
J
H
E
P
0
1
(
2
0
1
3
)
0
3
7

Published for SISSA by Springer

Received: October 29, 2012

Accepted: December 3, 2012

Published: January 4, 2013

Sommerfeld effect in heavy quark chemical

equilibration
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Abstract: The chemical equilibration of heavy quarks in a quark-gluon plasma proceeds

via annihilation or pair creation. For temperatures T much below the heavy quark mass

M , when kinetically equilibrated heavy quarks move very slowly, the annihilation in the

colour singlet channel is enhanced because the quark and antiquark attract each other which

increases their probability to meet, whereas the octet contribution is suppressed. This is the

so-called Sommerfeld effect. It has not been taken into account in previous calculations

of the chemical equilibration rate, which are therefore incomplete for T . α2
sM . We

compute the leading-order equilibration rate in this regime; there is a large enhancement

in the singlet channel, but the rate is dominated by the octet channel, and therefore the

total effect is small. In the course of the computation we demonstrate how operators that

represent the annihilation of heavy quarks in non-relativistic QCD can be incorporated

into the imaginary-time formalism.
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1 Introduction

If heavy quarks of mass M in a quark-gluon plasma are initially out of thermal equilib-

rium, they quickly equilibrate kinetically by multiple scatterings with gluons and light

quarks [1]–[5]. (In this paper we consider an ideal limit in which the plasma lives for a long

time.) At temperatures T ≪ M chemical equilibration is much slower because it requires

quark-antiquark annihilation or pair creation.1 In fact, given that the probability to find

a target is Boltzmann suppressed, the chemical equilibration rate Γchem is exponentially

small at low temperatures, Γchem ∼ e−M/T [6–8].

Given that the heavy quarks are in kinetic equilibrium they move with non-relativistic

velocity. When the reacting particles have small relative velocity v, their mutual interac-

tions can have a large influence on the annihilation or production cross section [9, 10], a

phenomenon known as the Sommerfeld effect. In perturbation theory this effect would first

show up in the 1-loop correction to a tree-level cross section σ0:

σ = σ0

[

1 +O

(
αs

v

)

+O
(
αs ln v

)
+O

(
αs

)
]

. (1.1)

For Coulomb-like interactions the Sommerfeld effect manifests itself as a non-vanishing

contribution of O(αs/v). When v becomes as small as αs, the 1-loop correction can be-

come larger than the tree-level result. The naive loop expansion then breaks down, and

the enhanced terms need to be resummed. This effect has to be taken into account for any

particle reactions close to threshold [11], and has been widely discussed, e.g., in connection

with tt̄ and gluino and squark pair production in hadronic collisions (see e.g. refs. [12–14]

for recent work and references). It may also play an important role in the indirect detection

of dark matter particles [15].

1Weak interactions are not considered here.
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At finite temperature the typical heavy quark velocity is of order v ∼
√

T/M ≪ 1.

Thus the naive perturbative expansion breaks down for v . αs, i.e. T . α2
sM . Then a sim-

ilar resummation is needed as in hadronic collisions at zero temperature. The Sommerfeld

effect in thermal dark matter freeze-out has indeed been discussed in many recent works,

such as refs. [16–18], and it may also play a role in certain leptogenesis scenarios [19]. How-

ever, to the best of our knowledge, the Sommerfeld effect has not been taken into account

in previous calculations of the chemical equilibration rate of heavy quarks.

In ref. [20], a definition of the heavy quark chemical equilibration rate was given which

is non-perturbative and thus goes beyond the usual formulation in terms of the Boltzmann

equation. At leading order it gives the same rate as the Boltzmann equation. To include

more terms of the perturbative expansion, it would be convenient to use non-relativistic

QCD (NRQCD [21]) for computing the rate. The pair annihilation of heavy quarks is

represented in NRQCD by an imaginary part in a coefficient of a 4-fermion operator [22].

Such a complex coefficient is related to the analytic structure of a corresponding Green’s

function. One purpose of the present paper is to give a formulation of such operators which

can be used in the imaginary-time formalism. Subsequently, the NRQCD analysis allows

us to disentangle the contributions from the colour singlet and octet operators to the heavy

quark chemical equilibration rate, a necessary first step for discussing the Sommerfeld effect.

This paper is organized as follows. In section 2 we discuss how pair annihilation can

be incorporated in the imaginary-time formulation of NRQCD, and use this to determine

the contributions of singlet and octet operators to the chemical equilibration rate. In sec-

tion 3 we compute the leading-order chemical equilibration rate taking into account the

Sommerfeld effect. A brief summary is presented in section 4.

2 Non-relativistic QCD in the imaginary-time formalism

2.1 General formulation

NRQCD [21] describes non-relativistic heavy quarks, and gluons and light quarks with

momenta much smaller than M . Therefore the annihilation of a heavy quark-antiquark

pair cannot be described in terms of the fields of the theory. However, when integrating

out the scale M , one obtains 4-fermion operators. When this is done in real time, their

coefficients have an imaginary part which corresponds to the annihilation process [22].

The imaginary parts of these coefficients arise from a cut, or discontinuity, of 4-point

functions, viewed as a function of some energy variable ω, across the real ω-axis. If manip-

ulations are carried out in the complex ω-plane, as is necessary e.g. in thermal field theory,

then the imaginary parts of these coefficients have to be represented in a way which re-

flects this analytic structure. This can be achieved by expressing them in a suitable spectral

representation.

The spectral representation of a 2-point function Π can be written as

Π(ω,k) =

∫ ∞

−∞

dz

2π

(
1

ω − z
− 1

ω + z

)

ρ(z,k) , (2.1)

– 2 –
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where the spectral density ρ is a real and odd function of z. In this form Π can be evaluated

both for real ω, which corresponds to real time, and for imaginary ω = iωn, where ωn is a

Matsubara frequency, which corresponds to imaginary time. By approaching the real ω-axis

in different ways one obtains different operator orderings (for instance, setting ω = Reω+

i0+ yields a retarded correlator, which for ω ≫ T is equivalent to the time-ordered one).

The function Π(iωn,k) is purely real. Spectral representations are routinely used in finite

temperature perturbation theory for Hard Thermal Loop [23, 24] resummed propagators.

The 4-fermion operators of ref. [22] are

δLM =
f1(

1S0)

M2
O1(

1S0) +
f1(

3S1)

M2
O1(

3S1) +
f8(

1S0)

M2
O8(

1S0) +
f8(

3S1)

M2
O8(

1S1) , (2.2)

O1(
1S0) ≡ ψ†χχ†ψ , O1(

3S1) ≡ ψ†~σχ · χ†~σψ ,

O8(
1S0) ≡ ψ†T aχχ†T aψ , O8(

3S1) ≡ ψ†~σT aχ · χ†~σT aψ . (2.3)

Here ψ, χ are 2-component non-relativistic spinors, σ are the Pauli matrices, and T a are

generators of SU(Nc), normalized as Tr[T aT b] = δab

2 . The subscripts 1, 8 refer to singlet

and octet channels, respectively. The absorptive parts of the coefficients read [22]

Im f1(
1S0) =

CF

2Nc
πα2

s +O(α3
s ) , Im f1(

3S1) = O(α3
s ) ,

Im f8(
1S0) =

N2
c − 4

4Nc
πα2

s +O(α3
s ) , Im f8(

3S1) =
Nf

6
πα2

s +O(α3
s ) , (2.4)

where CF ≡ (N2
c − 1)/2Nc. The corrections of O(α3

s ) are also known, but not needed here.

The spectral representation of the most general 4-point function involves three energy

variables instead of a single one as in eq. (2.1). Fortunately, this complication can be

avoided for the operators of eq. (2.3) at leading order: only the sum of the energies of the

annihilating particles appears. This is obvious for the s-channel annihilation. It is also

true for the t and u-channel annihilation, because the virtual heavy quark is far off-shell,

and effectively leads to a point-like interaction of the annihilating pair and the produced

two gluons. Consequently, the operators can be represented in a form similar to eq. (2.1),

δS
(i)
M =

∫

X

∫

K1,K2,K3,K4

ei(K1+K2+K3+K4)·X ψ∗
r (K1)χs(K2)χ

∗
t (K3)ψu(K4)

×
∫ +∞

−∞

dz

2π

[
ρ
(i)
rstu(z)

k01 + k02 − z
− ρ

(i)
utsr(z)

k01 + k02 + z

]

, (2.5)

where r, s, t, u contain both spin and colour indices, i enumerates the four cases in eq. (2.2),

X ≡ (t,x) and Ki ≡ (k0i ,ki). Setting e.g. k01, k
0
2 → M + i0+, k1,k2 → 0, the absorptive

parts can be read off:

Im f (i)

M2
⇔ −1

2

[

ρ
(i)
rstu(2M)− ρ

(i)
utsr(−2M)

]

, (2.6)

– 3 –
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where a suitable choice of indices is understood. Subsequently, computations can be carried

out also in the imaginary-time formalism, by including

δS
(i)
E = −

∫

X

∑
∫

{K1,K2,K3,K4}
ei(K1+K2+K3+K4)·X ψ∗

r (K1)χs(K2)χ
∗
t (K3)ψu(K4)

×
∫ +∞

−∞

dz

2π

[
ρ
(i)
rstu(z)

ikn1 + ikn2 − z
− ρ

(i)
utsr(z)

ikn1 + ikn2 + z

]

(2.7)

in the Euclidean effective action. Here X ≡ (τ,x), K ≡ (kn,k),
∫

X ≡
∫ 1/T
0 dτ

∫

x
,

Σ
∫

{K} ≡ T
∑

{kn}

∫

k
, and

∑

{kn}
denotes a sum over fermionic Matsubara frequencies.

2.2 Definition of the chemical equilibration rate

Physically, heavy quark chemical equilibration corresponds to the fact that the energy

carried by kinetically equilibrated heavy quarks is not conserved because of annihilation

or pair creation; the chemical equilibration rate is a “transport coefficient” describing the

average non-conservation. Concretely, the task is to compute the connected correlator [20]

∆(τ) ≡
∫

x

〈

H(τ,x)H(0,0)
〉

c
, 0 < τ <

1

T
, (2.8)

where H denotes the heavy quark Hamiltonian. In terms of the fields in eq. (2.3), the

Hamiltonian reads H = M(ψ†ψ − χ†χ) + O(1/M). We expand to first order in the

absorptive action, eq. (2.7), which is 1/M2-suppressed. After a Fourier transformation,

∆̃(ωn) =
∫ 1/T
0 dτ eiωnτ∆(τ), and analytic continuation, ρ∆(ω) = Im ∆̃(ωn → −i[ω + i0+]),

a coefficient denoted by Ωchem in ref. [20] can be extracted as

Ωchem = lim
Γchem ≪ω≪ωUV

ω2
[
1 + 2fB(ω)

]
ρ∆(ω) , (2.9)

where Γchem ∼ e−M/T , ωUV ∼ T , and fB denotes the Bose distribution. The chemical

equilibration rate then follows from Γchem = Ωchem/(2χfM
2), where χf denotes the heavy

quark-number susceptibility.

2.3 Perturbative evaluation of the chemical equilibration rate

Whereas the formulation of section 2.2 is in principle non-perturbative (apart from the fact

that the matching coefficients in eq. (2.4), reflecting ultraviolet dynamics at the energy scale

∼M , need to be computed perturbatively), we now expand in the gauge coupling as well.

The free heavy quark propagators have the forms

〈
ψr(K1)ψ

∗
s(K2)

〉

0
=
δrs δ

– (K1 +K2)

ikn1 + Ek1

,
〈
χr(K1)χ

∗
s(K2)

〉

0
=
δrs δ

– (K1 +K2)

ikn1 − Ek1

, (2.10)

where Ek ≡ M + k2/2M + · · · , and Σ
∫

K
δ– (K) ≡ 1. Feynman diagrams are illustrated in

figure 1.
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(a) (b)

Figure 1. Feynman diagrams for the computation of the heavy quark chemical equilibration rate

within NRQCD. Two ovals connected by a dotted line represent the absorptive part of a 4-fermion

operator; filled squares represent the heavy quark Hamiltonian; and solid lines represent heavy

quark propagators. The heavy quarks propagate along the imaginary time direction.

Carrying out Wick contractions and Matsubara sums, performing the analytic contin-

uation, and taking the cut, we obtain the spectral function

ρ∆(ω) =
2M2

ω2

∑

i

∫

k1,k2

{[
ρ(i)rssr(Ek1 + Ek2 + ω)− ρ(i)rssr(−Ek1 − Ek2 − ω)

]

×
[
fF(Ek1)+fB(Ek1+Ek2+ω)

][
fF(Ek2+ω)−fF(Ek2)

]
−(ω→−ω)

}

, (2.11)

where fF denotes the Fermi distribution. Expanding in a small ω,

fF(Ek2 + ω)− fF(Ek2) ≈ −ω
T
fF(Ek2)

[
1− fF(Ek2)

]
, (2.12)

and omitting exponentially small terms, the coefficient of eq. (2.9) is readily extracted:

Ωchem = −8M2
∑

i

∫

k1,k2

[
ρ(i)rssr(Ek1 + Ek2)− ρ(i)rssr(−Ek1 − Ek2)

]
fF(Ek1)fF(Ek2) . (2.13)

Subsequently we may count the contractions for the operators in eq. (2.3):

ρrssr[O1(
1S0)] → 2Nc , ρrssr[O1(

3S1)] → 6Nc ,

ρrssr[O8(
1S0)] → 2NcCF , ρrssr[O8(

3S1)] → 6NcCF . (2.14)

Identifying the absorptive coefficients from eq. (2.6) (noting that Ek1
+Ek2

≈ 2M because of

the exponential suppression factors), and inserting their values from eq. (2.4), then leads to

Ωchem = 16M2

∫

k1,k2

fF(Ek1)fF(Ek2) × πα2
sNcCF

M2

(
1

Nc
︸︷︷︸

singlet,O
1

+
N2

c − 4

2Nc
+Nf

︸ ︷︷ ︸

octet,O
8

)

. (2.15)

This is the main information needed in the next section. (For completeness we note that

a division by 2χfM
2 = 8NcM

2
∫

k2
fF(Ek2

) leads to Γchem of eq. (3.15) with S̄1 = S̄8 = 1.)

3 Sommerfeld effect in the chemical equilibration rate

Consider now the annihilation or pair creation of a heavy quark Q and antiquark Q̄ with

four-momenta K1 and K2. We define v as the velocity of Q in the QQ̄ rest frame:

v ≡ |v| , v ≡ k1 − k2

2M
. (3.1)

– 5 –
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One has to resum the multiple exchange of gluons with typical momenta Q = (q0,q), where

q0 ∼Mv2 , q ≡ |q| ∼Mv . (3.2)

In heavy-quark kinetic equilibrium eq. (3.2) corresponds to

q0 ∼ T , q ∼
√
MT . (3.3)

In particular, q is parametrically larger than the Debye scale which is of order gT , where

g is the gauge coupling (g ≡ √
4παs):

q ≫ gT . (3.4)

Therefore the Debye screening and Landau damping of the exchanged gluons by the hot

plasma can be neglected.2

The heavy quarks interact with gluons in the plasma, constantly changing their colour

charge. This could affect the Sommerfeld effect which depends on the colour charge of the

pair. The scattering with the plasma is characterized by the thermal width γ, which for

heavy quarks is of order αsT [26]. On the other hand, the virtuality ∆ ≡ (K−Q)2−M2 =

(k0 − q0)2 − (k − q)2 −M2 of the heavy quark lines is of the same order as the typical

momentum transfer squared, i.e. ∆ ∼MT . Schematically, a thermal width would replace

(k0 − q0)2 → (k0 − q0 + iγ)2 ≃ (k0 − q0)2 + 2ik0γ (3.5)

in the propagator. Since k0γ ∼ αsMT ≪ MT ∼ ∆, the width and correspondingly the

colour change due to scattering with the heat bath are small compared with virtuality, and

can be neglected at leading order.

In ref. [20] it was shown that, ignoring the Sommerfeld effect, the leading order chemi-

cal equilibration rate can be obtained from a Boltzmann equation which contains the Born

cross section. The resummation of the Sommerfeld-enhanced terms modifies the Born

matrix elements as [9–11]

|Mresummed|2 = S |Mtree|2 , (3.6)

where S = S(v) is the so-called Sommerfeld factor. When the QQ̄ pair is in a colour singlet

state the Sommerfeld factor is S = S1 with

S1 =
X1

1− e−X
1

, X1 = CF

g2

4v
, (3.7)

whereas for the octet S = S8 with

S8 =
X8

eX8 − 1
, X8 =

(
Nc

2
− CF

)
g2

4v
. (3.8)

2This is true not only parametrically but also numerically: we have checked that, above threshold and

for typical parameter values, eq. (3.7) is in excellent agreement with the ratio of resummed and tree-level

singlet spectral densities [25], in which the effects of Debye screening and Landau damping are included.

– 6 –
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_

Figure 2. The averaged Sommerfeld factors, eq. (3.16), for the singlet and octet contributions.

At tree level the processes gg ↔ QQ̄ and qq̄ ↔ QQ̄ contribute to the chemical equili-

bration rate. The result of ref. [20] can be written as

Γchem =
Me−M/T

16
√
2π3Nc

∫ ∞

0
dv v2e−Mv2/T

{
1

2

∑∣
∣
∣Mtree

gg→QQ̄

∣
∣
∣

2
+Nf

∑∣
∣
∣Mtree

qq̄→QQ̄

∣
∣
∣

2
}

, (3.9)

where the sums are over all spin and colour degrees of freedom. In qq̄ ↔ QQ̄ the QQ̄ is in a

colour octet state, whereas the process gg ↔ QQ̄ has both octet and singlet contributions.

Denoting by r the ratio of octet to singlet contributions, eq. (2.15) implies that

r =
N2

c − 4

2
=

5

2
. (3.10)

According to eq. (3.6) one has to replace in eq. (3.9)

∣
∣
∣Mtree

gg→QQ̄

∣
∣
∣

2
→

∣
∣
∣Mtree

gg→QQ̄

∣
∣
∣

2
(

1

1 + r
S1 +

r

1 + r
S8

)

, (3.11)

∣
∣
∣Mtree

qq̄→QQ̄

∣
∣
∣

2
→

∣
∣
∣Mtree

qq̄→QQ̄

∣
∣
∣

2
S8 . (3.12)

The summed tree-level matrix elements in the non-relativistic limit are

∑∣
∣
∣Mtree

gg→QQ̄

∣
∣
∣

2
= 4g4CFNc(4CF −Nc) , (3.13)

∑∣
∣
∣Mtree

qq̄→QQ̄

∣
∣
∣

2
= 4g4CFNc . (3.14)

Thus we find

Γchem =
g4CF

8πM2

(
MT

2π

)3/2

e−M/T

[(

2CF − Nc

2

)(
1

1 + r
S̄1 +

r

1 + r
S̄8

)

+Nf S̄8

]

, (3.15)

– 7 –
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with the thermally averaged Sommerfeld factors

S̄α ≡ 4√
π

(
M

T

)3/2 ∫ ∞

0
dv v2e−Mv2/T Sα , α ∈ {1, 8} . (3.16)

After a rescaling of v, the Sommerfeld factors of eq. (3.16) are seen to be functions of

g2
√

M/T only. A numerical evaluation is shown in figure 2. Analytically, for T ≪ α2
sM

we get

S̄1 ≈
g2CF

2

√

M

πT
, (3.17)

whereas S̄8 is exponentially small (although decreasing only slowly in figure 2). For

T ≫ α2
sM , on the other hand,

S̄1 ≈ 1 +
g2CF

4

√

M

πT
, S̄8 ≈ 1− g2(Nc − 2CF)

8

√

M

πT
. (3.18)

As an example, if we take αs ≃ 0.3, M ≃ 1.5GeV, and T ≃ 300MeV, then S̄1 ≃ 3.4,

S̄8 ≃ 0.8. For Nf = 3, this implies that the square brackets in eq. (3.15) evaluate to 4.28

rather than the naive 4.17. In other words, the substantial Sommerfeld enhancement of

the singlet channel is all but compensated for by the fact that most channels, in particular

all associated with light quarks, are octets, and for octets there is a mild suppression.

4 Summary

In a heavy ion collision, the heavy quark chemical equilibration rate parametrizes the rate at

which heavy quarks and antiquarks, produced in overabundance in an initial hard process,

annihilate during the thermal stage of the fireball evolution. It can be viewed as a funda-

mental property of thermal QCD, whose systematic understanding may have interesting

theoretical relations to cosmology, given that similar (co-)annihilation phenomena lie e.g. at

the heart of computations determining the dark matter relic abundance (in some scenarios).

On general grounds, the perturbative expansion for the chemical equilibration rate has

the same functional form as the cross section shown in eq. (1.1) with v ∼
√

T/M . In this

paper, we have resummed the terms of O(αn
s /v

n), describing the Sommerfeld effect, to

all orders. The result has the form shown in eq. (3.15), with numerical factors plotted in

figure 2. Due to a fortuitous cancellation between a strongly enhanced but mildly weighted

singlet contribution, and a mildly suppressed but strongly weighted octet contribution, the

numerical results turn out to be largely insensitive to the resummation.

The cancellation is peculiar to Nc = 3. For instance, for the fundamental representa-

tion of SU(2), possibly relevant for dark matter (co-)annihilation at temperatures above

the electroweak scale, the repulsive non-singlet contribution is absent (cf. eq. (3.10)). There

is only an attractive channel also for oppositely charged particles in U(1), and indeed the

Sommerfeld effect is likely to play an important role in chemical equilibration in hot QED

plasmas (see e.g. ref. [27] for a general discussion of the problem).

Even though the O(αs/v) contribution in eq. (1.1) is insignificant in practice for Γchem,

the functions O(αs ln v) and O(αs) might well be large. Therefore their determination, as

well as a fully non-perturbative study of the chemical equilibration rate remain, in our

opinion, well-motivated challenges.

– 8 –
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