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Abstract—The ever increasing popularity of apps stems from
their ability to provide highly customized services to the user.
The flip side is that in order to provide such services, apps need
access to very sensitive private information about the user. This
leads to malicious apps that collect personal user information
in the background and exploit it in various ways. Studies have
shown that current app vetting processes which are mainly
restricted to install time verification mechanisms are incapable of
detecting and preventing such attacks. We argue that the missing
fundamental aspect here is a comprehensive and usable mobile
privacy solution, one that not only protects the user’s location
information, but also other equally sensitive user data such as the
user’s contacts and documents. A solution that is usable by the
average user who does not understand or care about the low level
technical details. To bridge this gap, we propose privacy metrics
that quantify low-level app accesses in terms of privacy impact
and transforms them to high-level user understandable ratings.
We also provide the design and architecture of our Privacy
Panel app that represents the computed ratings in a graphical
user-friendly format and allows the user to define policies based
on them. Finally, experimental results are given to validate the
scalability of the proposed solution.

I. INTRODUCTION

Apps (application for smartphones) are the lifeline of to-
day’s smartphones. Their immense popularity is evident from
the thousands of apps available in Apple’s AppStore, Google’s
Android Marketplace, Nokia’s Ovi Store, Windows Market-
place Hub, etc. The reason apps are so popular and useful is
because they provide services highly customized to different
aspects of our life, from recommending location based services
of interest to monitoring our health. The downside is that,
in order to do so, apps need access to very real-time and
contextual information about the user. This information is
provided by the many input devices (Camera, Microphone,
etc.) and sensors (GPS, Accelerometer, etc.) embedded in
mobile devices nowadays which are then provided to the
apps. Clearly, such information is very sensitive and has grave
privacy implications if it falls in the wrong hands.

To avoid such misuse, most mobile platforms including
Meego [1], Android [2], Windows Phone (WP7) [3], provide
a ‘needs’-based access control model where access to device
resources is only given to an app after explicit authorization
by the user. At a high level, the model works as follows:

————————————————————————————–
This work was performed while the authors were at Nokia Research Center

• Apps declare the list of resources to which they need
access to provide their functionality in their XML-based
Manifest files.

• During installation, the Manifest file is read and the list
of required resources’ access is presented to the user in
a user-friendly format.

• The app is allowed to be installed only if the user
‘Accepts’. After installation, the mobile OS provides the
needed access control to ensure that the app is only
allowed access to those resources as declared in its
Manifest file.

While this acts as a deterrent, studies [4], [5], [6], [7] have
shown that such a model is not sufficient by itself. Many apps,
including some of the most popular ones, have been observed
to misuse the install-time access given to them at run-time.
For instance, while a weather app requires legitimate access
to the user’s location, install-time verification as above would
be unable to prevent the app from retrieving the user’s location
every few seconds and feeding it to an external server.

Recent efforts in this direction include fine grained run-
time access control models [8], expressive mobile privacy
policies [9], [10], smart anonymization techniques especially
with respect to protecting the user’s location [11], among
others. While they are helpful and solve parts of the problem,
the fundamental aspect missing there is a comprehensive and
usable mobile privacy solution. By comprehensive, we mean
a solution that not only protects the user’s location data
(as most of literature currently focuses on) but also other
equally sensitive user data types such as the user’s contacts
and content (pictures, music, etc.). By usable, we refer to
solutions that can be used and understood by the “average”
user. Defining sophisticated policies restricting access to the
device’s Accelerometer by apps does not help if the user does
not understand what an Accelerometer is, or what personal
information can be easily inferred from it. Our goal is thus
to provide usable privacy controls that both provide privacy
related information and allow the user to set policies at a user
understandable level. To this end, we propose the Privacy Panel
(PP) with the following main contributions:

• Identify and abstract the user data categories to be
protected on the mobile device: Location, Contacts and
Content.

• Privacy metrics that quantify low-level app accesses in
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Fig. 1. Privacy Panel Architecture

terms of privacy impact and transforms them to user
understandable ratings (Section II-C)

• User friendly app design representing privacy ratings and
allowing to define policies based on them (Sections II-B
and II-D)

• Implementation and experimental results showing the
performance scalability of the proposed approach (Sec-
tion III).

II. PRIVACY PANEL

A. Architecture

The PP architecture as illustrated in Fig. 1 consists of the
following four stages:

1) Intercepting the data accessed by apps installed on the
mobile device.

2) Quantifying their privacy impact.
3) Displaying the ratings in a user-friendly format.
4) Providing the user effective access control mechanisms.
The behavior of an app on the device corresponds to how

it interacts with the device resources e.g.
• Accessing sensors to read their data values. Common

smartphones nowadays include many of the following
sensors: GPS, Accelerometer, Ambient Light, Compass,
Magnetometer, Orientation, Proximity, Rotation.

• Accessing the network, file system, contacts.
• Intercepting the actions on the touch-screen.
• Accessing the camera, microphone.
• Intercepting the more traditional actions on the device

such as making phone calls, sending SMS, etc.
The app usually performs the above actions by invok-

ing (developer friendly) APIs of mobile platform dependent
middleware frameworks such as Qt, Windows Phone SDK,
Android SDK, etc. Given this, the first PP stage consists of
monitoring these API invocations, intercepting and logging

their details2. It is important to note that in a real-life im-
plementation, mobile apps will have multiple interfaces to
the underlying sensors, e.g. HTML5 apps running within the
browser, or Android apps with native code/JNI. The PP app
will thus need to ensure that all possible entry/exit points are
covered, such that all accesses are intercepted. The second
stage consists of quantifying the privacy impact of the actions
performed by an app. Quantification is based on privacy
metrics designed and presented for three user data categories:
Location, Contacts and Content (in Section II-C). In the third
stage, the computed specific ratings are presented to the user in
a user-friendly format, presented in Section II-B. Performance-
wise, it is necessary to minimize the execution overhead of
computing ratings as much as possible so that their effect
on simultaneously running apps is minimal. We consider two
possible strategies here in terms of when to (re-)compute the
privacy ratings:

• Upon invocation: Compute the ratings only when the
PP is invoked. This assumes computing the ratings for
a specified time period (possibly user specified), thus
delaying the start of the PP application.

• Continuous updating: A background process is contin-
uously running, updating the ratings of relevant app
categories for each interception or a group of intercep-
tions (configurable) performed by the app. This basically
requires the metrics to be computable in an incremental
fashion. Performance wise, this option has more overhead
as both interception/re-computation need to be performed
in parallel with normal apps’ execution at run-time.
However this is absolutely essential if the PP app is also
expected to provide the access control feature.

The fourth and final PP feature is providing access control
capabilities to the user. Once the user becomes aware of
how his personal data is collected by an app and what its
privacy implications are, he has the option of setting policies to
regulate the app’s behavior in future (detailed in Section II-D).

B. User Interface

In this section, we describe the Privacy Panel user interface
flow. Screenshots are given in Fig. 2.

Screen (1) is the start screen, shown to the user upon
invoking the PP. It lists the apps installed on the mobile
device with their corresponding privacy ratings. The privacy
ratings are displayed with respect to three categories: Location,
Contacts, and Content. Clicking (tapping) on one of the
app rows leads to the corresponding app’s detailed privacy
report - Screen (2). We consider the Weather App here for
illustration. Apart from the privacy related information, Screen
(2) has two text fields: “From the Developer” and “About the
Privacy Panel”. The latter is self-explanatory and gives high

2Apps running on mobile devices without communicating with external
entities do not pose any privacy threat. However, a malicious app has
various potential means of ‘stealthy’ communications, e.g. encrypting data,
deferring the communication, or communicating via other apps etc., making
the interception of these communications another stand-alone problem that
we keep out of scope of this paper.
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Fig. 2. Privacy Panel User Interface

level information regarding the app software, underlying logic,
installed version, etc. “From the Developer” provides a RSS
feed type scrolling message box. Messages can come from
the app developer explaining to the user why a certain level
of access (leading to a higher privacy violation rating) with
respect to a data category is needed.

Tapping on one of the category icons (location, contacts,
content) leads to the privacy details corresponding to that
category. Let us first consider the location category - Screen
(3). The screen shows the location privacy rating computed
based on the app’s location accesses on the device till date. The
ratings are abstracted into three levels with a higher privacy
rating corresponding to a higher intrusion level, i.e. an app
with low privacy rating is safer, i.e. less intrusive.

The lower part of Screen (3) shows the frequency and
accuracy access patterns based on the user location data access
by the app for the past week. The user can scroll backwards
and forwards to see the respective patterns for the previous
weeks. The daily frequency pattern is computed based on the
number of times user location data was requested on that day.
As will be explained later in Section II-C, the user’s location
can be requested with different levels of accuracy having
different implications on the user’s privacy and the device
battery. The daily average of requested location accuracy levels
by the app is plotted in Screen (3).

The final aspect with respect to app location privacy is
to display the actual locations where user location data was
accessed by the app. This helps the user gain an understanding
of the locations where the app has been more active, e.g. if a
malicious app has been performing selective profiling targeting
specific sensitive user locations such as home, office, etc. To
display this information, the PP app also needs access to user
location data (to log the actual locations accessed by the app),
and hence this feature is enabled only after an explicit ‘opt-in’
by the user. Once enabled, the user is shown this information
in the form of a heat map- Screen (4).

On the lines of location, tapping on the Content or Contacts
icons in Screen (2) leads to Screen (5) or (6) respectively.
Screens (5) and (6) display app access information related
to Content and Contacts categories. Content privacy ratings
are computed based on app accesses to physical files, media,
messages on the phone. Contacts ratings are computed based
on app accesses to the address book entries, and metadata
related to communication with contacts, e.g. which contact
was called/emailed, when, and how often.

C. Metrics

In this section, we present privacy metrics for the three user
data categories: Location, Contacts and Content. The metrics
allow us to quantify the privacy impact of an app accessing
specific user data. It is worth noting that the proposed privacy
metrics are by no means foolproof. They are a first attempt
to quantify the privacy impact of mobile apps in general.
However, we are convinced that this is still the right path
to follow. We draw an analogy to the password strength
checkers widely used on the web. Based on heuristics, they
are a practical and generically applicable estimate of password
strengths, not necessarily matching the cryptanalytical results.
They successfully have come to be trusted by average users
who are taking now the extra effort in setting “Strong”
passwords. Similarly, our PP aims at providing average users
rough estimates of their privacy exposure to apps running
on their mobiles, without necessarily offering strict security
guarantees.

1) Location: Location data in very simple terms corre-
sponds to the (longitude, latitude) geo-coordinates of the user’s
location. Our objective here is to quantify the privacy impact
of user location data accessed by an app. The quantification
aims to capture how much location data has been collected
by the app, how precise it is, and how privacy sensitive it
is from the user’s point of view. The purely linear measure
of “how much” can be computed by recording when (how
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frequently) was user location data accessed by the app in
question. With respect to the precision of location data, it
is important to recall here that user location information can
be obtained via different positioning methods, e.g. satellite
based (GPS), non-satellite based (WiFi, Cell tower), etc. with
different energy and accuracy trade-offs. We thus compute the
location privacy metric LP of N samples, considered during
the periods when the application is active, as a function of
frequency and accuracy factors as follows:

LP = F ×A

where F is the frequency factor, and A is the accuracy factor
defined as:

F = N/(TON × fmax)

where TON is the sum of periods when the application
is active, and fmax is the maximum sampling frequency
supported by the location sensors (= 1/sec by default). The
accuracy factor A is formulated as:

A = 1/N ×
N∑
i=1

P 2
max

H2
i

where Pmax is the maximum precision provided by the
sensors (i.e. 2.2m). Hi is the horizontal accuracy of the
ith sample. It is computed as the average returned precision
when an app requests a location sample with high, low, any
precision. Default values to be considered are 2.2m, 30m, 15m
respectively.

Let LP (t) denote the privacy metric computed till time t.
Then, the incremental version of the metric only needs to take
into account the variable parameters:

LP (t+ 1) = LP (t) +
P 2
max

H2
t+1 × TON

[t,t+1]

where Ht+1 denotes the horizontal accuracy of the location
data read at time t + 1 and TON

[t,t+1] denotes the run-time of
the app between times t and t + 1. It is worth mentioning
that there might be a difference between the type of data
requested by an app and the data it actually receives. The
former hints at the “curiosity level” (maliciousness) of the app,
for instance an app that always requests for user location with
the highest precision. However, owing to a variety of technical
and system issues, the location data that is finally returned to
it may have a lower precision than requested due to the GPS
not being available (indoors), battery conservation, etc. The
actual privacy leakage in terms of location data obtained by
an app clearly depends on the latter aspect. We briefly discuss
below the aspects that influence the actual privacy impact of
location data obtained by an app. Some of these aspects are
already taken into account in previously presented location
privacy metric LP . A comprehensive location metric taking
into account all the below aspects is beyond the scope of this
work.

• App usage characteristics: We currently consider usage
characteristics of the user as the time the app was
actually running (‘ON’) within a specified time period.
This allows us to discount factors that the app was not
requesting user location updates only because it was not
running. This also requires the PP to log the app start
and terminate timings.

• User movement pattern: The actual location co-ordinates
(latitude, longitude) can be used to re-create the user
movement pattern, including the speed at which the
user is moving. The intuition is that the accuracy with
which an app (attacker) knows the user’s current position
decreases as time elapses after the last location update,
till the next one.

• User surroundings: Environmental factors such as if the
user lives in a densely or sparsely populated area influ-
ence the impact of user location data obtained by an app.

• User sensitivity to different locations vary at different
times.

2) Contacts: We consider Contacts to be mainly the user’s
Address book on the mobile device. Each entry in the address
book has a unique identifier (e.g. URI, Name, Date of Birth)
and associated fields e.g. Address, Email, Phone numbers, etc.,
also referred to as ‘details’. The Contacts privacy rating CP of
an app is intuitively based on two factors:

• The number of unique Contacts accessed by the app, and
• The number of Details of each contact accessed

More precisely,

CP = 1/Nt

Na∑
C=1

Da(C)/Dt(C)

where Nt is the total number of contacts, Na is the number
of contacts accessed by the application, Da(C) is the number
of details of contact C that were accessed, and Dt(C) is the
total number of his details.

The uniqueness of contacts accessed here is significant as
accessing the same contact details twice does not give the
attacker any additional information. This model leaves room
for extending the metric with weights assigned based on the
user’s relationship with the accessed contact, e.g. spouse, close
friend, office colleague, etc. Similarly, weights can also be
assigned based on the sensitivity of the accessed contact detail
fields, e.g. Address, Email, Phone Number, etc. The Contacts
privacy rating CP can be computed incrementally as follows.
For each new interception of a Contacts entry C:

1) Check if C is unique, i.e. has been accessed for the first
time based on its ID. If so, proceed; else exit.

2) Determine the number of contacts n in the Address
Book.

3) CP =
1

2
× (CP + 1/n).

For each new interception of a Contacts detail field D of
contact C:

1) Check if field D has been accessed for the first time
based on uniqueness of the pair (C’s ID, D). If so,
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proceed; else exit.
2) Determine the number of detail fields m of C in the

Address Book.
3) CP =

1

2
× (CP + 1/m).

3) Content: We consider Content to be one of the following
types of files: Audio (Music), Video, Picture (Image), and
Documents. Apart from capturing “how many” files and of
“what type” have been accessed by an app, we also take
into consideration the file’s properties and tags to quantify the
privacy sensitiveness of that file for the user e.g. user-generated
content is considered more privacy sensitive than a non-user-
generated one. Similarly, from a privacy impact perspective,
content containing geo-tagged information are rated higher
than non-tagged ones. We give below an incremental algorithm
to compute the Contents privacy metric DP taking into account
the above aspects. We consider three configurable scaling
factors y, p, t defined as follows:

• y: File type factor
• p: Property factor
• t: Tag factor

Let the default values for all the above scaling factors be 0.5.
For each file f accessed by the app, DP is updated as

follows:
1) Check if f belongs to the user: Only consider files

residing in user document directories. This is to discount
app file accesses to retrieve app owned media e.g. icons.
The assumption here is that there exists a “Documents”
folders on the device where all user generated files are
stored by default. If yes, continue; else exit.

2) Check if f is unique, i.e. accessed for the first time,
based on the file’s modification timestamp. Here we con-
sider a file having a different modification timestamp as
a “unique” file access. This is based on the observation
that a modified file has the potential of providing addi-
tional information to the attacker. If unique, continue;
else exit.

3) Compute the scaling factor s: Let s = 1 initially.
• If file type is ‘Image’ or ‘Video’, then s = s×y. The

file type is determined based on the file extension.
• If f is not user-owned, then s = s × p. The file’s

Creator/Owner property is used to determine this
aspect.

• If f is not geo-tagged, then s = s × t. The file’s
EXIF tags are inspected to determine if it is geo-
tagged or not.

4) Depending on the file type, scan the corresponding
user directory ‘Music (Audio)’, ‘Videos’, ‘Pictures’,
‘Documents’ directories to compute n− the number of
files in that directory.

5) Finally, update DP =
1

2
(DP + s/n).

D. Policies

Once the user becomes aware of how his personal data is
collected by apps and what its privacy implications are, it is

Fig. 3. User control Interfaces

natural for him to want to set policies regulating future app be-
haviors. Note that setting policies does not necessarily equate
to preventing the app from performing certain actions. The
protective measure may be in terms of a simple notification
message when an app performs a certain action or a certain
pre-defined privacy rating threshold is reached.

Fig. 3(a) gives the PP user interface to generate low-level
privacy policies controlling accesses of an app to the device
resource level. The interface is primarily intended for advanced
technical users who understand the device resources/internals,
and is in line with controls offered by related apps such as
Privacy Guard [12] and Lookout [13].

Following the general philosophy of this work to provide
user-friendly privacy control to “average” users, we allow such
users to also regulate apps by specifying threshold privacy
ratings for each data category. With reference to Screen (3)
of Fig. 2 discussed earlier, Fig. 3(b) shows the user setting of
the allowed location access of Weather App to ‘Low’. Enforc-
ing such policies clearly requires following the “continuous
updating” execution model with the relevant privacy category
rating re-computed corresponding to each intercepted access
performed by the app.

III. EVALUATION

We implemented the PP app on the Nokia N900 mobile.
The relevant middleware on the N900 is Qt. Qt provides a
platform neutral API framework for apps to interact with the
mobile. The Qt API framework is categorized into modules to
perform different tasks on the device. We thus modified the Qt
module libraries to intercept and log details whenever an app
invokes a Qt API to access device resources. The intercepted
data logs as well as computed ratings are stored in a SQLite
database on the mobile. The experiments were performed with
an energy profiling app running recording the CPU load. In the
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Fig. 4. Privacy Panel performance

experiments, sensor accesses correspond to apps requesting for
user location information. Fig. 4 gives the performance results.
‘No interception’ denotes the CPU load when only the app
is running, without PP monitoring. ‘Interception’ refers to the
scenario when PP intercepts any sensor accesses performed by
the app without logging their details. The scenario is relevant
when only low-level policies need to be enforced without
computing the PP metrics. ‘Interception + Log (DB)’ gives
the CPU load for PP when all sensor accesses are intercepted
and details stored in the SQLite DB. As the overhead in
this case is significant, we also explored the scenario where
intercepted details are stored in text files: ‘Interception + Log
(txt)’. The alternative seems much more scalable with only
a 10% rise is execution overhead for even very high sensor
access frequencies of 100 Hz.

IV. RELATED WORKS

Mobile privacy is an active research area. The research focus
till now has clearly been on protecting user location infor-
mation [11]. Interesting approaches include techniques [14],
[15] that anonymize location information to a certain level
of abstraction before returning it to the apps. The challenge
here is in anonymizing to the “right” level so that the user’s
information is protected and the app is still able to function.
Clearly, it does not help to abstract the user’s current location
to the ‘City’ level before returning it to an app that is supposed
to recommend nearby restaurants.

The other commonly used privacy protection mechanism is
based on policies. This includes specifying policies restricting
the apps from performing certain actions, mainly with respect
to accessing resources/sensors on the device. Research in this
direction has focused on accommodating fine grained [8] and
expressive [9], [10], [16] policies. Commercial apps such as
Privacy Guard [12] and Lookout [13] are also available that
give the user quite detailed control of the app accesses, sorted
by app or by sensor. However, as discussed earlier, an average
user is unlikely to understand the magnitude of the threats
when citing simply the sensor being accessed by the intrusive
application. To bridge this gap, we present privacy metrics in
this work that map low level sensor accesses to high level
privacy ratings.

From a quantification perspective, statistical measures have
long been used to quantify leakage of security protocols. The
commonly used statistical measure for quantification is the
notion of Shannon entropy [17]. However, Shannon entropy
based measures have in the recent past been shown to be
not so suitable for leakage quantification [18]. To overcome
this, [19] has proposed leakage quantification measures based
on conditional entropy. Our work is a first attempt towards
defining quantification measures for different user data cate-
gories relevant for mobile privacy.

V. CONCLUSION

In this work we consider the problem of quantifying app
accesses with respect to mobile user data in terms of their
privacy impact. We presented privacy metrics for three user
data categories, namely Location, Contacts and Content. The
metrics allow mapping app accesses with respect to those
categories to high level privacy ratings. We then outlined the
design and architecture of our proposed PP that both displays
privacy related information to the user and allows them to
specify policies in terms of the computed ratings. We finally
presented performance results that show the implementation
feasibility of our concept.

We believe that the proposed approach lays the foundation
towards the long-term objective of making mobile privacy
safeguards more usable and accessible to the average user.
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