion masses **

Charged lepton masses 5.110E-04 1.057E-01 1.777E+00

Running u quark masses at mt scale 2.220E-03 6.440E-01 1.632E+02

Running d quark masses at mt scale 3.885E-03 6.104E-02 2.737E+00
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* Higgs masses **

Tree level (H,h,A,H+): 2.010E+02 8.893E+01 2.000E+02 2.156E+02

1-loop, EPA approximation (H,h): 2.005E+02 1.137E+02

* Tree level SUSY masses **

Sneutrino masses 2.897E+02 2.931E+02 2.965E+02

Slepton masses 2.953E+02 3.028E+02 3.030E+02 3.037E+02 3.038E+02 3.114E+02

U squark masses 2.178E+02 4.486E+02 4.487E+02 4.489E+02 4.971E+02 4.974E+02

D squark masses 2.999E+02 4.049E+02 5.035E+02 5.037E+02 5.505E+02 5.505E+02

Chargino masses 1.552E+02 2.808E+02

Neutralino masses 8.865E+01 1.584E+02 2.322E+02 2.808E+02

Gluino mass 6.000E+02

The output for the physical observables is printed on the standard output, usually the

computer screen of the console. It should look like:

Electric dipole moments:

Electron EDM = 4.7256E-25

Muon EDM = 9.7726E-23

Tau EDM = 1.6425E-21

Neutron EDM = 5.9331E-24

Neutrino K decays:

BR(K L0 -> pi0 vv) = 2.8555E-11

BR(K+ -> pi+ vv) = 7.3932E-11

Leptonic B decays:

BR(B d -> mu+ mu−) = 1.2012E-10

BR(B s -> mu+ mu−) = 4.7395E-09

B -> X s photon decay:

BR(B -> X s gamma) = 2.5756E-04

KK mixing:

eps K = 2.3366E-03

Delta m K = 2.4362E-15

DD mixing:

Delta m D = 1.6656E-17

BB mixing:

Delta m B d = 3.6999E-13

Delta m B s = 1.3242E-11
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