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Abstract

RP1 (synonym: MAPRE2, EB2) is a member of the microtubule binding EB1 protein family, which interacts with APC, a key
regulatory molecule in the Wnt signalling pathway. While the other EB1 proteins are well characterized the cellular function
and regulation of RP1 remain speculative to date. However, recently RP1 has been implicated in pancreatic cancerogenesis.
CK2 is a pleiotropic kinase involved in adhesion, proliferation and anti-apoptosis. Overexpression of protein kinase CK2 is a
hallmark of many cancers and supports the malignant phenotype of tumor cells. In this study we investigate the interaction
of protein kinase CK2 with RP1 and demonstrate that CK2 phosphorylates RP1 at Ser236 in vitro. Stable RP1 expression in cell
lines leads to a significant cleavage and down-regulation of N-cadherin and impaired adhesion. Cells expressing a Phospho-
mimicking point mutant RP1-ASP236 show a marked decrease of adhesion to endothelial cells under shear stress. Inversely,
we found that the cells under shear stress downregulate endogenous RP1, most likely to improve cellular adhesion.
Accordingly, when RP1 expression is suppressed by shRNA, cells lacking RP1 display significantly increased cell adherence to
surfaces. In summary, RP1 phosphorylation at Ser236 by CK2 seems to play a significant role in cell adhesion and might
initiate new insights in the CK2 and EB1 family protein association.
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Introduction

The EB1 family proteins encoded by three distinct genes

(MAPRE1–3) are involved in microtubule stability and integrity

[1,2]. Since their discovery from 1995 to 2001, various cellular

functions of these proteins have been reported [3–5]. The

common functional motif of EB1, RP1 and EB3 proteins is

binding to microtubules, but further divergent individual functions

seem to exist. For EB1, the best studied member of the family a

[1,5]. In humans, EB1 was detected as an adenomatous polyposis

coli (APC)–interacting protein whose binding domain was affected

by APC mutations implicated in colon cancer [3]. APC by itself is

a key regulator within the unit pathway. APC, as part of a

degradation complex, down-regulates intracellular b-catenin

hereby disrupting signaling of this pathway [6,7]. EB3 (EBF3) a

close homolog of EB1 is preferentially expressed in brain tissue [8]

binds to APC and has been implicated in MT bundling [1].

Until now little functional information is available for the

second EB1 family member RP1. Regulatory mechanisms

governing its cellular function are hitherto unknown. Post

transcriptional expression control of RP1 by a viral MicroRNA

(miR-US25-1 from human cytomegalovirus, CMV) has been

described [9] but no endogenous mammalian micro RNAs for

RP1 have been discovered yet.

Recently, RP1 has been identified in a proteomic screen of

pancreatic cell lines that had specifically been selected for

increased perineural invasiveness [10]. In that study high

expression of MAPRE2 (RP1) mRNA was associated with poor

outcome and prognosis.

With a comparable molecular weight of 30–37 kDa and a size of

268–327 amino acids, the overall homology among the EB1

protein family members averages between 70% and 77% identity

and is specifically higher at their C- and N-terminus. All three

family members share a N-terminal calponin-like or actin-binding

domain and an EB1-like C-terminal domain. Within these

domains conservation is high reaching over 90% in the N-

terminal and above 80% in the C-terminal domain, respectively.

Dimerization of the EB1 proteins depends on their C-terminal

moieties. All EB proteins homodimerize, but only EB1 and EB3

have the ability to heterodimerize [11].

The interjacent region of the two homologous domains shows

the greatest variability between the three proteins. Within this

distinctive zone a serine rich stretch is notable only in the RP1

protein sequence. Using different prediction algorithms, we
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identified a potential CK2 phosphorylation site that is not present

in EB1 or EB3. The serine residue at position 236 displays a

classical CK2 (X-S/T-X-X-D) motif and is conserved among

various species with an inconsequential variety in the X-residues.

CK2 is a pleiotrophic ubiquitous and constitutively active

protein kinase with a broad range of targets [12]. Though not an

oncogene itself, CK2 supports cancer cells by delivering prolifer-

ative signals and protection from apoptosis (for review see [13] and

[14]). Finally, CK2 has been implicated in cell adhesion by its

phosphorylation of Vitronectin [15].

This study examines the relationship between CK2 and RP1

and a putative role of RP1 phosphorylation in adhesion.

Materials and Methods

Reagents and Antibodies
The antibodies against RP1 and their usage have been

described elsewhere [4,16]. A monoclonal mouse antibody against

a-tubulin (Sigma-Aldrich, St. Louis, USA) was used in a dilution of

1:10000, for Western blotting. The C-terminal antibody against

N-cadherin (clone C32, from BD Transduction Labs, NJ, USA)

was applied 1:3000 for Western blotting and 1:300 for FACS and

immunofluorescence (IF). The N-terminal antibody against N-

cadherin (Cell Signalling) was employed 1:1000 for Western

blotting and 1:100 for FACS and IF.

Phalloidin-Rhodamine (Molecular Probes) was used at a final

concentration of 0.17 mM. DNAse I (Invitrogen desoxyribonucle-

ase I, Alexa Fluor 488 conjugate) was diluted with PBS to a

working concentration of 40 mg/ml. The Actin FACS analysis was

carried out as described by Knowles and McCulloch [17].

Horseradish peroxidase conjugated secondary antibody goat

anti mouse (BioRadH, Munich, Germany), goat anti rabbit (Sigma-

Aldrich, Munich, Germany) and donkey anti goat (Millipore

Corporation, Billerica, USA) were used diluted 1:3000 for Western

blotting.

The conjugated secondary antibody goat-anti-mouse FITC

(Invitrogen, Basel, Switzerland) was employed 1:500 both in FACS

and IF and the goat-anti-rabbit FITC (BD Transduction Labs)

1:800 for FACS.

The antibodies against CK2 subunits (a-CK2/a-CK2a/a-

CK2b) used in this study were characterized and described by

Faust et al. [18]. For all Western blots these CK2 antibodies were

diluted 1:2000, for interaction assays 1:50. In addition, anti-RP1

(polyclonal antibody from Santa Cruz) was used for Western

blotting experiments in a dilution of 1:300.

Plasmids
The RP1 wild type (RP1-wt) DNA sequence, initially described

by Juwana et al. [16], was subcloned into the pEAK8 vector (Edge

BioSystems, Gaithersburg, MD, US) utilizingg the EcoR I and Not I

restriction sites. In this vector RP1 gained a c-terminal 6xHis-Tag.

From the new master clone site-directed mutagenesis of various

RP1 constructs concerning the Ser236 residue were performed by

using the QuikChange II site-directed mutagenesis kit (Stratagene,

La Jolla, CA), according to the manufacturer’s instructions. The

following primers were used:

RP1-ALA-forward: 59-GTGGCTCAGCATCCAAGGCAGA-

TAAAGATTTAG-39

RP1-ALA reverse: 59-CTAAATCTTTATCTGCCTTG-

GATGCTGAGCCAC-39

RP1-ASP-forward: 59-GTGGCTCAGCATCCAAGGATGA-

TAAAGATTTAG-39

RP1-ASP-reverse: 59-CTAAATCTTTATCATCCTTG-

GATGCTGAGCCAC-39

The mutations were then confirmed by DNA sequence analysis

(GATC, Konstanz, Germany).

Cells Lines
Human embryonic kidney cells (HEK293) were obtained from

the American Type Culture Collection (Manassas, VA, USA). For

the radiolabelling experiments HEK293 cells were cultured in

DMEM without sodium pyruvate and phosphate. For generation

of stable cell lines HEK293 cell lines were transfected using

LipofectAMINE Plus (Invitrogen) with the respective RP1

encoding plasmids or empty vector.

Clones outgrowing under puromycine pressure were tested by

Western blotting for protein expression levels and by immunoflu-

orescence. To avoid clonal bias three different clones from each

construct were pooled and propagated in culture for at least four

weeks before the respective experiments.

CK2/RP1 Interaction Assay (Co-immunoprecipitation)
His-tagged RP1 wild type protein and mutants were isolated

with Ni-NTA-agarose beads from lysates of HEK293 cells stably

expressing the respective RP1 construct. After stringent washing

with increasing amount of PBS/Tween (0%–0.3%) lysates were

run on 10% SDS PAGE gels and subsequently blotted to

nitrocellulose membranes. These membranes were probed with

CK2 subunit antibodies as indicated in Fig. 1C. Lysates from cells

bearing the corresponding empty vector were used as controls. For

the reverse experiment CK2 antibodies were used for precipitation

and the membrane was probed with respective RP1 antibody

detecting endogenous RP1.

Phosphorimaging
For analysis, the protein gels were stained by either Pro Q

Diamond (Molecular Probes, Eugene, OR, USA) or by Sypro

Ruby (Biorad, Munich, Germany) according to the manufactures’

protocols. Phosphorimaging of stained gels was performed by

using either a Storm 860 (at 450 nm) or a Typhoon model 9410 (at

512 nm with 560 V) (Amersham Pharmacia Biotech, Freiburg,

Germany) and ImageQuant Version 5.1 software (Amersham).

Kinase Assays
Potential CK2 kinase sites S59, S72, S236 were identified by the

software program Prosite located at www.expasy.ch/prosite and

then synthesized as peptides (at the Institute of Biochemistry,

University Saarland, Homburg/Saar, Germany). Three mg of

these peptides and an irrelevant control peptide were then tested

as CK2 phosphorylation substrates using a 33P based phosphor-

ylation assay described before [19]. The resulting signals were

scanned with a phosphorimaging device as described before. For

CK2 kinase assays involving wild type RP1, His-tagged RP1

protein was isolated by Ni-NTA-agarose beads from lysate of

HEK293 cells stably expressing corresponding plasmid DNA. His-

tagged RP1, RP1-ALA236 and RP1-ASP236 (0.5–1 mg) were

incubated with recombinant CK2 and kinase buffer (50 mM

Tris-HCL pH 7.5,150 mM NaCl, 5 mM MgCl2,1 mM DTT)

containing 2 mCi 33P-gamma-ATP, for 30 minutes at 37uC. The

bead/protein complex was dissolved by 100 mM imidazol and

centrifuged. The supernatant was subjected to SDS-PAGE and

subsequently blotted to nitrocellulose membranes. For control

purposes CK2 was incubated with 2 mCi 33P-gamma-ATP and

kinase buffer only. The membranes were examined by phosphor-

imaging.

RP1 Is a Phosphorylation Target of CK2
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FACS Assays
For flow cytometric analysis cells were seeded into T-25 flasks at

104 cells/cm2. On day 3 cultured cells (56105) were fixed as

described below and stained with the respective antibodies.

Primary antibodies and secondary antibodies were used as

described in the section antibodies above. By FACS (FACSCali-

bur, Becton Dickinson) 16105 cells were subjected to analysis in

each individual experiment.

For measurement of N-cadherin level cells were pretreated with

a fixation/intracellular staining buffer Cytofix/Cytoperm Kit (BD

Biosciences) and incubated for 30 minutes with a monoclonal

antibody directed against the cytoplasmic tail (clone C32, from BD

Transduction Labs, NJ, USA) on ice. After one wash with PBS the

corresponding secondary antibody goat-a-mouse FITC (Invitro-

gen, Basel, Switzerland) was applied for 15 minutes immediately

followed by FACS analysis. For negative controls of the FACS

experiments primary antibodies were omitted and cells incubated

only with a secondary antibody. Complementary cells from the

above experiments were mounted onto slides by cytospin and

Figure 1. Binding and Phosphorylation of RP1 by CK2. 1A Identification of CK2 phosphorylation site - RP1-sequence (amino acid), three
potential CK2 kinase sites S59, S72, S236 (underlined) were identified by prosite scan (www.expasy.ch). The peptides used for in vitro experiments
(1C) are marked in bold. S236 the actual CK2 phosphorylation site is shown in red. 1B Interaction–assay RP1/CK2 - Endogenous RP1 (first panel) was
co-precipitated with its potential binding partners. RP1/CK2 kinase interaction could be detected by specific a/ß CK2 subunit antibodies. The black
wedges in this panel indicate increasing stringency of washing procedure (% Tween20/PBS). In a reverse experiment (right side panel), endogenous
RP1 was verified as genuine CK2 binding substrate. By using CK2 subunits as baits, RP1 could be detected in the pulldowns by its specific RP1
antibody (right panel). No signal was seen when an insignificant IgG antibody was used. On the far right 1/10 of cell lysate of the foregoing
experiments is depicted as an input control. The black wedges in this panel indicate stringency of the washing procedure (0.01% and 0.3% Tween/
PBS). 1C Biotinylated peptides (A: aa54–65, B: aa70–80, C: aa229–240) containing the potential CK2 phosphorylation sites S59, S72, S236 were
synthesized and tested as CK2 phosphorylation substrates (A, B, C, 3 mg each) in an in vitro phosphorylation assay. A known positive CK2 kinase site
peptide (DDDDSDDDDD, 3 mg) served as a control. The black wedge indicates incubation times (minutes). 1D CK2 kinase assay - Recombinant CK2
and 33P-gamma-ATP were incubated in vitro with different amounts of RP1-wt protein (first panel shows a coomassie stain of his-tagged purified RP1
protein used for the assay) and phosphorylation was measured by autoradiography (middle panel). The amounts of RP1 protein used are indicated
above the middle panel. Autophosphorylation of CK2 at its subunit ß served as positive control RP1-ALA236 mutated protein (ALA) was almost non-
phosphorylated in comparison to the wild type protein (right side upper panel). The lower panel on the right side shows a coomassie stain
representing the amount of RP1 used for this experiment.
doi:10.1371/journal.pone.0067595.g001
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examined by immunofluorescence with a 406magnification (data

not shown).

Determination of G and F Actin Content in RP1
Expressing Cells

The G- and F-actin content of constitutively RP1 expressing

cells were measured following the method described by Knowles

and McMulloch [17]. The experiments were done in triplicate and

showed distinct staining patterns of G-actin and F-actin with very

little fluorescence crosstalk.

Adhesion of RP1 Mutants on Endothelial Cells Under
Flow

Parallel plate flow chambers (m-slide, Ibidi, Martinsried,

Germany) were seeded with human umbilical vein endothelial

cells (HUVECs, Cambrex Bio Science, Verviers, Belgium). The

cells were grown in EGM-2 medium (BulletKit, Cambrex Bio

Science, Cambridge, UK) until reaching confluency. Prior to

experiments, HUVECs were stimulated overnight with 10 ng/mL

TNF alpha. HEK293 cells stably transfected with RP1 isoforms

(RP1-wt, RP1-ALA236, RP1-ASP236 or the empty vector bearing

cell line as a control) were grown until reaching cell densities of

75%. Then, cells were trypsinized, washed and resuspended in

HBSS/0.1% BSA. 16105 HEK293 cells were added to the flow

chamber and allowed to settle for 3 min as described before [20].

After initial adherence, shear stress of 0.2 dyn/cm2 was applied by

flushing 37uC prewarmed HBSS/0.1% BSA using a precision

pump (IPC, Ismatec, Wertheim-Mondfeld, Germany) until no

cells were further released. Subsequently, shear stress was

increased stepwise every 30 seconds to a maximum of 2.5 dyn/

cm2. After each step, cells were photographed using a CCD

camera (Sony, Cologne, Germany) mounted on an inverted stage

microscope (Axiovert 135, Zeiss, Oberkochen, Germany). Adher-

ent cells were counted manually in four representative fields for

every shear stress condition and values were normalized to the

number of initially adherent cells set at 100% [20].

Shear Stress and Endogenous RP1 Expression
Fluid shear stress experiments were performed as described by

dela Paz and colleagues [21]. In brief, HEK293 cells were grown

in the periphery of 100-mm culture dishes through blocking the

center of the dish by a 60-mm culture dish (TPP Techno Plastic

Products AG, Trasadingen, Switzerland) until reaching cell

densities of 70%. Then shear stress of 1 dynes/cm2 was applied

while shaking cells at 46 rpm with an orbital rotation of 1.1 cm

inside a cell incubator approximating the shear stress across each

cell layer as the maximal wall shear stress: tmax = a!rg(2pf)3,

where a is the radius of orbital rotation (1.1 cm), r is the density of

the medium (1.0 g/ml), g is the viscosity of the medium (7.561023

dynes?s/cm2) and f is the frequency of rotation (rotations/second).

As a control HEK293 cells were incubated only. After five hours

cells were lysed and 1mg of protein per treatment group was used

for immunoprecipitation following the manurfacturer’s protocol

(Pierce Crosslink IP Kit, Rockford, USA). 15 mg goat anti RP1

antibody (Santa Cruz Biotechnology) was bound to agarose and

incubated with each cell lysate. Bound proteins were then eluted

from the complex, run on a 10% SDS-Page gel, transferred to

nitrocellulose membrane with a pore size of 0.22 mm. The

membrane was blocked with Roti-Block (Carl Roth

GmbH&Co.KG, Karlsruhe, Germany) for 2 hrs and incubated

with goat anti RP1 antibody. Bound antibody was detected

applying peroxidase conjugated donkey anti goat IgG and TMB

(GE Lifescience) according to manufacturer’s protocol. As loading

control 20 mg of lysate protein from HEK293 (sheared and non

sheared) cells was analyzed in a Western blot procedure employing

mouse anti a-tubulin antibody. Western blot signals were

quantified exerting ImageJ software (Rasband, W.S., ImageJ, U.

S. National Institutes of Health, Bethesda, Maryland, USA).

Phosphorylation of RP1 Under Shear Stress
HEK293 RP1-wt cells were grown and exposed to shear stress

of 1 dynes/cm2 for five hours as described above. Thereafter, cells

were lysed and 1mg of protein was used for immunoprecipitation.

10 mg monoclonal mouse anti-His antibody (Genscript, Piscat-

away, USA) were linked to agarose and used as probe on the cell

lysate. Bound proteins were eluted, run on a 10% SDS-Page gel

and transferred to nitrocellulose membrane. The blocked mem-

brane was incubated with 2 mg/ml rabbit anti-Phosphoserine

Antibody (Invitrogen Corporation, Camarillo, USA). Bound

antibody was detected applying peroxidase conjugated goat anti-

rabbit IgG and TMB. As loading control lysates from HEK293

RP1-wt (sheared and non-sheared) cells were detected in a

Western blot procedure employing goat anti-RP1 antibody.

Adherence Under Shear Stress
HEK293 cells stably expressing RP1-ALA236, RP1-ASP236,

empty vector, shRNA or sh-control were grown until reaching cell

densities of 70%, detached and 26106 cells per cell line were

seeded in the periphery of 100-mm culture dishes and incubated

one hour until initial adherence. Thereupon, shear stress of either

1.5, 4.5 or 8.5 dynes/cm2 by shaking the cells at 60 rpm, 125 rpm

or 190 rpm was applied for 5 min. Medium and floating cells were

removed, cells were stained with crystal violet solution (0.1%) for

25 min at room temperature and rinsed 15 min in ddH2O. Plates

were dried on paper and crystal violet dissolved from cells by 0,5%

Triton X-100 while shaking for one hour and measured at 570 nm

on an Epoch 96-well plate reader (BioTek Instruments,Winooski,

USA).

Generation of shRNA Cell Lines
105 HEK293 cells per well were seeded in a 12-well-plate and

cultivated overnight in a cell incubator (at 37uC and 5% CO2).

The next day cells were treated with 4 mg/ml Polybrene (Santa

Cruz Biotechnology) for 2 hrs followed by 0.16106 lentiviral

particles of RP1 shRNA (Santa Cruz Biotechnology) or control

shRNA lentiviral particles. After 48hrs cells were transferred to a

cell culture flask and 24 hrs later growth medium was

supplemented with 5 mg/ml Puromycin dihydrochloride (Santa

Cruz Biotechnology). Single cells were seeded in 96 well plates,

grown and 10 mg of protein lysates from different colonies were

run on an 10% SDS page gel. Protein was transferred to a

nitrocellulose membrane, which was cut horizontally at a protein

marker size of 45 kDa. For RP1 detection the lower membrane

part was exposed to goat anti-RP1 antibody. For loading control

purposes the upper membrane part was incubated with mouse anti

a-tubulin antibody (Fig. S3).

Statistics
Statistical tests were performed using the GraphPad Prism

version 5.03. (www.graphpad.com). For p value calculation the

two-tailed Fisher9s exact test was employed unless otherwise noted.

Results

In a yeast-two-hybrid-assay CK2 kinase had appeared as a

potential interaction partner of RP1 (own unpublished data). In

this study we have identified three potential CK2 phosphorylation

RP1 Is a Phosphorylation Target of CK2
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site motifs (X-S/T-X-X-D) at amino acid position 59, 72, 236

within the RP1 sequence (Fig. 1A). Whereas the potential CK2

phosphorylation site motif at position 52 is present in all EB1

family members, the phosphorylation sites 72 and especially 236

are not found in the two other EB1 family members EB1 and EB3

(despite a sequence identity of .70% among all family members

including RP1). To test whether CK2 interacts with RP1, we

performed co-precipitation experiments in RP1-expressing

HEK293 cells. CK2 was recovered in RP1 immunoprecipitates

using different CK2 antibodies (Fig. 1B, left panel). In contrast,

control immunoprecipitates from cells not expressing RP1, did not

or barely contain CK2. In the reverse experiment, CK2

immunoprecipitates contained RP1 (Fig. 1B, right panel). These

results indicate that RP1 and CK2 interact in vivo.

To examine which of the three identified phosphorylation sites

are actually phosphorylated by CK2 in vitro kinase assays were

performed. Synthesized peptides of RP1 containing S59, S72 and

S236 were used as phosphorylation targets. Only the S236

containing peptide and a positive control (DDDDSDDDDD) were

phosphorylated by CK2, whereas peptides S59 and S72 were not

or only marginally phosphorylated (Fig. 1C). Having shown the

importance of serine at position 236 we replaced this amino acid

by alanine or aspartate in an RP1-containing plasmid. These RP1

mutants, a non-phosphorylatable RP1-ALA236 (ALA) and a

Phospho-mimicking RP1-ASP236 (ASP) were used in a kinase

assay and incubated with recombinant CK2. Wild type RP1 was

considerably phosphorylated, whereas RP1-ALA236 was signifi-

cantly less phosphorylated (Fig. 1D). The weak band seen in RP1-

ALA236 lane (Fig. 1D upper right lane, right panel) is most likely a

less specific phosphorylation at a different serine site, e.g. S72.

Together, the in vitro kinase assays showed that CK2 phosphor-

ylates RP1 predominantly at serine 236.

Furthermore, phenotypic changes of the mutant RP1 bearing

cells regarding their adhesion properties were noted. In cell

culture, stable expression of RP1 by itself led to a decrease of

adhesion with the most pronounced effect in the RP1-ASP236

mutant cells. RP1-ASP236 containing HEK293 cells were more

frequently found floating and were easier detachable from the

underlying surface than empty vector- or RP1-wt containing

HEK293 cells. Moreover, RP1-ASP236 and to a lower degree

RP1-wt and RP1-ALA236 containing HEK293 cells were slower to

re-attach after detachment compared to empty vector-containing

HEK293 cells (Fig. S1).

To quantify the observed changes in cell adherence a shear

stress assay was performed. Adhesion of HEK293 cells stably

transfected with empty vector (control) or RP1-wt or RP1-

ALA236 or RP1-ASP236 on a surface of endothelial cells

(HUVEC) in parallel plate flow chambers at defined shear stresses

were assessed. Thereby, the influence of RP1 function on

resistance of HEK293 cells to detachment upon increasing levels

of shear stress as a measure of the adhesion function could be

evaluated. With increasing shear stress adhesion of HEK293 cells

was declining to 20–45% at 2.5 dyn/cm2. The differences in

adhesion behavior under flow between the parental cell line, RP1-

wt or the RP1-ALA236 mutant did not reach statistical

significance. In contrast, the RP1-ASP236 bearing cells displayed

significantly less adhesion from 1 to 2.5 dyn/cm2 compared to the

control cell lines (Fig. 2A). This indicates that expression of RP1-

ASP236 leads to decreased cell adhesion under static and flow

conditions.

To corroborate these findings, we investigated the cellular

amount of endogenous RP1 under shear stress conditions. After

applying shear stress of 1 dynes/cm2 on native HEK293 cells over

five hours we found endogenous RP1 expression to be reduced to

almost undetectable levels by Western blotting (Figure 2B).

Next, we examined the RP1 phosphorylation status under fluid

shear stress. For this, the RP1-wt containing mutant clone was

chosen, because endogenous RP1 had been diminished after shear

stress as described above (Fig. 2B) and would not be accessible for

serine phosphorylation status examination. Hence, RP1-wt

overexpressing cells were put under shear stress and the respective

phosphorylation status was subsequently checked. After immuno-

precipitation of RP1 from whole cell lysates serine phosphorylation

of RP1 was revealed by blotting with an anti-phosphoserin

antibody. RP1-wt bearing cells displayed a more than 20%

increased serine phosphorylation of RP-1 after shear stress as seen

in Figure 2C. The difference was statistically significant.

Finally, we performed the shear stress procedure with different

intensity (0, 1.5, 4.5 and 8.5 dynes/cm2) on HEK293 empty

vector and the mutant HEK293 cells. Here, we compared control

cells transfected with irrelevant shRNA, RP1 specific shRNA

bearing cells and the mutant cell lines RP1-ALA236, RP1-ASP236

(Fig. 2D). The results correlated with our findings in the parallel

plate flow chambers on a surface of endothelial cells (Fig. 2A).

Moreover, we demonstrated a significant gain of cell adhesion

represented by higher resistibility to increasing shear stress in RP1

specific shRNA containing cells compared to controls. The

difference of adherence between the specific RP1 shRNA cell line

and its respective control reached statistical significance at 4.5 and

8.5 dynes/cm2. In accordance with this result, increased

attachment of RP1 shRNA containing cells compared to control

cells were observed after a brief attachment and wash off

procedure (Figure S2).

To understand the underlying changes we examined the

cytoskeletal properties of these cell lines in more detail. Here,

the actin cytoskeleton of our RP1 clones displayed a significant

difference with regard to G-actin amounts (Fig. 3A and 3B). A

lower G-actin content in all RP1 expressing cell lines was

detectable by flow cytometry. HEK293 control cells expressing

the empty vector (Fig. 3A upper right panel) had a G-actin content

of 24.1%. In RP1-wt, RP1-ALA236 (ALA), RP1-ASP236 (ASP) cells

significantly reduced G-Actin contents were found (5.7% -wt,

2.2% ALA, 4,4% ASP, Fig. 3A, lower panels from left to right). In

this regard Phospho- and non-Phospho-mimicking mutants were

not different compared to RP1 wild type expressing cells.

These observations led us to investigate the surface levels of

various adhesion molecules. When RP1 clones were tested for

expression of Cadherins (N-, E-, P-) by Western blotting, a marked

decrease of N-cadherin in cells expressing RP1 constructs

compared to parental or empty vector-transfected cells (Fig. 4A)

was noted. The difference of total N-cadherin levels among the

RP1 clones; namely the RP1-wt, RP1-ALA236 or RP1-ASP236

mutant were not statistically significant (Fig. 4B left panel).

Further, more cleaved N-cadherin (Fig. 4A middle blot) was found

in the RP1 containing cells, with the significant highest amount of

the N-cadherin fragment CFT1 in the RP1-wt clone (Figure 4B).

This result hints towards a N-cadherin regulation by degradation.

To reconfirm these results in a second assay, a FACS analysis

utilizing an antibody against N-cadherin was performed (Fig. 4C).

The mean fluorescence intensity (MFI) of cells containing RP1-wt,

-ALA or -ASP was more than 2-fold lower than the empty vector.

No significant differences among the various mutants were seen,

neither in FACS analysis nor in immunofluorescent staining (data

not shown).
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Figure 2. Shear Stress experiments. 2A Analysis of shear stress-dependent adhesion of RP1 mutants on endothelial cells under flow 16105

HEK293 cells stably transfected with different RP1 mutants were allowed to settle for 3 min on parallel plate flow chambers with pre grown confluent
HUVECs. Subsequently, preheated HBSS/0.1% BSA was flushed through the chambers at the indicated calculated shear stress, and shear stress levels
were increased every 30 s. Photographs were taken and adherent cells were counted in four fields for every condition. Cell line with empty vector
(black squares), RP1 wild type (wt) (black circles), RP1-ALA236 (ALA) mutant (white circles), RP1-ASP236 (ASP) mutant (white squares). Values are means
of n = 5–6+/2 SEM. Asterisks denote statistically significant differences *p,0.05 or **p,0.01 between parental cell line and ASP mutant as
determined by a two-tailed t-test. 2B Analysis of RP1 expression under fluid shear stress Native HEK293 cells were exposed to fluid shear
stress or simply cultured (control). Thereafter, cells were lysed and total protein from the lysates was employed in immunoprecipitation of RP1.
Endogenous RP1 was detected by an RP1 specific antibody. a-tubulin served as a loading control. RP-1protein detected by Western blot was
quantified using the ImageJ software. Asterisks mark statistically significant differences **p,0.01 between sheared and non-sheared cells as
determined by a two-tailed t-test. 2C Analysis of RP1 phosphorylation under fluid shear stress HEK293 cells overexpressing RP1-wt were
exposed to 1dynes/cm2 shear stress. From cell lysate RP1 was immunoprecipitated and subjected to Western blotting. In parallel the phosphorylation
status of RP1 was detected with an anti phospho-serine antibody (anti PS). As control HEK293 cells overexpressing RP1-wt were cultured without
shear stress and otherwise processed alike. Total RP1 (RP1) expression served as loading control. The difference between phosphorylation intensity in
sheared versus control cells was statistically significant (**, p,0.05). 2D Analysis of RP1 shRNA regulated cells and RP1 phosphor-mutants
under fluid shear stress HEK293 containing empty vector or various mutants were exposed to increasing shear stress. The curves show the
percentage of adhering cells under different shear stress intensity (0, 1.5, 4.5 and 8.5 dynes/cm2) on control cells transfected with irrelevant shRNA
served as a reference (black boxes) and were compared to RP1 specific shRNA bearing cells and the mutant cell lines RP1-ALA236, RP1-ASP236. A
significant gain of cell adhesion is seen for RP1 specific shRNAs (white boxes). The statistical differences of adherent cells between the depicted cell
lines and the control cells are marked with Asterisks *p,0.05 or **p,0.01.
doi:10.1371/journal.pone.0067595.g002
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Discussion

Previously, we have found RP1 mRNA to be up-regulated upon

T lymphocyte activation [4]. Since then it has become clear that

RP1 (EB2) has distinct properties within the EB1 protein family

despite its high homology to the other family members. However,

more detailed cellular regulatory mechanisms of this EB1 family

protein have remained elusive. New evidence indicates an

important role of RP1 in malignancy [10], thus functional studies

on RP1 are warranted. Here we report that RP1 can be

phosphorylated by CK2 and the potential consequences of this

interaction. Protein-protein interaction between the kinase and its

target has been confirmed by co-immunoprecipitation. Our in vitro

assays map the CK2 phosphorylation site of RP1 to serine 236

(Fig. 1).

CK2 is an ubiquitous kinase constitutively active with autopho-

sphorylating properties [22]. Abundant evidence suggests that

CK2 supports a cancer phenotype by influencing a number of

cellular events including proliferation, anti-apoptosis and adher-

ence [15,23]. Though CK2 is often found overexpressed and

deregulated in cancer [14,24] it has never been found mutated. Its

part in cancer development is not transforming cells but appears to

be supporting a malign phenotype by protecting cancer cells

against cellular defense programs activated by stress [25,26]. For

this CK2 is regarded a prototypical ‘‘non-oncogene target’’.

Inhibitors for clinical purposes have been developed [27] and the

kinase is regarded as a novel key target in oncological therapy.

After having confirmed RP1 as the genuine CK2 target we

created various mutants, to address consequential effects of RP1

phosphorylation on cellular phenomenology. Recent findings have

indicated an involvement of RP1 in highly nerve invasive

pancreatic cancer cells [10]. Pancreatic cancer cells examined by

immunofluorescence have a specific cellular pattern for RP1 and

actin. In cells expressing low levels of RP1 actin is distributed

apical and accumulates in filopodia structures. In cells with high

RP1 levels cortical and transverse stress fibers are found and RP1

colocalizes with abundant filamentous actin [10]. We find a

decrease of G-Actin in RP1 containing clones (Fig. 2B) and suggest

that RP1 is more involved in actin organization than hitherto

assumed. In this context it is noteworthy that RP1 possesses an

actin binding element located within its N-terminal domain and in

contrast to EB1 and EB3, RP1 has significantly less microtubulin

binding and bundling properties [5]. Besides actin changes

constitutive RP1 expression results in downregulation of N-

cadherin. Low levels of N-Catherine has been associated with

less cellular adhesion [28] and when N-cadherin is cleaved by

ADAM10 cell migration is promoted in glioblastoma cells [28]. In

our model Phospho-mimicking and non-Phospho-mimicking did

not differ significantly with regard to downregulation of N-

cadherin, indicating no clear association between RP1 phosphor-

ylation status and N-cadherin levels. However, in the functional

assay the phospho-mimicking mutant RP1 ASP236 had the most

profound phenotype as reflected by the least resistance to shear

stress. Expanding on RP1’s role in adhesion, we found that shear

stress leads to increased RP1phosphorylation. Furthermore,

endogenous RP1 protein is downregulated in cells under shear

stress and RP1 shRNA knockdown results in markedly increased

adhesion. Taken together, these data support the notion that after

Figure 3. G- and F-Actin in RP1-expressing cells. 3A G- and F-actin content of 106105 constitutively RP1 expressing cells were measured by
FACS analysis. G-Actin (green) was measured in the FL-1 channel (Fluor 488, green) and F-Actin in the FL-3 channel (phalloidin rodamine staining,
red). The upper left quadrant of each panel represents the F-actin pool, the upper right quadrant the G-Actin pool. The top three panels are the
controls: Upper left panel, unstained control cells. Upper middle panel: Boiled fluoresceine conjugated DNAse I unable to bind G-Actin serving as a
negative control. Upper right panel: Double staining of HEK293 cells with Fluor 488 conjugated DNAse I and Phalloidin-Rhodamine carrying the
empty pEAK8 vector to determine the general content of G-actin and F-actin pools as reference. The bottom panels show the respective degree of G-
actin decrease seen in the RP1-wt, ALA, ASP containing cell lines. 3B Quantification of G-Actin content in RP1 expressing HEK293 cells compared to
mock transfected cells from 3A. Differences marked by asterisks were statistically significant using the two-tailed Fisher’s exact test
(**p = 0.0001;*p = 0.0003).
doi:10.1371/journal.pone.0067595.g003
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an initial phosphorylation event of RP1, the protein is degraded

and cellular adhesion is consecutively increased.

In summary, our data show that RP1 is a genuine phosphor-

ylation target of CK2 and support a role of RP1 as a switch for

CK2 in increasing cell adhesion properties. CK2 inhibitors are on

the brink of clinical use but inhibition of CK29s broad spectrum

may be accompanied by unexpected side effects. By defining CK2

downstream targets like RP1 a more targeted approach may

ultimately be developed if the present CK2 kinase inhibitors

should not live up to their promises.

Figure 4. Cadherin expression in RP1-mutants. 4A N-cadherin levels of HEK293 cells containing empty vector (c), wt, ALA and ASP were
determined by immunoblotting with an N-terminal N-cadherin antibody. The middle panel shows a processed N-cadherin fragment (named CTF1)
detected by a fragment specific antibody in respective lysates. The lower panel shows the b-tubulin loading control. 4B The Western blot signals of
4A were quantified using the Image-J software (Rasband, W.S., ImageJ, U. S. National Institutes of Health, Bethesda, Maryland, USA, http://rsb.info.nih.
gov/ij/, 1997–2008). Differences marked by asterisks were statistically significant using the two-tailed Fisher’s exact test (**p,0.001) comparing
control versus wt and mutants regarding complete N-cadherin and comparing wt versus mutants regarding N-cadherin cleavage fragment (CTF1). In
the right panel, the empty c lane indicates no detectable CTF in control cells. 4C N-cadherin levels were measured by incubation with a monoclonal
antibody directed against the cytoplasmic tail and subsequent FACS analysis. The negative control (yellow line) was incubated with secondary
antibody only. The positive control (red) was empty vector containing HEK293 cells. The results for HEK293 expressing RP1-wt are depicted in black,
RP1-ALA236 in green and RP1-ASP236 in blue. 4D Quantification of N-cadherin levels from FACS analysis. Differences marked by asterisks were
statistically significant using the two-tailed Fisher’s exact test (**p,0.001).
doi:10.1371/journal.pone.0067595.g004
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Supporting Information

Figure S1 Surface attachment of RP1-wt and mutant RP1

expressing cells. Pictures show decreased attachment behavior of

RP1-ASP236 mutant. Equal quantities 56106 Cells containing

empty vector (control left panels), RP1-wt (middle panels) and RP1

ASP (right panels) were seeded to 10 cm dishes and left for 30

minutes before supernatant and unsettled cells were washed off. 24

hours (upper panels) and 48 hours (lower panels) later,

representative overview pictures of the respective cells were taken.

(TIF)

Figure S2 Surface attachment of of RP1 shRNA expressing

cells. Pictures show increased attachment behavior of RP1 shRNA

regulated cells (right panel) compared to control shRNA

containing cells. Cells were seeded and washed off as described

in S1. Overview pictures were taken at indicated time points.

(TIF)

Figure S3 RP1 shRNA Downregulation of endogenous RP1

protein in HEK293 cells by a specific lentiviral transduced shRNA

(right lane) and a respective control shRNA (left lane) is shown by

Western blotting. a-tubulin served as a loading control.

(TIF)
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