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Gravity field and Orbit

Gravity field

Non-linear parameter
estimation problem

e A priori model (linearization)
e Observations

e Regularization (a priori knowledge
via pseudo-observations)
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A generalized orbit determination problem

state vector

a priori stochastic parameters

corrections .
spherical

harmonic
coefficients

Gravity field
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Signal and Noise in monthly models (GRACE)

Noise

= GFZ-RL04

Stochastic accelerations:
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Signal and Noise in monthly models (GRACE)

10

geoid heights [m]

10 '+

Slide 6

| =— GFZ-RL04
|| =— GFZ-RLO05, orbit free
: = (GFZ—RLO5, orbit fixed

\
i
W

/
A ’ 4 {
\ N
X )"
Q /
(‘ A /\D )

1IO 2|0 3|0 4|0 5|O

degree

60

Reference:
EIGEN-6C

Expected

Surprising!



Hotine-Marussi, 17th-21st June 2013, Roma

S,C-Coefficients

Difference: common estimation - orbit fixed

Example: March 2008 Expected
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Direct - Spacewise — Timewise Analysis

Direct approach:

generalized orbit determination problem

= arc specific parameters
= model parameters

Space wise approach:
grid values are interpolated from observations
=> S,C-Analysis (integral formulas)

e Time wise approach:
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observations as timeseries along orbit
Fourier-Analysis => Lumped Coefficients
=> Spherical Harmonic Coefficients
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Timewise approach
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Potential along orbit

Gravitational observations in satellite
fixed frame

Orbit perturbations relative to
reference orbit (in satellite fixed
frame)

Inter-satellite observations

Time derivatives
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Gravity potential along orbit
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Lumped Coefficients: potential
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Co-Rotating frame

Slide 12

Earth fixed frame:

Xt’ yt’ Zt

Satellite fixed frame:

X = along-track

>%  y = cross-track

Z = radial

Geocentric, rotating frame:

X'[|z,y' || x, 2" || y
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Potential => gravitational acceleration

Gradient in 5 T,
satellite @ r cos @' ON
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Gravitational accelerations => orbit perturbations

Hill (1878) | a@ Perturbing
T+ 2nz = —— potential
Equations

of motion: ¢ +nly =

SIS

Z — 2nxr — 3n2z —

0z

X, Y, z relative to circular reference orbit (n const.)

Solvable analytically (exact)!

But only valid for circular orbits (approx.)

Slide 14 Astronomical Institute University of Bern AIUB



si, 17th-21st June 2013, Roma

-Marus

Transfer: orbit perturbations

. gdy
Transfer: HY =

0-RESONANCE
N-RESONANCE

Slide 15




Hotine-Marussi, 17th-21st June 2013, Roma

Lumped Coef.: Along-track orbit perturbations

Difference: common estimation - orbit fixed
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Lumped Coef.: Along-track orbit perturbations

Frequency < 24 rev/day

d)km = ku + mA
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Amplitude Spectrum (Lumped Coef. dx)

Frequency of
stoch.
accelerations
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Discussion

Slide 19

Stochastic orbit parameters increase consistency
between a priori and estimated gravity field.

Aggravated when correlations are broken.

Whole S,C-spectrum is affected by only few low
frequent stochastic accelerations.

Can be explained via lumped coefficients by
timewise analysis.

Could probably be useful to regularize lumped
coefficients (instead of S, C).

Is complicated by resonance effects in case of
orbit perturbations and derivatives.
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