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Abstract: The transverse broadening of an energetic jet passing through a non-Abelian

plasma is believed to be described by the thermal expectation value of a light-cone Wilson

loop. In this exploratory study, we measure the light-cone Wilson loop with classical

lattice gauge theory simulations. We observe, as suggested by previous studies, that there

are strong interactions already at short transverse distances, which may lead to more

efficient jet quenching than in leading-order perturbation theory. We also verify that the

asymptotics of the Wilson loop do not change qualitatively when crossing the light cone,

which supports arguments in the literature that infrared contributions to jet quenching can

be studied with dimensionally reduced simulations in the space-like domain. Finally we

speculate on possibilities for full four-dimensional lattice studies of the same observable,

perhaps by employing shifted boundary conditions in order to simulate ensembles boosted

by an imaginary velocity.
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1 Introduction

When an energetic jet traverses a strongly interacting thermal medium, various interactions

take place and lead to dissipation: the jet loses some of its energy and sharpness. The latter

phenomenon is referred to as jet broadening, or jet quenching. If its efficiency is measured

experimentally as a function of the jet’s energy (this can be done particularly well if the

total jet momentum is balanced against that of a hard photon, which does not lose energy

to the medium [1]), then we may learn something about the properties of the medium

itself. The current understanding is that in order to explain the jet quenching observed

empirically in heavy ion collision experiments, interactions have to be much stronger than

suggested by leading-order perturbation theory (for reviews see, e.g., refs. [2]–[8]).

On an intuitive level, a highly energetic jet can be thought of as a light-cone Wilson

line, and the fact that we are probing its fate in the transverse direction leads us to correlate

the Wilson line with a slightly displaced Hermitean conjugate. Adding lines at both ends

leads to a light-cone Wilson loop. Arguments have been given to make the correspondence

precise (see, e.g., refs. [3], [9]–[12]), however it appears difficult to state the form of the error

that is made in this approximation. In the following we take the light-cone Wilson loop

as a starting point, without dwelling any further on its relation to physically measurable

quantities.

In a statistical environment (with a temperature T , assumed to be above a few hundred

MeV), thermal noise leads to decoherence. As a result the light-cone Wilson loop, to be
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denoted by W , “decays” at large Minkowskian times t ≫ ~/T .1 Schematically, assuming

an appropriate time ordering, we may expect that

〈
W (t, r⊥)

〉
T

t≫~/T∼ Z(r⊥) e
−iV (r⊥)t ∼ Z(r⊥) e

−iReV (r⊥)t e−|ImV (r⊥)|t , (1.1)

where r⊥ ≡ |r⊥| is the length of a 2-dimensional transverse vector; ReV (r⊥) is a real phase;

and 〈. . .〉T refers to a thermal expectation value. If the coefficient of the exponential decay

is represented in Fourier space,

| ImV (r⊥)| =

∫

k⊥

(1− eik⊥·r⊥)C(k⊥) , (1.2)

then C(k⊥) is often referred to as the “transverse collision kernel” ([13] and references

therein). Considering for concreteness a Wilson loop in the fundamental representation,

the leading-order expression for C(k⊥) at small transverse momenta reads ([14], eq. (44))

C(k⊥) = g2TCF

(
1

k2⊥
− 1

k2⊥ +m2
E

)
+O

(
g4T 2

k3⊥

)
, (1.3)

where g2 ≡ 4παs/~ is the strong gauge coupling; CF ≡ (N2
c − 1)/(2Nc); and

m2
E ≡

(Nc

3
+

Nf

6

)g2T 2

~
(1.4)

is the Debye mass parameter (which has units of inverse distance squared). The question

we are interested in is how large the corrections to eq. (1.3) can be, particularly within the

infrared domain k⊥ ≪ πT/~.

Previous work already exists on infrared corrections to eq. (1.3). In particular, the

corrections of O(g4T 2) were computed for k⊥ ∼ mE in ref. [13], and non-perturbative

effects of O(g6T 3) for k⊥ ∼ g2T/π were addressed in ref. [15]. In ref. [13] it was noted

that for k⊥ ∼ mE the perturbative series might be slowly convergent, and therefore in need

of an all-orders resummation. Conceptually, the aim of the current study is to implement

such a resummation through numerical simulations of a low-energy description.

More precisely, our goal is to address eq. (1.1) within the framework of classical lattice

gauge theory (CLGT). It should be immediately acknowledged that although CLGT does

represent2 the physics of the system at scales k⊥ ∼ g2T/π, it actually is not quantitatively

accurate at the scales k⊥ ∼ mE that are of most interest here. The reason is that it is

highly sensitive to lattice artifacts in this momentum range [23, 24]. Nevertheless, it still

contains the correct physics on the qualitative level; indeed CLGT simulations have been

useful for gaining insight on various phenomena at the Debye scale (see e.g. refs. [25, 26]),

thereby serving as a stepping stone towards full four-dimensional simulations of the same

1Since the concept of a classical limit appears frequently, it is useful to show ~ explicitly, thereby keeping

the units of time and energy separate. In contrast we set the speed of light equal to unity as usual.
2Originally CLGT simulations were employed for addressing the rate of non-perturbative anomalous

chirality violation originating from the scale k⊥ ∼ g2T/π, see e.g. refs. [16]–[21] and references therein.

They have also been used for studying the dynamics of thermal phase transitions, see e.g. ref. [22], as well

as many non-equilibrium problems in cosmology and heavy ion collision experiments.
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τ

r⊥

r‖

vEτ

Figure 1. An illustration of a tilted Wilson loop in Euclidean space-time. The slope in the

“parallel” direction (r‖) is parametrized by a Euclidean velocity vE, so that the right edge lies at

r‖ = vEτ . The transverse extent (r⊥) can be interpreted as the length of a two-dimensional vector.

problems (see e.g. refs. [27]–[31]). The great strength of CLGT is that it operates directly in

Minkowskian space-time, thereby circumventing all issues related to analytic continuation.

The purpose of the present study is to explore what CLGT can teach us about the light-cone

Wilson loop in the domain indicated in eq. (1.1).3

The plan of this paper is the following. After outlining the general framework (sec-

tion 2), we present some analytic expectations in section 3, setting the stage for a compari-

son with numerical data. The numerical results are presented in section 4, and we conclude

in section 5.

2 General framework

With a view on obtaining a formulation which may eventually be amenable to full four-

dimensional lattice Monte Carlo simulations, we start by defining a “tilted” Wilson loop in

Euclidean space-time. The Wilson loop is parametrized by a transverse extent, r⊥; by an

imaginary-time variable, τ ∈ (0, β), where β ≡ ~/T ; and by a velocity, vE. At the end of

the computation both τ and vE will be subjected to a Wick rotation, but for the moment

they are treated as real variables. The Wilson loop is illustrated in figure 1. In the limit

vE → 0, it goes over into the Wilson loop defined in the context of heavy quarkonium

physics in ref. [33]. (We note that it may ultimately be more useful to “tilt” the thermal

ensemble rather than the Wilson loop, which in four dimensions can be achieved through

shifted boundary conditions [34].)

More concretely, starting with the continuum formulation and choosing sign con-

ventions in which the covariant derivative in the fundamental representation is Dµ =

∂µ + ig0Aµ, a straight Wilson line reads

W [X2;X1] = P exp

(
−ig0

∫ X2

X1

dXµAµ

)
, (2.1)

where X ≡ (τ,x). The foremost tilted line of figure 1 can be expressed as

W [(τ, r⊥ + vEτ); (0, r⊥)] = 1− ig0

∫ τ

0
dτ1 (A0 + vE ·A)(τ1, r⊥ + vEτ1) + . . . , (2.2)

3Previously CLGT simulations have been used as an ingredient in a phenomenological study of jet

quenching of hard particles [32], but the light-cone Wilson loop was not measured.
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where vE ≡ vE e‖. The expectation value of the Wilson loop is defined as

CE(τ, vE, r⊥) ≡
1

Nc
Tr

〈
W

[
(0,0); (τ,vEτ); (τ, r⊥ + vEτ); (0, r⊥); (0,0)

]〉
T
, (2.3)

where the thermal average 〈. . .〉T implies periodic boundary conditions for bosonic and

antiperiodic ones for fermionic fields over the Euclidean time direction. In the following,

we have in mind evaluating the expectation value within pure SU(3) gauge theory, even

though this restriction can in principle be relaxed.

Since the physical observable that we are interested in refers to Minkowskian time, an

analytic continuation needs to be carried out at the end of the computation. Technically,

we do this by substituting τ → it, which for 2-point functions yields the time ordering

corresponding to a Wightman correlator denoted by C>. (The Wilson loop can always

be thought of as a 2-point function in time if the tilted lines are gauged to unity; general

issues related to time ordering have been discussed in refs. [3], [9]–[13].) However, since in

the following we will simultaneously take the classical limit, time ordering actually plays

no role. The classical limit can be defined by writing

β =
~

T
, g20 = g2~ , (2.4)

and subsequently setting ~ → 0 [35]. This limit is non-trivial and results in an interacting

non-Abelian gauge theory which captures the infrared features of the system’s real-time

thermal dynamics [16, 17].

Apart from the continuum formulation, we also consider a lattice formulation of the

theory in the following. Like in ref. [36], the theory is discretized only in spatial directions,

with a finite lattice spacing a, whereas the time direction remains continuous.4 Thereby

the four-dimensional Euclidean action can formally be expressed as

SE ≡ a3
∑

x

∫ β

0
dτ





3∑

i=1

Tr [E2
i (X)] +

1

a4g20

3∑

i,j=1

Tr [1− Pij(X)]



 , (2.5)

where g0 denotes the bare gauge coupling and Ei, Pij denote the electric field strength and

the spatial plaquette, respectively:

Ei(X) ≡ − i[∂τUi(X)]U †
i (X)

ag0
+

A0(X)− Ui(X)A0(X + aei)U
†
i (X)

a
, (2.6)

Pij(X) ≡ Ui(X)Uj(X + aei)U
†
i (X + aej)U

†
j (X) . (2.7)

Here Ui ∈ SU(3) are link matrices, and A0 is a traceless and Hermitean gauge field. The

action is invariant under the gauge transformation

Ui(X) → G(X)Ui(X)G−1(X + aei) , (2.8)

A0(X) → G(X)A0(X)G−1(X) +
i

g0
[∂τG(X)]G−1(X) , (2.9)

4This formulation is invoked because of its close relation to CLGT; in contrast, the speculations to be

made about full four-dimensional lattice studies in section 5 apply equally well to the standard formulation

with a symmetric discretization in all directions.
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with G ∈ SU(3). For perturbative computations we make use of covariant gauges; in

contrast, on the real-time simulation side it is convenient to make use of the corresponding

Hamiltonian formulation with a vanishing Minkowskian A0 and a corresponding Gauss law

constraint.

3 Analytic expectations

3.1 HTL result in continuum

Our ultimate goal is to compute the analytic continuation of eq. (2.3) at large Minkowskian

times, t>∼π/(g2T ), and large transverse distances, r⊥>∼ 1/mE. We start, however, by

inspecting short distances, r⊥<∼ 1/mE. This can be done with perturbation theory, provided

that we recall that at high temperatures the loop expansion needs to be resummed to all

orders in order to arrive at a consistent weak-coupling result. We are working at leading

non-trivial order in this regime, and then the effects of resummation are contained within

Hard Thermal Loop (HTL) [37, 38] propagators.

Concretely, we carry out the computation by evaluating the graphs of figure 2 with

the Euclidean propagator

〈
Aa

µ(X)Ab
ν(Y )

〉
= δab

∑∫

K

eiK·(X−Y )

[
PT

µν(K)

K2 +ΠT

+
PE

µν(K)

K2 +ΠE

+
ξKµKν

K4

]
, (3.1)

where K ≡ (kn,k) and ξ is a gauge parameter. The projectors read

PT
µν(K) = δµiδνj

(
δij −

kikj
k2

)
, PE

µν(K) = δµν −
KµKν

K2
−PT

µν(K) . (3.2)

The Euclidean propagators are expressed in a spectral representation,

1

K2 +Π
T(E)

=

∫ ∞

−∞

dk0
π

ρ
T(E)(K)

k0 − ikn
, (3.3)

where K ≡ (k0,k), and subsequently the Matsubara sums are carried out. The explicit

forms of the self-energies can be found in the literature but are not needed here. In general

the computation parallels that in ref. [33], except that it is in some sense simpler (as long as

we stay in continuum): indeed a non-zero vE “regulates” the contributions of the Matsubara

zero modes, so that they no longer need to be treated separately from the non-zero ones.

Some technical details of the computation are presented in appendix A. Here we merely

note that analytic continuation is carried out as τ → it, vE → −iv, and the classical limit

is taken as discussed around eq. (2.4).5 The definition of a potential reads (cf. eq. (1.1))

i∂tCE(it,−iv, r⊥) ≡ V (t, v, r⊥)CE(it,−iv, r⊥) ; (3.4)

5In practice the classical limit amounts to assuming that k0 ≪ πT/~; therefore, at leading order it

correctly represents the physics of the large-time or low-energy limit of the exponential decay.
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r⊥

τ

Figure 2. The graphs contributing to the tilted Wilson loop of figure 1 at O(g2
0
). Wiggly lines

stand for HTL-resummed gluon propagators.

taking the limit t → ∞ and setting v → 1, we reproduce the result of eq. (1.3):

V
(2)
cl (∞, 1, r⊥) = −ig2TCF

∫

k⊥

(
1− cosk⊥ · r⊥

)( 1

k2⊥
− 1

k2⊥ +m2
E

)
(3.5)

= −i
g2TCF

2π

[
ln
(mEr⊥

2

)
+ γE +K0(mEr⊥)

]
. (3.6)

Here K0 is a modified Bessel function.

Next-to-leading order (NLO) corrections to the integrand of eq. (3.5) have been deter-

mined in ref. [13]. They are large and increase the magnitude of the imaginary part; their

numerical contribution to eq. (3.6) is shown in figure 4 below.

3.2 HTL result on a spatial lattice

For a practical measurement, the theory needs to be regularized; within CLGT, this means

that we consider (a Minkowski-space classical limit of) the theory defined by eq. (2.5).

Expressing everything in lattice units and taking the limit of eq. (2.4), the results depend

on a single parameter, which we denote by

βG ≡ 2Nc

g2Ta
. (3.7)

Initial configurations are generated with the weight exp(−βGHcl)
∏

x
δ(G(x)), where

Hcl =
∑

x

{ 3∑

i=1

Tr [E2
i (x)] +

1

2Nc

3∑

i,j=1

Tr [1− Pij(x)]

}
; (3.8)

G(x) denotes the Gauss law constraint; and Ei(x) are suitably normalized canonical mo-

menta conjugate to the link matrices Ui(x). Subsequently the fields are evolved according

to classical equations of motion (cf. eqs. (4.1), (4.2)), and the observable is measured as

illustrated in figure 3. (Further details on CLGT simulations can be found e.g. in refs. [17]–

[20], [25, 26]; the normalization of the electric field is strongly reference-dependent.)

Within CLGT, the Debye mass scale of the continuum formulation gets replaced with

m2
E → g2T/a, whereas the coupling constant scale remains put at g2T . In lattice units, this

implies that we want to determine the Wilson loop at separations r⊥/a>∼
√
βG and time

scales t/a>∼βG. The latter of these requirements poses a significant challenge at large βG,

and introduces a source of systematic errors with any limited resources. Approaching this

– 6 –
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t

r⊥

r‖

a

a/v

Figure 3. An illustration of a tilted Wilson loop after the discretization of the spatial directions

with a lattice spacing a, and a Wick rotation of both τ and vE to Minkowskian space-time. We

represent the tilted Wilson lines by averaging the smallest possible building blocks over the upper

and lower paths. Measurements are taken at values t = na/v, with n ∈ N.

regime from below, perturbation theory can again be used, but necessitates a HTL-type

resummation, whose details were worked out in refs. [23, 24].

In practice, carrying out perturbative computations even to leading non-trivial order

is cumbersome, due to the asymmetry in the discretizations of the temporal and spatial

directions. As an example, the expression obtained after carrying out the Wick contractions

for the graphs in figure 2 is shown in appendix B. As a main qualitative difference with

respect to the continuum computation, we note that the tilted Wilson lines in figure 3 do

not cancel against each other even at distance r⊥ = 0. Rather, we obtain an “intercept”

which we denote by

I(v) ≡ 2va

3

∫

k

sin2
(
ak̃
2v

)

k̃2
, k̃ ≡

√
k̃2 , k̃2 ≡

3∑

i=1

k̃2i , (3.9)

where
∫
k
and k̃i are defined in eq. (B.1). Then we expect eq. (3.5) to be replaced through

V
(2)
cl (∞, 1, r⊥) ≃ −ig2TCF

{
I(1)+

∫

k⊥

(
1−cos kyr⊥

)( 1

k̃2y + k̃2z
− 1

k̃2y + k̃2z +m2
E

)}
, (3.10)

where k⊥ ≡ (ky, kz), and the Debye mass parameter reads [23, 24, 39, 40]

m2
E = 2g2TNc

Σ

4πa
, Σ = Γ2

[
1

24

]
Γ2

[
11

24

] √
3− 1

48π2
. (3.11)

As discussed in appendix B, the r⊥-dependent part of eq. (3.10) is an approximation, but is

expected to be valid for r⊥ ≫ a. In any case eq. (3.10) illustrates the general feature that,

apart from the scale of the lattice spacing, the potential can have non-trivial structure only

at two distance scales, namely 1/g2T and 1/mE.

3.3 Beyond perturbation theory

Let us extract lessons from above for what we may expect to see in the simulations:

• At “short” distances, r⊥ ≪ 1/mE, ImVcl should start off with a non-zero intercept,

given by eq. (3.9) for large βG.

– 7 –
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- 
Im

[V
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] 
/ 1

6
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NLO
NLO + asymptotics

1 
/ m

E

_

β G
 = 64

β G
 = 16

β G
 =

 6
4

β G
 =

 1
6

Figure 4. Left: the intercept from eq. (3.9), in units of eq. (3.15), compared with lattice data.

Right: the potential from eq. (3.10) (“LO”); with an integrand taken from ref. [13] (“NLO”);

and after adding the long-distance asymptotics [15] (“NLO+asymptotics”). Vertical lines indicate

distances beyond which perturbation theory is unreliable. The asymptotic behaviour sets in at

r̄ >∼ 2r0g
2T/(2Nc) ≈ 0.73. Axis ranges have been chosen to agree with figure 7(left) in which lattice

data is shown.

• At “intermediate” distances, r⊥ ∼ 1/mE, the potential ImVcl shows a non-trivial

structure which is relevant for jet quenching. This structure cannot be studied quan-

titatively with the approach of the present paper, given that within CLGT the Debye

scale is completely determined by lattice artifacts, cf. eq. (3.11). On the qualita-

tive level, however, we expect large corrections to the leading-order expression in

eq. (3.10) [13].

• At “long” distances, r⊥ ≫ 1/mE, the phenomena related to the Debye scale are

exponentially screened, and the physics is dominated by the colour-magnetic scale

g2T/π. More precisely, in continuum the imaginary part of the light-cone potential

corresponds to the static potential of three-dimensional pure Yang-Mills theory [15],

which for r⊥ ≫ π/(g2T ) evaluates to | ImVcl| ≃ 0.553(g2T )2r⊥ for Nc = 3 [41].

When summed together with the NLO result from ref. [13], which already includes

a part of the linear term, the appropriate correction reads δ| ImVcl| ≃ [0.553 −
7/(16π)](g2T )2r⊥ [15].

In order to observe the features mentioned in the data, it is helpful to change units.

Suppose that we use βG from eq. (3.7) in order to convert lattice units to physical units.

Then we can express distances and the potential as

r̄ ≡ r⊥g
2T

2Nc
=

r⊥
aβG

, (3.12)

Im V̄cl

16
≡ 1

16

2Nc ImVcl

g2T
=

βG Im aVcl

16
, (3.13)

– 8 –
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Figure 5. Left: time dependence of the classical Wilson loop for v = 1 at different distances r̄.

The common fitting range for the determination of ImVcl is denoted by the shaded region. Right:

effective mass plots for three selected r̄. The fitting range t/a ∈ [10, 20] is determined such that

a satisfactory signal-to-noise ratio is obtained, however systematic errors could be substantial and

the results obtained should be thought of as upper bounds as usual.

where the factor 16 is a convention. In these units, the Debye scale corresponds to

1

m̄E

≡ g2T

2NcmE

=

√
π

βGΣN2
c

, (3.14)

the zero-distance intercept from eq. (3.10) amounts to

lim
r̄ ≪ 1/m̄E

| Im V̄cl|
16

=
2NcCFI(1)

16
=

I(1)
2

, (3.15)

whereas the long-distance asymptotics reads

lim
r̄ ≫ 1/m̄E

| Im V̄cl|
16

≈ 1

16
0.553(2Nc)

2r̄ ≈ 1.2r̄ . (3.16)

The various features together with the effect of NLO corrections [13] are illustrated in

figure 4. The scale 1/m̄E defines the point beyond which perturbation theory is no longer

to be trusted, and the result may eventually (for r̄ >∼ 1) go over into the “asymptotics” curve

reflecting non-perturbative colour-magnetic dynamics. The non-perturbative contribution

of the scales k⊥ ∼ g2T/π to the so-called jet quenching parameter, q̂, is however determined

by distances just above r⊥ ∼ 1/mE, rather than by the long-distance asymptotics [15].

4 Numerical implementation

The simulations in the CLGT formalism are carried out along the lines of ref. [25], in which

the case v = 0 was considered. With the choice of temporal gauge U0(x, t) = 1 the classical
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Figure 6. Volume dependence of the imaginary part of the potential as obtained from lattice

simulations with βG = 64, v = 1 (left) and v = 2 (right), and a fitting procedure as described in

figure 5.
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Figure 7. Left: the βG dependence of the imaginary part of the potential for v = 1 at a fixed

physical volume N/βG = 1.5. Right: velocity dependence for βG = 64 and N/βG = 1.5. Coloured

bars denote statistical errors, whereas systematic errors, estimated from pushing the fitting ranges

to larger t/a, are given in gray (fitting at later times always decreases the result).

equations of motion for the variables of eq. (3.8) read

a ∂tUi(x, t) = i (2Nc)
1
2Ei(x, t)Ui(x, t) , (4.1)

a ∂tEb
i (x, t) = −

(
2

Nc

) 1
2

ImTr


T bUi(x, t)

∑

|j|6=i

S†
ij(x, t)


 , (4.2)
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where Sij denotes a staple. These differential equations are solved on a hypercubic three-

dimensional spatial lattice of size N3 using the Euler forward finite-difference scheme with

temporal lattice spacing at =
a

100 . As initial conditions, we deploy field configurations ther-

malized according to refs. [17–19, 25] with the Hamiltonian of eq. (3.8) and the appropriate

projection to the hypersurface respecting the Gauss law.

To obtain the potential of eq. (3.4), we measure the discretized Wilson loop (defined

like in eq. (2.3) but in Minkowski signature) in real time for several different transverse

separations r̄. The tilting away from the temporal axis with velocity v is implemented as

indicated in figure 3. Fitting the time evolution of these purely real quantities (left panel

of figure 5) with an exponential allows us to read off ImVcl from the exponent. For a rough

estimate of limt→∞ ImVcl, we identify a common fitting range for all values of r̄, in which

the asymptotic exponential falloff appears to have stabilized, while at the same time the

statistical noise due to a finite number of measurements is still relatively small (right panel

of figure 5). These requirements are hard to satisfy for large r̄ and βG and, as can also

be deduced from figure 5(right) by bare eye, the procedure adopted is likely to lead to an

overestimate of limt→∞ ImVcl.

The effect of a finite volume on the determination of ImVcl is shown in figure 6 for

v = 1 and v = 2. Higher velocities lead to a faster exponential damping of the Wilson loop,

hence the region for an exponential fit shrinks and leads to a more noisy signal as shown

in the right panel. We find that to go to r̄ ≃ 0.4 a lattice extent of at least N >∼ 1.5βG is

necessary.

Once an adequate lattice extent and a usable fitting range t/a ∈ [10, 20] have been

established, we proceed to measure the velocity dependence of ImVcl and its intercept. For

r̄ <∼ 1/m̄E perturbation theory becomes more accurate at larger βG, and indeed the lattice

results approach the perturbative ones for the intercept at all velocities, cf. figure 4(left).

For r̄ >∼ 1/m̄E, in contrast, perturbation theory need not be accurate. It is perhaps

surprising then how well the “NLO+asymptotics” result works for moderate βG, cf. fig-

ures 4(right) and 7(left), even though discrepancies remain at the smallest and largest

βG’s. For the smallest βG’s this may be due to the fact that the Debye scale is larger [cf.

figure 4(right)] and therefore the asymptotics is approached at larger separations. For the

largest βG we reiterate that it is difficult to reach the regime t/a>∼βG needed for extract-

ing the correct asymptotics (cf. figure 5), so that the remaining discrepancy is probably

due to systematic errors. Comparisons with perturbation theory need to be refined with

other methods in the Euclidean domain [13], in which the Debye scale is free from lattice

artifacts, so that the infinite volume and continuum limits can be systematically taken.

5 Conclusions and outlook

The purpose of this exploratory study has been to probe the contribution that highly

occupied classical gauge fields make to the thermal expectation value of a light-cone Wilson

loop. We have observed that discrepancies to the leading-order expression set in already

at relatively short transverse distances, and lead to a larger magnitude of the imaginary

part of the potential (stronger interactions) than predicted by leading-order perturbation
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theory (cf. figure 4(right) vs. figure 7(left)). This is in qualitative agreement with the NLO

computation of ref. [13] and with the long-distance asymptotics as analyzed in ref. [15].

Quantitative comparisons are hard because of discretization artifacts inherent to the CLGT

framework.

In addition, we have noted that crossing the light cone does not change the structure

of the potential in any qualitative way (cf. figure 7(right)). This poses well for the proposal

of ref. [13] according to which the potential could be measured within a purely static

dimensionally reduced effective field theory [42, 43]. Unlike classical lattice gauge theory,

that framework is (super)renormalizable, so that divergences and discretization artifacts

can be handled through local counterterms and analytic computations, and the genuine

continuum physics of the momentum scale k⊥ ∼ mE can be disentangled. (It is useful to

stress again that asymptotically large values of r⊥ need not be studied [15].) Thereby the

existence of large infrared effects contributing to jet quenching can possibly be confirmed,

perhaps leading to a QCD-based explanation for the experimentally observed efficient jet

quenching in current heavy ion collision experiments at the LHC.

We would finally like to pose the question of whether the observable of eq. (2.3) can also

be addressed with direct four-dimensional lattice simulations. One lesson from our study

is that discretizing the tilted Wilson lines (cf. figure 3) is inconvenient. It might rather

be sensible to boost the ensemble by making use of shifted boundary conditions [34], and

measure the Wilson loop always along the time-like lattice direction.

Of course, measuring eq. (2.3) is not enough, but subsequently analytic continuations

are needed for extracting the proper real-time physics. In fact there are two separate

analytic continuations here: τ → it as well as vE → −iv. The former is convention-

ally implemented by going through frequency space, i.e. estimating the spectral function

corresponding to the Euclidean correlator; from the spectral function, any time ordering

can be recovered. For vE = 0, a determination of the spectral function has been at-

tempted [27, 44, 45], and even though systematic uncertainties remain difficult to quantify,

the challenge should not be much harder in the presence of vE 6= 0. Note that the quantity

of interest here corresponds to the imaginary part of the real-time potential, cf. eqs. (1.1),

(1.2).

As far as the analytic continuation of the velocity is concerned, one of the methods

used in studies of QCD with a baryonic chemical potential might turn out to be helpful.

For instance, one could first carry out simulations with vE; fit the results to a Taylor series;

and subsequently carry out an analytic continuation. Although in a mathematical sense a

singularity cannot be excluded as v → 1, we have not observed any drastic changes in the

infrared dynamics of the system in this limit (the discretization-specific wobbles around

v ∼ 0.3 in figure 4(left) are not expected to be present if a boosted ensemble is simulated).

Therefore it is conceivable that such a procedure could yield at least qualitative results

against which dimensionally reduced simulations, carried out on the space-like side of the

light cone, can be compared.
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A Leading-order perturbative computation in continuum

We compute the graphs in figure 2 with the propagator of eq. (3.1), first in Euclidean

space-time. Carrying out Wick contractions, it can be checked that any gauge parameter

dependence cancels. Inserting eq. (3.3) for 1/(K2 +ΠT(E)), the remaining expression reads

C
(0)
E (τ, vE, r⊥) = 1 , (A.1)

C
(2)
E (τ, vE, r⊥) =

g20CF

β

∫

k

(
cosk · r⊥ − 1

) ∫ ∞

−∞

dk0
π

∑

kn

2− ei(kn+k·vE)τ − e−i(kn+k·vE)τ

k0 − ikn

×
{
ρE(k0,k)

[
1

(kn + k · vE)2

(
1 +

k2n
k2

)]

+ ρT(k0,k)

[
r2⊥

(k · r⊥)2
+

1

(kn + k · vE)2

(
v2E − k2n

k2

)]}
. (A.2)

Here kn ≡ 2πn/β, with n ∈ Z, are the Matsubara frequencies. The apparent poles of

eq. (A.2) at kn + k · vE = 0 are regulated by the zeros of the numerator.

The Matsubara sums can be carried out by partial fractioning the dependence on kn,

and then making use of

1

β

∑

kn

eiknτ

k0 − ikn
= nB(k0)e

τk0 ,
1

β

∑

kn

e−iknτ

k0 − ikn
= nB(k0)e

(β−τ)k0 , 0 < τ < β , (A.3)

where nB(k0) ≡ 1/(eβk0 − 1). In order to simplify the expressions we also take the classical

limit right away; recalling eq. (2.4) and setting ~ → 0, the results then become

C
(0)
E,cl(τ, vE, r⊥) = 1 , (A.4)

C
(2)
E,cl(τ, vE, r⊥) = g2TCF

∫

k

(
cosk · r⊥ − 1

) ∫ ∞

−∞

dk0
π

2− e(k0+ik·vE)τ − e−(k0+ik·vE)τ

k0

×
{
ρE(k0,k)

[
− 1

(k0 + ik · vE)2

(
1− k20

k2

)]

+ ρT(k0,k)

[
r2⊥

(k · r⊥)2
− 1

(k0 + ik · vE)2

(
v2E +

k20
k2

)]}
. (A.5)

It can be observed that in the classical limit, the Matsubara sum amounts effectively to

replacing kn through −ik0. (It would certainly be possible to keep nB(k0) in an exact form,

cf. ref. [46] for v = 0, however only the Bose-enhanced classical term nB(k0) ≈ T/(~k0) is

expected to contribute to the large-t limit to be taken presently.)
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Wick rotation is carried out through τ = it, vE = −iv, and the potential is extracted

from

i∂tC
(2)
E,cl(it,−iv, r⊥) ≡ V

(2)
cl (t, v, r⊥) C

(0)
E,cl(it,−iv, r⊥) . (A.6)

We obtain

V
(2)
cl (t, v, r⊥) = g2TCF

∫

k

(
cosk · r⊥ − 1

) ∫ ∞

−∞

dk0
π

ei(k0+k·v)t − e−i(k0+k·v)t

k0

×
{
ρE(k0,k)

[
− 1

k0 + k · v

(
1− k20

k2

)]

+ ρT(k0,k)

[
r2⊥(k0 + k · v)

(k · r⊥)2
+

1

k0 + k · v

(
v2 − k20

k2

)]}
. (A.7)

Subsequently the large-time limit follows from

lim
t→∞

ei(k0+k·v)t − e−i(k0+k·v)t

k0 + k · v = 2πi δ(k0 + k · v) . (A.8)

Carrying out the integral over k0 and setting also v = 1, so that k · v → k‖, leads to

V
(2)
cl (∞, 1, r⊥) = −ig2TCF

∫

k⊥

(
1− cosk⊥ · r⊥

)

×
∫ ∞

−∞

dk‖

π

{
ρT(k‖,k)

k‖
−

ρE(k‖,k)

k‖

}
k2⊥

k2⊥ + k2‖
. (A.9)

Here we substituted k‖ → −k‖ for simplicity. This potential is purely imaginary and,

according to eq. (A.6), corresponds to an exponential decay of the light-cone Wilson loop

at large Minkowskian times, as anticipated by eq. (1.1).

The next step is to perform the integral over k‖. This is possible by re-expressing the

spectral function as a discontinuity of the retarded correlator across the real axis,

ρ(k0,k) =
GR(k0 + i0+,k)−GR(k0 − i0+,k)

2i
, (A.10)

and by then carrying out the contour integral. In the literature the procedure is known as

a light-cone sum rule [14] (see also appendix A of ref. [13]), and yields
∫ ∞

−∞

dk‖

π

ρ(k‖,k)

k‖

k2⊥
k2⊥ + k2‖

= GR(0,k⊥) . (A.11)

The retarded propagator is, in turn, the analytic continuation of the Euclidean one.

Recalling finally that the self-energy ΠT of eq. (3.1) vanishes at zero frequency, whereas

ΠE equals the Debye mass parameter, m2
E, we recover eq. (3.5).

B Leading-order perturbative computation on a lattice

If the computation of appendix A is repeated in lattice regularization, then the expressions

become a lot more complicated. For instance, employing the notation

k̃i ≡
2

a
sin

(aki
2

)
, ki

˜
≡ cos

(aki
2

)
,

∫

k

≡
∫ π/a

−π/a

d3k

(2π)3
, (B.1)
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and making use of Feynman rules derived from eq. (2.5), the observable of eq. (A.2) can

formally be expressed as (k = (k⊥, k‖), k⊥ ≡ (ky, kz))

C
(2)
E (τ, vE, r⊥) =

g20CF

β

∫

k

(
cos kyr⊥ − 1

) ∫ ∞

−∞

dk0
π

∑

kn

2− ei(kn+k‖vE)τ − e−i(kn+k‖vE)τ

k0 − ikn

×
{
ρE(k0,k)(k‖

˜
)2
(

k̃n

vE

)2
[

1

( ˜kn
vE

+ k‖)2

(
1

k2n
+

1

k̃2

)]

+ ρT(k0,k)

[
1

k̃2y
+

1

( ˜kn
vE

+ k‖)2

((
kn

vE

˜

)2
− 1

k̃2

(
k̃n

vE

)2
)]}

−g20CF

β

τvEa
3

4

∫

k

∫ ∞

−∞

dk0
π

∑

kn

1

k0 − ikn

(
k̃n

vE

)2

×
{
ρE(k0,k)(k̃‖)

2

(
1

k2n
+

1

k̃2

)

+ ρT(k0,k)

(
1−

(k̃‖)
2

k̃2

)}
. (B.2)

If we recall, however, that after the Matsubara sum and the classical limit, kn gets essen-

tially replaced by −ik0, and that for non-zero distances and large times the contribution

emerges from k⊥<∼mE and k0, k‖<∼ g2T/π (cf. eq. (A.11)), then the lattice four-momenta

can to a good approximation be replaced by their continuum limits,

k̃µ → kµ , kµ
˜

→ 1 . (B.3)

Then the first structure of eq. (B.2) goes over into eq. (A.2). In contrast, the second

structure, which is linear in τ and independent of r⊥, originates from self-energy corrections

of the tilted Wilson lines and is specific to lattice regularization. Since this short-distance

contribution arises from “hard” scales, there is no need for resummation; we can replace

the spectral representations by free propagators,

∫ ∞

−∞

dk0
π

ρ
T(E)(K)

k0 − ikn
→ 1

k2n + k̃2
. (B.4)

Subsequently the Matsubara sum, classical limit, and analytic continuation are taken as

usual, which ultimately leads to the intercept of eq. (3.9).
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