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Abstract. This paper introduces a novel vision for further enhanced Internet of 
Things services. Based on a variety of data (such as location data, ontology-
backed search queries, in- and outdoor conditions) the Prometheus framework is 
intended to support users with helpful recommendations and information preced-
ing a search for context-aware data. Adapted from artificial intelligence concepts, 
Prometheus proposes user-readjusted answers on umpteen conditions. A number 
of potential Prometheus framework applications are illustrated. Added value and 
possible future studies are discussed in the conclusion. 

1 Introduction and related work 

In the epigrammatic triumphant history of the Internet, first the World Wide 
Web was created as a CERN-project initiated by Timothy Berners-Lee. In the ear-
ly Web, retrospectively referred to as Web 1.0, a small number of so-called infor-
mation producers published their insights as a collection of static HTML pages 
and a great mass of consumers was opposed to these insights.  

In the late 90s DiNucci first mentioned the term Web 2.0 and thus caused the 
advent of a new slogan. Afterwards O�’Reilly declared that Web 2.0 technically did 
not differ from the earlier Web 1.0. In contrast to static expert-generated content, 
interactive elements are crucial in Web 2.0. Ever since the first use of the term 
Web 2.0 Berners-Lee deplored it as a marketing buzzword. He tried instead to ad-
vertise his future visions of the WWW with his ideas about the Semantic Web. 
The Semantic Web is an emerging development of the Internet in which not only 
the meaning or semantics of information is defined but also services on the Web, 
making it possible for machines to understand and satisfy the requests of both 
people and machines. Because of the enhancement to a machine-understandable 
Internet, the Semantic Web is sometimes called Web 3.0. Berners-Lee specified 
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the Semantic Web as a component of Web 3.0. 
In fall 2009, O�’Reilly and Battele went further deeper by defining another up-

coming buzzword �“Web Squared�” where the Web no longer is a collection of stat-
ic pages that describe something in the world. Instead they outline in [O�’Reilly 
and Battelle 2009] the Internet of Things. The Internet of Things exemplifies ubi-
quitous computing and �“things that think�”. It describes a form of physical compu-
ting and is a non-deterministic, open network in which self-organized or intelli-
gent entities will be interoperable and able to act independently �– pursuing their 
own or shared objectives �– depending on the context, circumstances or environ-
ment as described in [IoT Summary 2005]. 

These networks are delineated as ubiquitous computing models, which are 
post-desktop models of human-computer interaction, considered as an advance-
ment from the desktop paradigm. However, when Web meets the world the vast 
data produced are mostly stored or provided in an unstructured way distributed on 
different systems; globally considered. An important case in ubiquitous computing 
for this reason is to find relevant information. 

To find context relevant information in connection to real-world human-settled-
environment services, processes and systems become more crucial. A viable way 
to improve existing searches and to approach a universal Semantic Web (that is 
virtual Internet together with the real Internet of Things) is to teach the Web based 
on an automatically built ontology the meaning of real world parameter values. 
Additionally machine learning, a scientific discipline that is concerned with the 
design and development of algorithms, can be used to learn based on sensor and/or 
Internet data as Bishop elucidates in [Bishop 2008]. After Kasabov approaches to 
ML are expert systems whereby �“an expert system is a program that can provide 
expertise for solving problems in a defined application area in the way the experts 
do�” as explained in [Kasabov 1996]. 

To present expert-system-based real-time information in a clever way and to 
force the users to interact with the information, real and virtual worlds can melt in-
to a new augmented reality. Thus augmented reality can be considered as an event 
of ubiquitous computing where virtual computer-generated symbolisms are supe-
rimposed into physical real-world environments, creating a mixed reality as Azu-
ma et al. explain in [Azuma et al. 2001]. 

In Greek mythology, Prometheus (Ancient Greek for forethought) was a cham-
pion of humankind known for his intellect. He is said to be the benefactor of cul-
ture and the great instructor of all human beings. The ambitious project�’s goal, 
named after this transcendent ideal, is to offer the human race further techniques 
to master their human duties and responsibilities in an easier way by pooling vir-
tual and real world aspects. 



 

2 Applications of Fuzzy Sets Theory 

This section aims to introduce some concepts of fuzziness which deals with vague 
reasoning. To emphasize the benefits that fuzziness brings to artificial intelligence 
the first section 2.1 brings the affinity of human thinking and fuzziness in. Section 
2.2 introduces fuzzy set theory and classification and section 2.3 fuzzy expert sys-
tems. 

2.1 Fuzziness and the Human Factor 

Mentioned in [Zadeh 1965] inter alia, fuzzy logic �– a particular type of multi-
valued logic emerged as a corollary of Zadeh�’s proposition of fuzzy set theory�—
follows the way humans think and helps to better handle real world facts, since 
human reasoning is undichotomic, contrasting computers, where all is either true 
(1) or false (0). It deals with haziness and the conceptions are polysemous in terms 
of that they cannot be sharply defined. Fuzzy logic brings imprecise human facts 
over to accurate mathematical models.  
While variables in mathematics usually take numerical results, in fuzzy logic, the 
non-numeric linguistic variables are often used to cultivate the locution of rules 
and facts. A linguistic variable such as �“size�” can have a value just like �‘tall�’ or its 
antonym �‘short�’. However, the great utility of linguistic variables is that they can 
be modified through linguistic transformation which can be associated with given 
functions. The question whether a person is �‘tall�’ cannot be unmistakably ans-
wered, because it is not possible to clearly state if a person is �‘tall�’. An answer 
may depend on individual cognition and further for the individual itself it may 
even not be feasible to give a strict answer for the simple reason that belonging to 
a set (e.g. size) is often not sharp but fuzzy, involving a partial matching expressed 
in the natural language by the expressions �‘quite�’, �‘slightly�’, �‘more or less�’, etc. 

Figure 1 shows a tender varying curved line that passes gently from �‘not-tall�’ to 
�‘tall�’. Therefore this line stipulates the transition of the linguistic variable �“size�”. 
Both people are �‘tall�’ to some degree (as both people are �‘short�’ to some degree) 
but the female is significantly �‘less tall�’ than the male. The vertical axis is an in-
dex reputed with the membership value between 0 and 1; the curve is noted as 
membership function. 

2.2 Introduction to fuzzy set theory and classification 

Fuzzy sets are an extension of the classical sets and incorporate special member-
ship levels. In classical set theory, the membership of elements in a set is assessed 
in binary terms according to a two-valued condition; an element either belongs or 
doesn�’t belong to the set. By contrast, fuzzy set theory permits the gradual as-



 

sessment of the membership of elements in a set; this is described by dint of a 
membership function valued in the real unit interval [0..1]. Therefore fuzzy sets 
generalize classical crisp sets, since the indicator functions of classical sets are 
special cases of the membership functions of fuzzy sets. 
 

 
Fig. 1 The fuzzy height set illustrate the continuous membership function for the linguistic vari-

able �‘tall�’ 

Fuzzy classification is an upgrading of traditional classification; equally fuzzy 
sets extend classical sets. The term classification describes the way of clumping 
elements into clusters, so that elements in the same cluster are as identical as poss-
ible, and elements in different clusters are as diverse as possible. In sharp classifi-
cation each element is associated with just one cluster; as a result the belonging of 
the elements to clusters are reciprocal and exclusive. On the other hand fuzzy clas-
sification allows elements to belong to several clusters at the same time; and again 
like fuzzy sets, each element has a membership degree which reveals how far it 
belongs to the various clusters. Thereto fuzzy clustering algorithms allow the 
modeling of uncertainty associated with vagueness and imprecision and putting 
this into mathematical equations as described in [Portmann and Meier 2010]. In 
general fuzzy clustering algorithms a fuzzy cluster is represented by a representa-
tive element (typically the cluster centre) and the membership degree of an ele-
ment to the cluster is decreasing with increasing distance to the cluster centre. 

To minimize elements with a small distance to the cluster it should be assigned 
a high membership level whereas elements with larger distances should have low 
membership levels. A clustering algorithm begins with a random initialization and 
updates the membership levels and the prototype in an iterative procedure. 

 
 



 

2.3 Fuzzy Expert Systems 

Expert systems (introduced by Feigenbaum) are prolific examples within the 
wide scope of artificial intelligence as in [Russell and Norvig 2003] explained. 
Expert systems are knowledge-driven systems that can form conclusions based on 
knowledge on a particular field. The knowledge is represented by 'if-then' rules. 
By applying consequences on the stated rules, expert systems may deduce optimal 
decisions. 

The major challenge is to commute the knowledge of subject matter experts in-
to 'if-then' rules which are as exact as possible even given that the human repre-
sentation of the knowledge cannot be well-defined determined. This downside is 
hurdled by usher fuzzy rules as exemplified in [Grekovs 2002]. 

Fuzzy rules are a collection of linguistic statements that describe how to make a 
decision regarding classifying an input or controlling an output: 

 
if  (p1 is µ ) ^ (p2 is µ ) ^ (�…) 

i1p j2p

then  (c is µ ); 
kc

where  is a membership function 
 i,j,k  
 p is a preposition 
 c is a conclusion 

Or more exemplarily: 
if  (input1 is membership function1)  
and/or   (input2 is membership function2)  
and/or   (�….) 
then  (outputn is output membership functionn) 

Consider the following rule for instance: 
if  person is short  
and  weight is high  
then  person is overweight 

 
There would have to be membership functions that define what we mean by 

�‘short persons�’ (input1), �‘high weight�’ (input2) and �‘overweight�’ (output1).  
The process of taking an input such as �“size�” and processing it through a mem-

bership function to decide what �‘short�’ means is stated fuzzification. The principle 
at that is once more to map the inputs from a set to values [0..1] using a set of in-
put membership functions. 

Thus fuzzy expert systems are usually involved when processes cannot be de-
scribed by exact algorithms or when these processes are difficult to model with 
conventional mathematical models. 



 

3 Challenges and Related Components 

This section intends to introduce the faced challenges and their related compo-
nents. Section 3.1 clarifies fundamental challenges to be outgrown in the Internet 
of Things applications. Section 3.2 highlights the semantic homes and environ-
ments. Section 3.3 discusses necessary sensing and data provision infrastructure. 

3.1 Fundamental challenges 

Coming to a new unknown public place like a railway or underground station, 
airport, hospital, mall, industrial facility, corporate office, university campus all of 
us can remember trying to quickly find the right location, information desk, direc-
tional hint and other service availability information. Environments with quickly 
changing geophysical parameters like hospitals, care houses, logistic units, mili-
tary and production line facilities are other problematic control domains. 

Static information assistance systems related to mass produced products be-
came a reality by the introduction of bar codes. Using modern data gathering tech-
nologies like RFID, NFC and WSN, it is possible and rational to associate various 
real-world entities with personalized dynamic content from weblogs, social net-
works, folksonomies, news feeds, location and condition tracking systems and so 
forth. 

Semantically relevant suggestions to recognized intentions can be delivered to 
the user in many ways, starting from simple visualization hints, to enhanced hu-
man-machine interface influences directly on human action as in [Stapelkamp 
2007; Sears and Jacko 2007] illustrated. Embedded devices for implementation of 
such systems will vary from the everyday smart phone to newly developed aug-
mented reality systems. 

3.2 Semantic spaces: home and environment 

According to scientific studies, the average urban human spends about 80 to 
90% of his time indoors. Buildings, houses, public places, industrial and military 
facilities, and even private and/or public transportation allow mankind to penetrate 
into all of our planet�’s places despite a variety of external conditions. The main 
indoor environment metagoals of security, safety, comfort and energy-efficiency 
have been implied since the very beginning of civilization. However, the ap-
proaches to pursue them are mainly restricted by the technological level available. 
The Internet technologies are increasingly and widely distributed today, giving us 
an opportunity to consider, evaluate, process and optimize the semantics behind 
previously developed indoor service data and information. The semantic home and 
environment is the concept of �“thinking ambient intelligence�” that is aware of its 



 

inhabitants (i.e. humans, animals, robots and smart objects). The extension of pre-
viously developed services to include semantically defined raw data and processed 
information lets emerging semantic-aware systems form (better) deductions about 
occurring events that affect the inhabitants. The use of multi-modal analysis of 
real-world sensor data and information from local and remote sites of interest is 
one important but challenging requirement to deducing the meaning behind these 
events. The deductive process is not trivial. Human actions, behaviors, habits, 
thoughts, intentions, emotions and health conditions are the key factors that have 
to be considered while tackling semantic home and environment systems, since 
they define event context. Context awareness is a fundamental component for in-
formational assistance and intelligent environment behavior systems, on one hand 
requiring constant intelligence rule updates as in [Driver et al. 2007] illustrated. 
On the other hand the replayed scenarios are usually accompanied by a certain 
precondition sets such as: time, location, nearby resources, nearby inhabitants, ac-
tion sequence, general sensory conditions such as weather, network status, service 
status, and others; that help in the deduction of context. 

Looking from the conceptual point of view, true informational assistance is 
hardly imaginable without bijectional correspondence between real world and the 
informational model of reality. Hence, bidirectional communication methods be-
tween chip-enabled real physical objects and their informational copy are another 
necessary component of the ambient intelligence needed here. Following the re-
quirements, the concepts of the Internet of Things have recently made an impres-
sive step towards implementing the one-to-one world-to-model paradigm.  

3.3 Sensing Infrastructure and Data Provision 

The sensing infrastructure plays an important role in the provision of input data 
and processed information. Sensing infrastructures have variable complexity de-
pending on the building or environment that they are installed in. For example, 
within a large building the data travels from disparate sensor platforms within the 
individual or linked buildings of different domains and authorities that were in-
stalled at different times by different vendors, with several grades of access rights 
and network isolation challenges to be considered along the way, via parallel sub-
networks within the same building or environment. Sensing devices across the dif-
ferent networks vary in design sophistication in terms of connectivity, memory, 
mobility, energy budget and processing power; the extraction of data symbols 
from devices with various capabilities often incurs practical difficulties. In terms 
of sophistication, there are many simple battery-powered wireless devices that can 
be placed around a location to broadcast the current environmental condition at a 
periodic rate without local storage, but only few devices are designed with costly 
but powerful mechanisms for processing data locally, adapting their filters for noi-
sy raw data, or supporting some query processing system for requesting data from 
a declarative database that is on the sensor node. Examples of sensor data spans 



 

across multiple domains: classical physics measurements and area measurements 
for ambient light, presence, temperature, infrared, absolute and relative humidity, 
strain; building automation data, current and voltage measurement, state of a 
switch or dimmer for light or blinds, smoke and fire detection system status, alarm 
and perimeter security status, audio-video feeds, thermostat value and setting, cur-
rent weather conditions including barometric pressure and wind speed, location in 
localization system; industrial applications in machine health and resource plant 
monitoring; network availability and load of server and infrastructure systems, 
network security status and important changes; active and passive radio-frequency 
identification nodes and tag data; and many other specialized sensors and also ac-
tuators built for specific tasks. 

For less sophisticated sensor devices, the data is not stored locally, but is in-
stead transmitted across the network to a central collection point, whereas more 
sophisticated devices can store a considerable number of data points locally. The 
tradeoff of sophistication balances the cost of low-processing easy-to-move bat-
tery-powered devices capable to run for several sequential years against those of 
more sophisticated processing nodes that can be directly queried. Less sophisti-
cated sensors can also use simpler, more optimized and occasionally less standar-
dized protocols by comparison to more widespread and complex protocols such as 
IPv6 that allow higher interactivity in more sophisticated nodes; herein there is a 
challenge mitigated by an intermediary that translates the traffic to a more sophis-
ticated protocol or stores it directly at a collection point of the particular sensing 
platform. These intermediate processing layers may make fuller use of individual 
sensor functionality than an abstraction layer does when trying to gather data 
through various application-level and lower protocols. There are two challenges 
here: to provide robustness for lost and noisy raw data and to expose the data in a 
way useful to information consumers. Services can expose the data in a sensing in-
frastructure such that a client may quickly and directly make a query with respect 
to a variety of contextual conditions (with heavy weight placed on location) pro-
vided by the client on what appears as one contiguous data unit, without the chal-
lenge associated with slowly querying and aggregating data from disparate sensors 
across the location. 

Data collected into one or more query-able stores or a distributed database must 
be represented as data views for both public guests and elevated-privilege securi-
ty-maintenance end-user clients in a standardized way that the client expects, such 
as using XML and other Web 2.0 and Semantic Web technologies that can expose 
this data using widespread standards. Here, a layer of middleware is useful in 
translating the data to a common standard, e.g. SPARQL, understood by a query-
ing client newly connected to the building�’s middleware. Beyond basic services, 
additional middleware components can make available more complex services 
such as services that include heavily pre-processed data that includes data beyond 
current conditions but also forecasts trends based on data mining historical data 
against currently developing conditions. Between basic and complex services, a 
variety of data is expected to be available to the client. 



 

Sensor data and related services need not be restricted to a local area, even 
though post-processed values are cached or stored locally; the data from these dis-
tributed databases can be exposed onto the Internet of Things to be made available 
to a sensing infrastructure of a wider area for remote data queries of clients not yet 
arrived at the physical destination. This model is similar to that of the information 
provided by the growing number of Semantic Web services for weather forecasts, 
traffic forecasts, train schedules, product ratings, flight costs, outdoor and indoor 
directions and maps are available today and the shop sales, and other information 
of tomorrow; and data extracted from known and well-structured older Web 2.0 
documents also into a formal knowledge concept representation. An important 
consideration for a resource-constrained mobile device is to consider its band-
width when providing it a remote view of the data. 

When the data is queried, an important but overlooked challenge in providing a 
result is to define a meaningful data structure that acts as a transport container: a 
structure that can define the semantic of the data being transported. Here it is ob-
viously preferable that semantic-tagged data uses an exportable data structure 
model format that is componentized, standardized and commonly accepted in or-
der to avoid redundancy in re-interpreting, or translating between other data mod-
els representing data with the same underlying semantics. Thus, whether it is sim-
ple raw data in a known standard format, e.g. SensorML, or information processed 
or extracted from data by some high-level transformation, any service that shares 
this data for export also exposes a semantic model with commonly-understood 
components when the response to a query is intended to be exchangeable. 

4 System Concept Description 

This section characterizes the system concept. Section 4.1 reveals an innovative 
information retrieval approach for future searches. Section 4.2 illustrates building 
blocks of the Prometheus framework. Based on ontologies, section 4.3 shows in 
brief, how to train the intelligent environment itself the semantic of human-used 
terms. Section 4.4 presents retrieved semantic data. And finally, section 4.5 dis-
cusses human-environment and human-building interaction.  

4.1 Towards an innovative information retrieval method 

The data is no longer produced by humans alone but more and more by sensors 
as well. As in [O�’Reilly and Battelle 2009] conceptualized, today�’s cameras and 
phones are mutated into artificial ears and eyes like a sort of �“sixth sense�” applica-
tions. Sensors for motion and location provide continual detail where someone is, 
what one is looking at and how fast and in which direction one is moving. Data 
can be gathered and offered on a real time basis. In order to arrange these loose 



 

data, they need to be collected from adequate and trustworthy sources. 
For this purpose information retrieval (IR), which establishes the retrieval of in-

formation from an object such as a document as outlined in [Baeza-Yates and 
Ribeiro-Neto 2010], comes in. In view of this, information retrieval represents the 
entire searching science for documents, for information within documents and for 
metadata about documents, as well as that of searching databases, the WWW, and 
other sources. At first software agents of a certain type (WWW, HTTP protocol) 
are instructed to collect documents in preparation for classification; in the simple 
example of a Web-page with natural language and images a web crawler begins at 
a trusted starting point and crawls along hyperlinks for each hyperlink determining 
the credibility and link value by use of a page ranking algorithm like HITS; and 
this data is reused to order search query results later. By data clustering documents 
can be automatically grouped into classes. Fuzzy representations are useful to 
handle the imprecision resulting from the automatic interpretation of extracted 
content meanings. The resulting interpretation is storable according to a defined 
domain ontology. The semantics extracted from HTML content are imprecise 
since they are roughly guessed when extracted and not well-defined; and the same 
for other text-based and multimedia objects. Semi-structured XML data is better 
machine readable since it is syntactically defined, but tag definitions provided by 
user groups are application specific and mostly ambiguous. Not so with the last 
example: documents tagged in representation languages designed for the Semantic 
Web, such as emerging RDF/S or DAML+ OIL, include formal semantics, de-
fined rules, and an ontology vocabulary (for various types of ontologies, including 
service ontology) that create a well-structured machine-readable document; a sig-
nificant improvement in classification. The second significant part of information 
retrieval is in the decision making expert systems that first contextually search for 
queried terms and second provide a ranked ordered list of suggested related terms 
of nearby clusters and other conditionals. 

Generally, information retrieval systems are used to diminish what is called in-
formation overload. On the basis of a fully automated ontology with the aid of dif-
ferent sensors for context the IR-located information becomes arranged in a help-
ful manner for the user in his preferences and circumstances (e.g. location, 
connection speed, etc.) expanding the query beyond only the limited set of terms 
that describes the user need. 

Paraphrased in [Marsland 2009], AI is the intelligence of machines that perce-
ives its environment and takes actions which maximize its chances of success. A 
major focus there is to train the system to recognize patterns and make intelligent 
decisions based on this data without human intervention. However, the term of AI 
goes beyond the human intelligence limits and contains computational, memory 
and solving abilities and properties that humans do not possess. 

 



 

4.2 The Prometheus framework 

Prometheus is a software/hardware information retrieval data processing system 
for the provision of the most relevant context aware information. The system uses 
fuzzy logic to construct the term ontology based on sensor and network distributed 
data. The core of Prometheus is a distributed cognitive and decision making soft-
ware framework meant to be flexibly usable by humans and other soft-
ware/hardware services and systems. 

Functional components of Prometheus include: 
 Data input subsystem gathering sensor data and moving it from sen-

sors to between middleware and databases 
 Cognitive ability subsystem implemented using several approaches 

from cognitive sciences (i.e. symbolic, static, behavioral, emotional)  
using multiple sensors data analysis capable of hierarchical activities 
recognition for living with predictive profiles 

 Context-aware decision-making subsystem based on ontology repre-
sentation and fuzzy expert systems 

 Interaction subsystem with multiple machine-to-machine and human-
to-machine interfaces yet unified with a backend 

 Adaptable to environment communication framework allowing auto-
matic transparent data commutation between (upcoming) WBAN, 
WPAN, WLAN, and Internet 

 
Several significant impacts of Prometheus include but are not limited to: 

 Increased ability for context prediction and accountability 
 Diminished information overload by the context-relevant data filtering  
 Workflow optimization in team and innovative project environments 
 Increased energy efficiency, comfort and security of  human spaces 

4.3 Ontologies and information retrieval for semantic homes and 
environments 

Looking at implementation, the information retrieval service is primary based 
on fuzzy expert systems with help of weak term ontology. Ontology is, following 
Gruber, a "formal, explicit specification of a shared conceptualization", that is a 
formal notation of a concept set within a domain and the relationships between 
those concepts as in [Gruber 1993] exemplified. An ontology is often needed to 
reason about the properties of a domain and can be used to define a field. 

In [Portmann and Meier 2010] it is shown how folksonomies�’ subjacent tags 
can be harvested. To this Portmann and Meier apply particular metrics such as the 
Jaccard coefficient in order to meter the proximity between tags. The ontology can 
then be compiled without human intervention on basis of fuzzy clustering algo-



 

rithms. On the basis of this ontology a meaning, or semantic, can be deduced. 
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Fig. 2 Components of Prometheus framework 

The Prometheus object and service search concept is based on a previously 
fuzzy-built and constantly automatically updated ontology, enriched with infe-
rences from fuzzy expert systems, in order to arrive to satisfactory solutions. 
Fuzzy expert systems are fitting instruments for this kind of reasoning. 

The interconnection between terms in the ontology allows the intelligent house 
to associate the user behavior and intentions with physical, economical and social 
parameters of the environment. 

Depending on past user behavior and current context-relevant information, the 
Prometheus framework adaptively learns from each individual user. Behavior 
analysis requires storage of goals, actions, conditions and results made previously 
by the user and achieved as a user profile. Synthesized from this semantic descrip-
tion of the user prediction-based behavior assistance can be provided on the basis 
of fuzzy expert systems by the recognition of personal patterns from frequently 
repeated operations at newly visited unknown environments. 

The goal of such assistance is to keep the confidence and comfort at an ex-
pected level for people dealing with unknown environments. However, every new 
environment will most likely not contain an exact copy of previously used objects, 
services and processes. In this case the most logical solution is to find objects with 
similar functionality and to inform the user about differences and optimal ways to 
access them. Moreover, informational assistance can be given directly at the 
�“thinking event�” moment, not later when the focus has already been switched to 
another topic. 



 

4.4 Retrieved semantic data 

Enhancing the system with external data can not only improve usability but also 
bring an added value in a form of new location-based services as refer to in [Tset-
sos et al. 2006]. Adapted from an ontology to help an end-user to get along in an 
unknown environment, the Prometheus framework draws on, in different dimen-
sions available, input data such as Internet data (e.g. train connections, ratings, di-
rections, indoor plots, taxonomies) and diverse surrounding sensor data (e.g. pre-
cise position, weather conditions, traffic jams, local accidents, door or elevator 
malfunctions, power losses, water and heating shut offs) to present intelligent sug-
gestions (e.g. fastest directions to a certain destination, the next train station, con-
nections, prices, ratings, pictures, descriptions of a specific product). 

Additionally, for the moment �“not relevant�” data like changing weather condi-
tions while shopping is frequently useful right at the next moment because it can 
influence the user�’s (buying) preferences and decisions. 

Data to be shown has to be chosen according to the user role, current semantic 
context and current goal set. Moreover, the group of people has to be also consi-
dered while designing the communication dataset. Requirements like people 
group-oriented data availability, people collaboration encouragement, environ-
ment adaptability, accountability, security and privacy shape the dataset. 

4.5 Environment and building interaction 

To reveal relevant data, the Prometheus framework decides under given cir-
cumstances how to interact optimally. Using human-computer interaction the 
building can adapt by changing visual, audio, thermal, humidity, pressure or other 
physical environment parameters depending on the mood of a tenant. 

The search query itself is usually considered as an interface between the user 
and a search engine. Prometheus is extending the understanding of search queries 
towards user goals, intentions and behavior. The system does not simply provide 
the string search box with historically based associative suggestions, but also 
keeps in mind the semantic context of the user or client system. 

The way the semantic environment interacts with a human strongly overlaps 
with studies from the human-computer-interaction field, as for example the basic 
interface simplicity requirement. Also, display design principles remain the same. 

However, different semantic system parameters define specific functional con-
straints leading to the terms of human-building-interaction and human-
environment-interaction. The relevant data will be presented in a for the user ap-
propriate way adapted for the subjacent hardware. 

This work associates buildings with being indoors while environment with be-
ing outdoors. The main difference between these two types of human interaction is 
characterized by different impact factors of the common life-value parameters. 
This parameter list is not hard-fixed for every person. It is mainly provided for a 



 

demonstrative purpose. Table 1 contains the parameter impact factors belonging to 
the range [1...5]. The highest value corresponds to the highest impact factor. 

 
Table 1: Simplified Example of Parameters Impact 

 
Parameter Impact factor on an action 

Indoors Outdoors 
Weather conditions 2 5 

Customization 4 1 
Location 3 4 
Security 4 4 
Comfort 5 2 
Safety 4 4 
Time 2 5 
Cost 4 3 

 
We observe that weather conditions and time of day have much stronger influ-

ence on human actions outdoor than indoor. The human action impact of customi-
zation and comfort is in opposite relatively little outdoor and significantly high in-
side of the buildings. Security, safety, location and cost are equally important for 
human interaction independent of the environment. 

5 Practical Applications 

The previous more theoretically oriented sections showed stimuli for this sec-
tion. As an example, a personal digital assistant concept for embedded devices like 
smart phones and house appliances is presented. 

For improved support a future system, like a smart phone, should help people in 
the same way that present personal digital assistants do. Based on the proposed 
ontology the digital assistant could educe feasible suggestions for the user. To 
come up with such suggestions, a future smart phone�’s built-in personal digital as-
sistant, here referenced as a part of Prometheus system, has to learn first from the 
elapsed user�’s environmental data. Then it would be possible to pick (for the user) 
the best solution based on the fuzzy expert systems method.  

A major challenge hereby is to teach the digital assistant appropriate solutions. 
Therefore the user has sometimes to interact with the personal digital assistant. As 
known from supervised learning, the user should correct potential personal digital 
assistants misbehavior. Learning inputs can also come from environmental sensor 
data in which no user interaction is required. 

The simplest example is based on the current (indoor or outdoor) location data 



 

and needs of the user. For example, the optimal solution for a query on �“shoes�” 
will include costs, time, warranty conditions, the (indoor or outdoor) way, and 
connection for public transportation. Figure 3 shows the particular possible use 
case while utilizing the Prometheus framework components. 

 

 
Fig. 3 The Internet-, sensor- and user-preference-data are expected come up with bright solutions 

for the user. 

6 Conclusions and Outlook 

After a short introduction into the fuzzy set theory and its applications, this pa-
per presented the main foreseen challenges to be faced by shaping semantics be-
hind the existing living infrastructure. The presented approach of the Prometheus 
framework depicts a vision towards a solution of these challenges with the novel 
approach based on fuzzy set theory in the rapidly developing area of the Internet 
of Things. Furthermore towards the dataset considerations for semantics imple-
mentation particular attention was given to the new terms of human-building and 
human-environment interaction.  

Further subjacent studies on the issue of appropriate outcome-rules for the 
fuzzy expert system will be needed. It might be that the proposed approach could 
be improved by taking into account other machine-learning strategies. At the mo-
ment Prometheus is thought to be based on fuzzy rules, but in the future it is not 
limited to only this. 

Another point is a possible enhancement of the fuzzy-built ontology towards in-
tegrating further sensor data as for example intelligent clothes. Wearable compu-



 

ting is a vigorous research topic, containing user interface design-, augmented re-
ality-, pattern recognition-, use of wearable�’s for specific applications or disabili-
ties, electronic textiles and fashion design studies. 

 
The CEESAR-iHomeLab is working on one hand on forming a scientific com-

munity for cutting-edge international research projects in the area of ambient intel-
ligence, human-building interaction, user behavior analysis, and assisted living 
and on the other hand; the Research Center FMsquare implements the ideas of 
fuzzy methods to various scope of applications, and for this reason both research 
centers appreciate cooperation with researchers and practitioners. 
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