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1 Introduction

In the past ten years the problem of moduli stabilization has attracted a lot of attention.

The crucial role of internal fluxes, both for closed and open strings, has been fully ap-

preciated [1–3]. Many models with partial moduli stabilization have been proposed and

non-perturbative effects, due to string or D-brane instantons, have been invoked as fur-

ther means to achieve the goal [4]. Most of the construction relies on fluxes that do not

admit a full-fledged description at the world-sheet level and are only amenable to a low

energy supergravity description that, among other things, requires the fluxes to be di-

luted. Moreover, a certain tension between chirality and moduli stabilization has been

encountered [5–8].

Asymmetric orbifolds of tori [9] constitute a class of exactly solvable string models

propitious to moduli stabilization. This was noted and exploited in the past [10–12], but
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not in a systematic manner. An extensive investigation of asymmetric orbifolds of Type

II strings with very few moduli was first performed in [5] where, however, chirality was

problematic to obtain in the unoriented descendants, because (generalized) Ω projections

of left-right symmetric models based on individual left-right asymmetric twists and shifts

tend to be compatible only with “bulk” branes.

Here, we turn our attention to the heterotic string as a more promising framework for

chirality and grand unification, although the question of moduli stabilization turns out to

be subtler in this setup. We build our models using the free fermionic approach developed

in [13–15] and [16, 17]. This formulation is particularly suitable for our goal, since it allows

the description of asymmetric twists and shifts in just as simple a manner as of symmetrical

ones. The free fermionic formulation of four dimensional heterotic strings has, indeed, a

long tradition of semi-realistic model building [18–28]. Some of the models present in the

literature, made already use of asymmetric twists and shifts added to geometric orbifold

projections, in the search for Standard Model like features. They were also analyzed from

the point of view of moduli fixing [12] and exhibit a reduced number of geometric moduli.

Moreover, a complete analysis of flat directions was attempted in one particular model [29],

but, due to the extension of the moduli space, it was difficult to reach a definite conclusion,

even using computer tools.

In this paper, we investigate in a systematic way the outcome of combining the virtues

of semi-realistic NAHE models [18] with asymmetric twists and shifts, in a simple setup.

We scan a large class of asymmetric heterotic string models, employing as a starting point

purely chiral twist and shifts that give rise to NAHE-like sectors. Geometrical moduli are

always fixed in this framework and no obvious neutral scalar moduli appear. However,

this does not guarantee the lack of flat directions. Combining an algorithm to scan the

possible models and analytic considerations, we find 18 classes of supersymmetric models,

each equipped with 26 discrete torsion variants. Some of them exhibit the GUT SO(10)

gauge group and chirality. Semi-realistic vacua would require more involved model building,

where extra projections further break the gauge group and reduce the number of Standard

Model generations. We defer such an analysis to the future and focus on models with

four a priori left-right asymmetric Z2 projections and no Ising fermions.1 The exhaustive

examination of flat directions in a heterotic string model is also a very complex problem.

We only address a qualitative analysis, that basically demonstrates how the existence of

exactly marginal deformations cannot be avoided in this class of models.

The paper is organized as follows. In section 2 we review the basics of the free fermionic

construction of heterotic string models. In section 3 we analyze the possibility of building

heterotic asymmetric models with standard embedding, via the so called Gepner map,

starting from the Type II models obtained in [5]. For later purposes we also define an

“inverse” Gepner map that allows to relate heterotic models with gauge symmetry G ⊃
SO(10) × E8 to Type II models with at least N = 1 supersymmetry. Section 4 details

the construction of our models and the results. A comparison with the Type II models

obtained in [5] is included together with an analysis of the “effective” topology of the

heterotic vacuum gauge bundle E . Finally, section 5 offers a discussion of the moduli in

1For an analysis involving geometrical projections, see [30].
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free fermionic heterotic models of the NAHE kind and of the heterotic analogue of brane

recombination, whereby product groups are broken to their diagonal, with current algebras

realized at higher level. The paper also contains several appendices. Appendices A and B

depict an analytical derivation of our models, while in appendix C we discuss the effect

of turning on discrete torsion in one particular model. Appendices D and E contain the

technical details relevant for the writing of the modular invariant partition functions, as

well as for the algorithm used to scan our 220 models via a Mathematica program.

2 Free fermionic construction

In the free fermionic construction [13–17] of four-dimensional heterotic string models all

the internal degrees of freedom are represented in terms of fermions. The resulting rational

Conformal Field Theories have the virtue of being relatively simple, while loosing, in the

general case, an immediate geometric interpretation. The left-moving degrees of freedom

correspond at least to an N = 1 world-sheet supersymmetry. They result into 18 internal

(real) fermions χi, yi and ωi, i = 1, . . . , 6, besides the two uncompactified (light-cone)

coordinates ∂Xµ
L and their superpartners ψµ. The χi are the fermionic coordinates along

the compact directions, while yi and ωi fermionize the compact space (chiral) bosonic

coordinates according to

∂Xi
L = yiωi, i = 1, . . . , 6 , (2.1)

in such a way that the world-sheet supercurrent can be non-linearly realized as

G =
∑

µ=7,8

ψµ ∂XLµ +
6
∑

i=1

χiyiωi. (2.2)

The right-moving degrees of freedom include the uncompactified (light cone) coordinates

∂̄X̃µ
R together with 44 internal real fermions. We label them as follows: ỹi and ω̃i, in

analogy with their left-moving companions, are the fermionization of the internal compact

space (chiral) bosonic coordinates

∂̄X̃i
R = ỹi ω̃i, i = 1, . . . , 6 . (2.3)

It is customary to split the remaining 32 real fermions as (χ̃1...6, ψ̃1...10, φ̃1...16), where

the χ̃’s generate a third internal SO(6) that proves to be useful in order to identify the

“standard embedding”, while the ψ̃1...10 and the φ̃1...16 are related to the “visible” SO(10)

and the “hidden” E8 in the semi-realistic four-dimensional model building.

To construct a theory, we need to specify a basis of fermion sets, {bα}. Each set contains

the fermions that are grouped together with identical spin structure in the corresponding

projection. In the real fermion case, that will be our main focus, one can only have Z2-

valued phases. As shown in the original papers [16, 17], the sets form a group with identity

(the empty set) under the symmetric difference. With a certain abuse of notation, we will

indicate this operation with the symbol “+” i.e.

b1 + b2 = {fa} ⇐⇒ [fa ∈ b1 ∪ b2] ∧ [fa /∈ b1 ∩ b2] . (2.4)

By the same token, we will sometimes refer to the sets as “vectors”.
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Not all the possible choices of basis are of course compatible with a consistent super-

string model. Indeed, modular invariance translates into the conditions

n(bα) = 0 mod 8 ;

n(bα ∩ bβ) = 0 mod 4 ;

n(bα ∩ bβ ∩ bγ) = 0 mod 2 ;

n(bα ∩ bβ ∩ bγ ∩ bσ) = 0 mod 2 , (2.5)

where n(b) denotes the difference between the number of left- and right- moving fermions

in the set b. Additionally, preservation of the holomorphic world-sheet supercurrent is also

a necessary condition, that translates into

∀i # χi −# yi −# ωi = 0 mod 2 , (2.6)

where # indicates the number of the corresponding fermions. To the previous constraints,

one has to add the correct relation between spin and statistics, derived from the factoriza-

tion of higher loop amplitudes [16, 17, 31]. Having m basis vectors results into a space of

2m sectors. The states in each sector have to be submitted to the projections related to the

initial sets. Discrete torsions play also an important role in building the final spectrum.

The simplest models, those with a basis containing few sets, correspond to heterotic

strings at enhanced symmetry points, where the background metric and antisymmetric

tensor take specific values. For instance, the E8 × E8 heterotic string compactified on the

maximal torus of SO(12) is obtained from the sets

F = {ψµ χ1...6 y1...6 ω1...6| ỹ1...6 ω̃1...6 χ̃1...6 ψ̃1...10 φ̃1...16} ,
S = {ψµ χ1...6} ,
E = {φ̃1...16} ,
G = {χ̃1...6 ψ̃1...10} . (2.7)

The set S is responsible for the usual GSO projection. The basis {F, S} generates the

partition function of the Narain generalized toroidal compactification of the heterotic

string [32, 33]. The corresponding one-loop partition function, omitting the integration

over the moduli space, can be written in the form2

T =
1

η2η̄2
(V8 − S8)

(

O12Ō44 + V12V̄44 + S12S̄44 + C12C̄44

)

. (2.8)

The four dimensional massless spectrum is the one of an N = 4 supergravity coupled to an

N = 4 Super-Yang-Mills theory with an SO(44) gauge group. It should be noticed that the

geometric massless scalars in this model parameterize the coset SO(6, 22)/[SO(6)×SO(22)]

and are in one-to-one correspondence with the 6×22 components of the background metric,

antisymmetric tensor and Wilson lines [32, 33]. They correspond to the scalars in the

Cartan subalgebra of SO(44).

Adding E operates the separation of the hidden gauge group and its enhancement from

SO(16) to E8.
3 The partition function

T =
1

η2η̄2
(V8 − S8)

(

O12Ō28 + V12V̄28 + S12S̄28 + C12C̄28

) (

Ō16 + S̄16
)

(2.9)

2We follow the notation and conventions of [34].
3For a particular choice of discrete torsions.
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exhibits neatly the N = 4 model with an E8 × SO(28) enhanced gauge group. This

(generalized) toroidal compactification will be our starting point to perform the asymmetric

orbifold projections. Notice that Ō16+ S̄16 = Ē8 is the character of E8 at level one. Finally,

let us remark that by adding G, the compact space degrees of freedom are separated from

those generating the visible E8 producing the announced compactification on the SO(12)

maximal torus

T =
1

η2η̄2
(V8 − S8)

(

|O12|2 + |V12|2 + |S12|2 + |C12|2
) (

Ō16 + S̄16
) (

Ō16 + S̄16
)

. (2.10)

3 (Inverse) Gepner map and (non) standard embedding

In [5] a combination of chiral twists and shifts has been used in Type IIB asymmetric

orbifolds and corresponding unoriented descendants to produce (super)string vacua with

a small number of moduli, in the framework of the free fermionic construction. The idea

was to use shifts to lift in mass twisted moduli and chiral twists to unpair the untwisted

ones. As a result of a scan over a huge number of possible vacua, many examples of

“effective Calabi-Yau compactifications” with small Hodge numbers were found, including

an N = 2 supersymmetric “self-mirror” model with (h11 = 1, h12 = 1). An N = 1 Type I

theory without open strings was also described, whose Ω projection kept the vector boson

in the vector multiplet of the parent type II theory. The massless spectrum contains just

the N = 1 supergravity multiplet, the dilaton chiral multiplet and an additional chiral

multiplet: it is, as far as we know, the minimal spectrum one can get for a superstring

vacuum. Minimal models with N = 2 and N = 3 supersymmetry have been derived

in [35–43].

As well known, the interesting semi-realistic vacua in the heterotic description are

exactly those with both Hodge numbers small, see e.g. [38–45] and references therein.

The natural attempt to get interesting models with few moduli is thus to apply to the

heterotic strings a construction similar to the one in [5]. There is a procedure, usually

called the “Gepner map”, that allows one to get a consistent heterotic compactification

with “standard embedding” of the spin connection in the gauge group, starting from a

consistent Type II compactification [46–49].4 The easiest way to describe the Gepner map

in our notation is using characters or super-characters. In terms of characters, the map

leaves the left-movers untouched and acts on the right-movers according to

V st
2 → O10 ×E8 ; Ost

2 → V10 ×E8 ; −Sst
2 → +S10 ×E8 ; −Cst

2 → +C10 ×E8 , (3.1)

for the E8 × E8 heterotic string, or

V st
2 → O26 ; Ost

2 → V26 ; −Sst
2 → +S26 ; −Cst

2 → +C26 , (3.2)

for the Spin(32)/Z2 heterotic string. The sign change for both spinors is due to spin and

statistics, and the O ↔ V flip is consequently required by modular invariance.

4We thank A.N. Schellekens for having called to our attention the fact that the “Gepner map” was

applied in its full-fledged form in [48, 49].
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In terms of supercharacters, up to the E8 factor,

v = V2ξ0 +O2ξ3 − S2ξ3/2 − C2ξ−3/2 → a = O10ξ0 + V10ξ3 + S10ξ3/2 + C10ξ−3/2 , (3.3)

φ = V2ξ−2 +O2ξ+1 − S2ξ−1/2 − C2ξ+5/2 → t = O10ξ−2 + V10ξ+1 + S10ξ−1/2 + C10ξ+5/2 ,

φc = V2ξ+2 +O2ξ−1 − S2ξ−5/2 − C2ξ+1/2 → tc = O10ξ+2 + V10ξ−1 + S10ξ−5/2 + C10ξ+1/2 ,

where ξq are the characters of the N = 2 minimal model at c = 1, equivalent to a compact-

ified boson at radius r =
√
3. It is easy to see that SO(10)×E8 gets enhanced to E6 ×E8,

since

a = χE6

1 , t = χE6

27 , tc = χE6

27∗ . (3.4)

In particular, at the massless level 78 → 450 + 10 + 16+3/2 + 16∗
−3/2 while 27 → 1−2 +

10+1 + 16−1/2. For Spin(32)/Z2 there is no enhancement of SO(26)×U(1).

It is important to stress that in geometric contexts the “Gepner map” always produces

heterotic models with standard embedding and chiral asymmetry N27 −N27∗ = h11 − h21
or N26+1

−N26−1
= h11−h21. As a result, the most interesting models of [5] with identical

Hodge numbers tend to be non chiral, unless the presence of disjoint orbits under modular

transformations allows to apply different Gepner maps in different sectors and get chiral

models even if h11 = h21, as we will see later on. Moreover, the neutral moduli are as

in Type II plus a number of (charged) singlets and deformations of the gauge bundle

corresponding to H1(EndT ).

Barring the effect of discrete torsion, it is more convenient to try and use chiral twists

and shifts in frameworks that look phenomenologically more promising. The one we are

going to exploit in the next sections is inspired by the semi-realistic class of models known

as NAHE [18]. As we will see, these do not admit an immediate geometric interpretation.

However, as in Type II models, one can try to define effective topological numbers associ-

ated to the chiral massless spectrum. For instance, one could define an “inverse” Gepner

map. It would work whenever the gauge group contains a factor SO(10)×E8, as in some of

the 18 classes of interesting models that we analyze. Indeed in this case one could always

map heterotic characters into Type II characters according to5

O10×E8 → V s−t
2 , V10×E8 → Os−t

2 , S10×E8 → −Ss−t
2 , C10×E8 → −Cs−t

2 . (3.5)

The resulting Type II model is perfectly consistent and modular invariant though a priori

non geometric. By construction, it enjoys at least N = 1 supersymmetry, i.e. NL = 1

and NR = 0. In some cases, enhancement to N = 2 supersymmetry, namely NL = 1 and

NR = 1, can take place that allows one to define effective Hodge numbers as in [5]. This

happens when in different sectors charged matter appears in representations of different

E6’s. One can then go back to the heterotic model and define “effective” topological

numbers of the vacuum gauge bundle E that should be interpreted as a non-geometric

version of the (non) standard embedding. Not all is lost in the generic case since the gauge

group in the Type II model is abelian and one can count N = 1 vector and neutral chiral

multiplets. The latter could be identified as neutral moduli.

5Depending on the choice of chirality from SO(10)het to SO(2)st, one gets Type IIB or Type IIA models.
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4 Models with four Z2 L-R asymmetric projections

In this section, we present our systematic scan for heterotic models with four a priori

left-right asymmetric Z2 projections that eliminate neutral moduli. Starting with NAHE-

inspired models, we analyze 220 models, identify 18 inequivalent classes of non-geometric

models (“T-folds” in certain cases) and then address variants generated by discrete torsions.

4.1 NAHE-inspired models

The original NAHE class of models [18] is a Z2 × Z2 orbifold of the original SO(12)L ×
SO(28)R × E8R described in eq. (2.9). The projection breaks the symmetry to SO(4)3L ×
SO(10)R×SO(6)3R×E8R. In the fermionic construction, the orbifold can be realized using

the basis sets {F, S,E} of eq. (2.7), together with the two additional ones

b1 = {ψµ χ1,2 y3..6| ỹ3..6 χ̃1,2 ψ̃1..10} ,
b2 = {ψµ χ3,4 y1,2ω5,6| ỹ1,2 ω̃5,6 χ̃3,4 ψ̃1..10} , (4.1)

or, equivalently, using the sets {F, S, b1, b2, b3}, with

b3 = F + b1 + b2 + E = {ψµ χ5,6 ω1..4| ω̃1..4 χ̃5,6 ψ̃1..10} . (4.2)

Additional sets can be added to the basis in order to produce semi-realistic models whose

spectra are close to the one of the Standard Model or some of its GUT’s or supersymmetric

extensions. In the original paper, for instance, three more sets provide the breaking of

SO(6)3 to U(1)3 and of SO(10) to SU(5) × U(1), with a resulting “visible” gauge group

SU(5)×U(1)×U(1)3, three generations of quarks and leptons and additional exotic matter.

These models are in the class of “flipped” SU(5) GUT’s.

At the level of the NAHE set, the geometrical moduli that survive the orbifold pro-

jection appear to be charged, but an analysis of the tree level super-potential reveals the

presence of flat directions. We will come back to this issue in the last section.

4.2 Our approach

As noted in [50], when looking for chiral spinorial representations of SO(10), which do not

carry charges under the hidden gauge group, one is led naturally to the NAHE set. That

is to say, the vectors b1, b2 and b3 = 1 + b1 + b2 + E have the correct form to give rise to

a certain number of copies of the 16 representation of SO(10). Chirality, in particular, is

insured thanks to the fact that the bi vectors only share the fermions ψµ and ψ̃1..10. If this

were not the case, the projection by b1 in the sector twisted by b2, for instance, would lead

to an equal number of 16 and 16 of SO(10).

Hence, for a model to be semi-realistic, one should aim at having such sectors in the

Hilbert space. Aside from building models based on the NAHE set, one can consider the

option of obtaining NAHE-type vectors as combinations of the initial set of basis vectors.

In the following we exploit this second option.

We consider models based on the sets {F, S,E} together with four additional sets. As

explained before, E = {φ̃1...16} is equivalent to a Wilson line performing the separation of

– 7 –
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the hidden gauge group. Additionally, the hidden gauge group is enhanced from SO(16)

to E8 by massless gauge bosons in the 128 (spinorial) representation of SO(16), generated

in sector E.6 We want to combine the virtues of the NAHE-type sets with the advantages

of asymmetric orbifolds and the possibility of adding shifts that lift in mass the twisted

moduli. The four additional sets assume the form

b1 = (b1L, b1R) = I3456 σ
i1i2... σ̄k1k2... = {(χω)3456 (y ω)i1i2...|(ỹ ω̃)k1k2...} ,

b2 = (b2L, b2R) = I1256 σ
j1j2... σ̄l1l2... = {(χω)1256 (y ω)j1j2...|(ỹ ω̃)l1l2...} ,

b3 = (b3L, b3R) = Ī3456 σ
k′
1
k′
2
... σ̄i

′

1
i′
2
... = {(y ω)k′1k′2...|(χ̃ ω̃)3456(ỹ ω̃)i′1i′2...} ,

b4 = (b4L, b4R) = Ī1256 σ
l′
1
l′
2
... σ̄j

′

1
j′
2
... = {(y ω)l′1l′2...|(χ̃ ω̃)1256(ỹ ω̃)j′1j′2...} , (4.3)

where Ii and σi correspond to the reflections

Ii = {χi ωi} : χi → −χi , ωi → −ωi ;

σi = {yi ωi} : yi → −yi , ωi → −ωi ; (4.4)

and correspondingly for Īi and σ̄i. In view of equations (2.1), (2.3) one can observe that

Ii acts as a Z2L chiral reflection of the ith left-moving internal bosonic and fermionic

coordinates (and equivalently for Īi)

Ii : Xi
L → −Xi

L , Xi
R → Xi

R , (4.5)

while σi stands for a left moving chiral shift along the ith direction (and likewise for σ̄i)

σi : X
i
L → Xi

L + δ , Xi
R → Xi

R , (4.6)

with 2δ a chiral lattice vector. Chiral reflections are T-duality transformations. Thus one

can dub the models we find “Heterotic T-folds”, very much as the models in [5], deserve

to be dubbed Type II T-folds.

Sets (4.3) are very similar to the ones considered in [5], with the notable difference

that in the type IIB case the sets b3 and b4 were exactly the mirrors of b1 and b2. The

choice of identical actions on the left and right movers was justified there by the prospect

of performing an unoriented projection and including D-branes and open strings for type

I models. In the present work, we can relax that condition and allow for more general

shifts. We remark that, at this first stage, we limit ourselves to sets for which the fermions

are arranged into pairs with identical spin structure. In this way we avoid the so-called

Ising fermions, that provide interesting models, but reduce the rank of the gauge group

giving rise to additional neutral moduli. The scan is realized analyzing all the possible

combinations of the indices (i, j, k, l, i′, j′, k′, l′) compatible with the constraints illustrated

in section 2 and the pairing of fermions. NAHE-type vectors are potentially obtained from

6This is dependent on the choice of the discrete torsions. In the following we set the relevant discrete

torsions to the values that allow the mentioned enhancement.
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combinations of the basis sets such as7

F + b1 + b3,4 + E ,

F + b2 + b3,4 + E ,

F + bi + bj + bk + E , i 6= j 6= k ,

F + b1 + b2 + b3 + b4 + E . (4.7)

Given the sets, one has to build the modular invariant one-loop partition function and

extract the massless spectra. In appendix D we report the supersymmetric characters τij
(in terms of the characters of SO(2)⊗4) used to deal with the left-moving GSO projection

related to the chiral Z2×Z2 twists. They realize the desired orbifold decomposition of the

V8 − S8 term [51, 52]. The rest is obtained using the twists on the theta functions

θ1 → −θ2 ; θ2 → θ1 ; θ3 → θ4 ; θ4 → θ3 . (4.8)

This way of building the amplitudes has the advantage of incorporating automatically

the spin-statistic connection. The complete expressions, however, are clever combinations

of the different contributions. The modular invariant partition function, limited to the

fermion contributions, has an expression of the form

Z =
1

16

∑

α,β

Cαβ ρσασβ
Λαβ , (4.9)

where α and β run over all the sets, ρσασβ
are the suitable combinations of τ ’s corresponding

to the twist in the (α, β) sector and Λαβ are the amplitudes related to the remaining

56 fermions obtained with the rules (4.8) and S and T modular transformations. The

coefficients Cαβ are signs, to be chosen in such a way that Z be modular invariant. The

orbifold group is built out of 16 sets, corresponding to as many sectors, for a total of 256

amplitudes. They are organized into 36 modular orbit: the untwisted orbit of length 46 (16

untwisted plus 2× 15 twisted amplitudes) and 35 additional disconnected orbits of length

6. Of course, not all of them are independent since they have to respect certain quadratic

constraints due to the fact that in each sector one has to get a projection operator [16, 17].

As a result, the only independent coefficients are Cbi,bj , i > j, where bi, bj are elements of

the basis. In our case, the basis is of 5 elements, with 10 independent coefficients (besides

the initial C00 = 1 related to the empty set or to the identity). Four of them, however,

fix just the untwisted projection and will be set to 1. As a consequence, each modular

invariant has 26 discrete torsion variants. Moreover, not all the independent models give

rise to distinct physical vacua. Many of them are indeed equivalent, resulting just in a

reshuffling of the ordering of the internal fermions. In the next section we will address this

issue in detail.

7Sectors of the form F + bi +E, altougth not of NAHE type, can also contribute spinorials of SO(10) in

models with 6-shifts.
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4.3 Our models

In our case, the Z2 × Z2 chiral orbifold actions combined with the shifts project out all

the moduli in the Cartan subalgebra. Moreover, since we do not have rank reduction

of the gauge group, we can exclude flat directions with neutral moduli, but we will see

that there remain flat directions along bi-fundamental fields that break product groups to

their diagonals.

Depending on the details of a model and on the discrete torsions, some of the NAHE-

like sectors might contribute massless states. Unfortunately, the relation between the

chirality of the states from these sectors and the discrete torsions is more involved than

in the case of the NAHE set. However, as explained in appendix C, it is still interesting

to obtain models where the NAHE-like sectors overlap only in the fermions {ψµ | ψ̃1...10}.
Other sectors producing massless states might be present in the theory as well.

At the end of the analysis, we find 256 models falling into 18 inequivalent classes of

heterotic-string vacua without neutral moduli, barring the dilaton. In appendices A and B

we explain in detail how to derive them from our basis vectors (4.3). In the following we

sketch the main points.

Since the twists are already fixed, we need to determine the inequivalent shifts. Let us

first discuss the shifts that accompany the twists, for instance the shifts in the left-moving

component of b1,2. Certain shifts are redundant when combined with certain twists. This

restricts the independent choices of b1L and b2L. The right-moving shifts in b1,2 are also

partially8 restricted by the modular invariance of b1 and b2. We end up with 8 choices for

b1 and 16 choices for b2. To implement the modular invariance constraint, b1 ·b2 = 0 mod 4,

one needs to look at the left-movers in b1 and b2, because the right-movers always contribute

a multiple of four. It turns out that this modular invariance condition cuts by half the

number of possibilities. The analysis can be repeated for b3 and b4, yielding 212 different

models. As we expect, the other modular invariant constraints reduce this number to the

28 = 256 distinct models found by implementing the algorithm described in appendix E on

a Mathematica program. Hence, a reduction by a factor of 24, corresponding to the four

modular invariance conditions b1,2 · b3,4,9 is at work.

Next we investigate the inequivalent values for the shifts in the right-moving compo-

nents of b1,2 and left-moving components of b3,4. To this end, we remark that a given

set {b1, b2, b3, b4} carries certain symmetries that transform it into an equivalent set of the

form (4.3).10 These transformations, detailed in equation (A.4) in appendix A, form a

group with 36 elements (with the identity). Hence, each class of equivalent models should

contain a priori 36 elements. However, in most cases, some of the previous symmetries are

trivial due to the particular form of the basis vectors (for instance lack of shifts) and, as a

result of this, some classes contain fewer elements. Combining the various possible values

of the shifts one can discriminate all possible inequivalent models.

8The number of shifted fermions is restricted, but not which ones.
9Notice that some modular invariance conditions, such as n(bi ∩ bj ∩ bk) = 0 mod 2, are automatically

satisfied, because Ising fermions are excluded.
10For instance switching the right-moving components of the shifts between b1 and b2.
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The resulting models are gathered in table 1. The table details, for each model, the

basis sets, the gauge group and the amount of supersymmetry. For those cases in which the

enhancement of the gauge group and/or of supersymmetry from twisted sectors is possible,

the table displays the gauge group and the amount of supersymmetry obtained from the

untwisted sector, as well as the enhanced gauge group and supersymmetry obtained without

discrete torsion.

In models with an SO(10) gauge group, with the exception of model 3, the enhancement

of the gauge group can be prevented with an appropriate choice of discrete torsion. In the

case of model 3, there are three sectors contributing gauge bosons: b3, b4 and b3 + b4. The

extra gauge bosons charged under SO(10), coming from sector b3, can be projected out

choosing C(b2, b3) = −1. Those from sector b4 can be removed with C(b2, b4) = −1, while

sector b3 + b4 yields no gauge bosons charged under SO(10) for C(b2, b3) · C(b2, b4) = −1.

Hence, for any choice of discrete torsion, at least one twisted sector leads to an enhancement

of the SO(10) gauge group.

The enhancement of supersymmetry can also be prevented for certain values of the

discrete torsion and it is interesting to note that keeping an SO(10) gauge group is com-

patible with keeping N = 1 supersymmetry in the relevant models. Indeed, in models 4,

5, 11 and 12 the enhancement of the SO(10) gauge group can be prevented by imposing

C(b2, b4) = −1, while avoiding enhancement of supersymmetry in models 3 to 10 requires

C(b2, b3) = −1 or C(b2, b4) = −1. In models 1 and 2 suppressing the enhancement of

supersymmetry involves also the phases C(b1, b3) and C(b1, b4).

Let us analyze more in detail the effects of turning on discrete torsion and make a few

remarks about the connection with phenomenology of our models. We have found 9 models

with N = 1 supersymmetry that feature an SO(10) gauge group, models 4, 5, 10, 11, 12,

13, 14, 17 and 18. Among them, models 4, 11 and 17 can be easily identified as being

non-chiral, whatever the choice of the discrete torsion is. For instance, the sets of models

11 and 17 do not contain the left moving fermions y56. Because of this the SO(10) fermions

ψ̃1...10 are always paired with y56 and, as a result, always lead to 16 + 16 representations.

The case of model 4 is more involved, but it can be checked that in each twisted sector

contributing spinorial representations of SO(10) there is an excess of variables to be fixed

with respect to the conditions imposed.

Other models, for instance 13 and 14, are chiral for all choices of discrete torsion and

the net chirality is independent on it. Models with no shifts in the right part of b1 and

b2 can potentially contain adjoint scalars in the twisted sectors, as well as states charged

both under the visible and the hidden gauge groups. The presence of such states and

other exotic fields can sometimes be controlled by the choice of discrete torsion and one

can speculate that by adding extra basis vectors to a given model one can render it more

“realistic”. Since the exhaustive analysis of the effects on the spectrum of the discrete

torsion is rather lengthy and very model-dependent, we investigate these effects in full

detail only for model 13. It has the nice feature of exhibiting only three twisted sectors

that contribute chiral states, each one with four 16’s of SO(10), while the other twisted

sectors contributing spinorials always contain an equal number of 16’s and 16’s. Details

are reported in appendix C.
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M Sets Action Gauge group Untw/no DT N

1 b1 = {χ3456 ω3456 ‖ } I3456 SO(4)3 ⊗ SO(16)⊗ E8 2

b2 = {χ1256 ω1256 ‖ } I1256

b3 = {‖ χ̃3456 ω̃3456 } Ī3456 SO(28)⊗ E8 4

b4 = { ‖ χ̃1256 ω̃1256 } Ī1256

2 b1 = {χ3456 ω3456 ‖ } I3456 SO(4)2 ⊗ SO(8)⊗ SO(12) 2

b2 = {χ1256 ω1256 ‖ } I1256 ⊗ E8

b3 = {y123456 ω123456 ‖ χ̃3456 ỹ12 ω̃123456 } σ123456Ī3456σ̄12 SO(12)⊗ SO(16)⊗ E8 4

b4 = { ‖ χ̃1256 ỹ56 ω̃12 } Ī1256σ̄56

3 b1 = {χ3456 y12 ω123456 ‖ ỹ123456 ω̃123456 } I3456σ12σ̄123456 SO(2)6 ⊗ SO(6)⊗ SO(10) 1

b2 = {χ1256 y56 ω12 ‖ } I1256σ56 ⊗ E8

b3 = { ‖ χ̃3456 ω̃3456 } Ī3456 SO(12)⊗ SO(16)⊗ E8 2

b4 = { ‖ χ̃1256 ω̃1256 } Ī1256

4 b1 = {χ3456 y12 ω123456 ‖ ỹ123456 ω̃123456 } I3456σ12σ̄123456 SO(2)6 ⊗ SO(6)⊗ SO(10) 1

b2 = {χ1256 y56 ω12 ‖ } I1256σ56 ⊗ E8

b3 = {y123456 ω123456 ‖ χ̃3456 ỹ12 ω̃123456 } σ123456Ī3456σ̄12 SO(4)2 ⊗ SO(8)⊗ SO(12) 2

b4 = { ‖ χ̃1256 ỹ56 ω̃12 } Ī1256σ̄56 ⊗ E8

5 b1 = {χ3456 y12 ω123456 ‖ ỹ34 ω̃34 } I3456σ12σ̄34 SO(2)2 ⊗ SO(4)2 ⊗ SO(6) 1

b2 = {χ1256 y56 ω12 ‖ } I1256σ56 ⊗ SO(10)⊗ E8

b3 = {y34 ω34 ‖ χ̃3456 ỹ12 ω̃123456 } σ34Ī3456σ̄12 SO(2)2 ⊗ SO(10)⊗ SO(14) 2

b4 = { ‖ χ̃1256 ỹ56 ω̃12 } Ī1256σ̄56 ⊗ E8

6 b1 = {χ3456 ω3456 ‖ ỹ1256 ω̃1256} I3456σ̄1256 SO(2)4 ⊗ SO(4)2 ⊗ SO(12) 1

b2 = {χ1256 ω1256 ‖ } I1256 ⊗ E8

b3 = {y1256 ω1256 ‖ χ̃3456 ω̃3456 } σ1256Ī3456 SO(2)⊗ SO(6)2 ⊗ SO(14) 2

b4 = { ‖ χ̃1256 ω̃1256 } Ī1256 ⊗ E8

7 b1 = {χ3456 ω3456 ‖ ỹ1256 ω̃1256} I3456σ̄1256 SO(2)4 ⊗ SO(4)2 ⊗ SO(12) 1

b2 = {χ1256 ω1256 ‖ } I1256 ⊗ E8

b3 = {y34 ω34 ‖ χ̃3456 ỹ12 ω̃123456 } σ34Ī3456 SO(2)⊗ SO(6)2 ⊗ SO(14) 2

b4 = { ‖ χ̃1256 ỹ56 ω̃12 } Ī1256σ̄56 ⊗ E8

8 b1 = {χ3456 y12 ω123456 ‖ ỹ34 ω̃34 } I3456σ12σ̄34 SO(2)3 ⊗ SO(4)2 ⊗ SO(14) 1

b2 = {χ1256 y56 ω12 ‖ } I1256σ56 ⊗ E8

b3 = {y1256 ω1256 ‖ χ̃3456 ω3456 } σ1256Ī3456 SO(2)2 ⊗ SO(6)⊗ SO(18) 2

b4 = { ‖ χ̃1256 ω̃1256 } Ī1256 ⊗ E8

9 b1 = {χ3456 y12 ω123456 ‖ ỹ12 ω̃12 } I3456σ12σ̄12 SO(2)3 ⊗ SO(4) 1

b2 = {χ1256 y56 ω12 ‖ } I1256σ56 SO(6)⊗ SO(12)

b3 = {y123456 ω123456 ‖ χ̃3456 ỹ12 ω̃123456 } σ123456Ī3456σ̄12 ⊗ E8 2

b4 = {y34 ω34 ‖ χ̃1256 ỹ34 ω̃123456 } σ34Ī1256σ̄34

10 b1 = {χ3456 ω3456 ‖ ỹ3456 ω̃3456} I3456σ̄3456 SO(2)3 ⊗ SO(4)2 1

b2 = {χ1256 ω1256 ‖ } I1256 ⊗ SO(10)

b3 = {y123456 ω123456 ‖ χ̃3456 ỹ12 ω̃123456 } σ123456Ī3456σ̄12 ⊗ E8 2

b4 = {y34 ω34 ‖ χ̃1256 ỹ34 ω̃123456 } σ34Ī1256σ̄34

11 b1 = {χ3456 y12 ω123456 ‖ ỹ123456 ω̃123456 } I3456σ123456σ̄12 SO(2)7 ⊗ SO(4)⊗ SO(10) 1

b2 = {χ1256 y34 ω123456 ‖ ỹ34 ω̃34 } I12σ34σ̄34 ⊗ E8

b3 = {y12 ω12 ‖ χ̃3456 ỹ12 ω̃123456 } σ12Ī3456σ̄12 SO(2)3 ⊗ SO(4)⊗ SO(6)

b4 = { ‖ χ̃1256 ỹ56 ω̃12 } Ī1256σ̄56 ⊗ SO(12)⊗ E8

12 b1 = {χ3456 y12 ω123456 ‖ ỹ123456 ω̃123456 } I3456σ123456σ̄12 SO(2)7 ⊗ SO(4)⊗ SO(10) 1

b2 = {χ1256 y34 ω123456 ‖ ỹ34 ω̃34 } I12σ34σ̄12 ⊗ E8

b3 = {y3456 ω3456 ‖ χ̃3456 ω̃3456 } σ3456Ī3456 SO(2)3 ⊗ SO(4)⊗ SO(6)

b4 = { ‖ χ̃1256 ω̃1256 } Ī1256 ⊗ SO(12)⊗ E8

Continued on next page
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Table 1 – Continued from previous page

M Sets Action Gauge group Untw/no DT N

13 b1 = {χ3456 y12 ω123456 ‖ ỹ123456 ω̃123456 } I3456σ123456σ̄12 SO(2)7 ⊗ SO(4) 1

b2 = {χ1256 y34 ω123456 ‖ ỹ12 ω̃12 } I12σ34σ̄12 ⊗ SO(10)

b3 = {y123456 ω123456 ‖ χ̃3456 ỹ12 ω̃123456 } σ123456Ī3456σ̄12 ⊗ E8

b4 = {y12 ω12 ‖ χ̃1256 ỹ34 ω̃123456 } σ12Ī1256σ̄34

14 b1 = {χ3456 y12 ω123456 ‖ ˜̃y12 ω̃12 } I3456σ12σ̄12 SO(2)5 ⊗ SO(4)2 1

b2 = {χ1256 y34 ω123456 ‖ ˜̃y56 ω̃56 } I1256σ34σ̄56 ⊗ SO(10)

b3 = {y12 ω12 ‖ χ̃3456 ỹ12 ω̃123456 } σ12Ī3456σ̄12 ⊗ E8

b4 = {y56 ω56 ‖ χ̃1256 ỹ34 ω̃123456 } σ56Ī1256σ̄34

15 b1 = {χ3456 y12 ω123456 ‖ ỹ12 ω̃12} I3456σ12σ̄12 SO(2)6 ⊗ SO(4) 1

b2 = {χ1256 y34 ω123456 ‖ ỹ34 ω̃34} I1256σ34σ̄34 ⊗ SO(12)

b3 = {y12 ω12 ‖ χ̃3456 ỹ12 ω̃123456} σ12Ī3456σ̄12 ⊗ E8

b4 = {y34 ω34 ‖ χ̃1256 ỹ34 ω̃123456} σ34Ī1256σ̄34

16 b1 = {χ3456 y12 ω123456 ‖ ỹ12 ω̃12} I3456σ12σ̄12 SO(2)6 ⊗ SO(4) 1

b2 = {χ1256 y34 ω123456 ‖ ỹ34 ω̃34} I1256σ34σ̄34 ⊗ SO(12)

b3 = {y3456 ω3456 ‖ χ̃3456 ω̃3456} σ3456Ī3456 ⊗ E8

b4 = {y1256 ω1256 ‖ χ̃1256 ω̃1256} σ1256Ī1256

17 b1 = {χ3456 ω3456 ‖ ỹ3456 ω̃3456 } I3456σ̄3456 SO(2)9 ⊗ SO(10) 1

b2 = {χ1256 ω1256 ‖ ỹ1256 ω̃1256 } I1256σ̄1256 ⊗ E8

b3 = {y12 ω12 ‖ χ̃3456 ỹ12 ω̃123456 } σ12Ī3456σ̄12

b4 = {y34 ω34 ‖ χ̃1256 ỹ34 ω̃123456 } σ34Ī1256σ̄34

18 b1 = {χ3456 ω3456 ‖ ỹ3456 ω̃3456 } I3456σ̄3456 SO(2)9 ⊗ SO(10) 1

b2 = {χ1256 ω1256 ‖ ỹ1256 ω̃1256 } I1256σ̄1256 ⊗ E8

b3 = {y3456 ω3456 ‖ χ̃3456 ω̃3456 } σ3456Ī3456

b4 = {y1256 ω1256 ‖ χ̃1256 ω̃1256 } σ1256Ī1256

Table 1. List of the 18 classes of independent models.

4.4 Parallel with type II models

In [5] 18 independent Type II models were also found. However many of these involved

Ising fermions, which we have excluded here. Only 5 of those models did not require Ising

fermions, because their setup was more restrictive: b3 and b4 were the exact mirrors of

b1 and b2, respectively. In our case only the twists are mirrored between b1 and b3 and

between b2 and b4, while the shifts are only constrained by modular invariance. Moreover,

in [5] zero shifts were not allowed. Out of our 18 models there are 8 cases where b3 is the

mirror of b1 and b4 is the mirror of b2, models 1, 4, 5, 6, 13, 14, 15 and 18. However,

models 1, 4, 5 and 6 have no equivalent in [5] because they contain zero shifts. This leaves

models 13, 14, 15 and 18. Referring to table 1 in [5] and to the labeling in our table 1

the parallel between the type II models and the heterotic ones goes as follows. The model

which has effective Hodge numbers (9,9) in type II corresponds to our model 14, the (15,3)

model corresponds to our model 15 and the (3,15) model corresponds to our model 18.

The (5,17) and (17,5) models both correspond to our model 13. Model (5,17) is linked to

model 13 by LR.11 Model (17,5) is related to 13 by B2B4, after the redefinitions y6 ↔ ω6

and ȳ6 ↔ ω̄6.
12

11See appendix A for the defintion of these symmetries.
12There is a typo in table 1 in [5]: in model (17,5) b3 contains an extra σ̄6.
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In the Type II case, even in non-geometric constructions, the surviving N = 2 space-

time supersymmetry allows to define “effective” Hodge numbers from the neutral massless

spectrum. Indeed, by counting the number of massless vector and hyper-multiplets, one

can set heff11 = nH − 1, heff21 = nV in the Type IIB case and heff11 = nV , h
eff
21 = nH − 1 in the

Type IIA case.

In the heterotic case, the survivingN = 1 space-time supersymmetry allows for charged

chiral multiplets and it seems harder to define effective topological invariants of the putative

vacuum gauge bundle E , particularly because we start from the enhanced gauge symmetry

point SO(28) × E8. For models with SO(10) gauge group embedded in one E8 factor,

E is a stable holomorphic vector bundle of rank r = 4 with C1(E) = 0 and C2(E) =

C2(T ). Massless 16 are associated to H∗(M, E), massless 10 to H∗(M,∧2E), adjoints

45 to H∗(M,O), while singlets are associated to H∗(M,EndE). Chiral asymmetry is

given by n16 − n16∗ = 1
2C3(E) [57–59]. In the non-geometric setting, one can count the

number of massless 10, 16, 16∗, 45, but it is far from obvious that one could define any

meaningful effective topological invaraints Ceff
3 (E), H∗

eff(M, E), H∗
eff(M,∧2E) or H∗

eff(M,O).

Even neutral moduli are hard to associate to “effective” cohomology classes since in addition

to the would-be geometric ones, to be counted by heff11 or heff21 , one finds a plethora of charged

singlets that should be associated to a putative H∗
eff(M,EndE).

Although for generic non-geometric heterotic models the situation seems hopeless, for

models with gauge group GH ⊃ SO(10)×E8 one can apply the “inverse” Gepner map (3.5)

and get a Type II model with at least N = 1 supersymmetry. As already mentioned, if

the charged heterotic spectrum assembles into complete representations of different E6’s

in different sectors, the resulting Type II model enjoys N = 2 supersymmetry and one can

define “effective” Hodge numbers heff11 = nH − 1, heff21 = nV , for Type IIB. A necessary but

not sufficient condition for this to happen is n10 = n16 + n16∗ , which characterizes “self-

dual” models under spinor-vector duality [53–56]. Finally one can go back to the massless

heterotic spectrum and set

n1 = 1 + heff11 + heff21 + h1(EndE) → h1(EndE) = n1 − 1− heff11 − heff21 (4.10)

where n1 means the total number of SO(10) singlets, including states charged with respect

to various U(1)’s or even non-abelian factors. Moreover

n16 = χeff(E) n10 = χeff(∧2E) n45 = χeff(O)

n16∗ = n16 −
1

2
Ceff
3 (E) = χeff(E)− 1

2
Ceff
3 (E) (4.11)

where χeff(E) = ∑k(−)khk,0(E) denotes the generalized arithmetic genus. When the het-

erotic spectrum cannot be assigned to complete E6 representations, one can still try and

define “effective” Hodge numbers, in particular h1(EndE) = nHet
1

−nII
1
, but the geometric

meaning is not at all clear. Among our models with an SO(10) gauge group, including

their discrete torsion variants, there are no self-dual examples.

Finally, it would be interesting on the one hand to construct Type II analogues of

some of the L-R asymmetric heterotic string models with non mirror basis sets, and on

the other hand to extend our present analysis allowing for Ising fermions. The heterotic
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string counterpart of models like the “minimal” Type II with heff11 = heff21 = 1, should have

the same neutral “geometric” moduli, but also many (possibly charged) singlets, and a

priori should be non-chiral. Aside from the last draw-back, they would probably share

some similarities with the heterotic models recently constructed in [57–59], at least for the

low-energy effective supergravity properties.

In some cases, i.e. when the Type II modular invariant partition function consists

of several disjoint orbits of the modular group, one can apply different Gepner maps in

different sectors and get chiral heterotic models even if heff11 = heff21 to start with. This

relies on the ambiguity of mapping the characters −S2 and −C2 into S10 and C10 or vice

versa. Usually Gepner map associates heterotic Kähler deformations plus chiral multiplets

in the 27 to Type II Kähler deformations and heterotic complex deformations plus chiral

multiplets in the 27∗ to Type II complex deformations, so that N27 − N27∗ = heff11 −
heff21 . Yet, when disjoint modular orbits are present, which allow for the introduction of

discrete torsion, one can associate heterotic Kähler deformations plus chiral multiplets in

the 27∗ to some Type II Kähler deformations and heterotic complex deformations plus

chiral multiplets in the 27 to some other Type II complex deformations. As a result

N27 − N27∗ = (heff11 + n) − (heff21 − n) 6= heff11 − heff21 . We will see this mechanism at work

in some explicit example in appendix C, where the role of discrete torsion is analyzed in

some detail.

5 Moduli in free fermionic models

Moduli in the free fermionic models have been discussed extensively in [60]. For complete-

ness we include here a review of some relevant aspects and later on discuss exactly marginal

charged deformations that “higgs” the non-abelian gauge group.

5.1 {F, S} model

Consider the model (2.8) generated by the set {F, S}. The gauge bosons of SO(44), arising

from the untwisted Neveu-Schwarz sector, can be expressed in terms of 22 right-moving

complex fermions Ψ̃+M and their complex conjugates Ψ̃−M

|ψµ〉 ⊗
∣

∣

∣
Ψ̃+M Ψ̃−M

〉

, M,N = 1, . . . , 22 ; (5.1)

|ψµ〉 ⊗
∣

∣

∣
Ψ̃±M Ψ̃±N

〉

, M > N . (5.2)

The first line describes the Cartan subalgebra, while the second corresponds to the non-zero

roots of SO(44). The massless scalar states are also part of the NS sector and transform

in the adjoint representation

∣

∣χI
〉

⊗
∣

∣

∣
Ψ̃+M Ψ̃−M

〉

, M = 1 . . . 22 , I = 1 . . . 6 ; (5.3)

∣

∣χI
〉

⊗
∣

∣

∣
Ψ̃±M Ψ̃±N

〉

, M,N = 1 . . . 22 , I = 1 . . . 6 . (5.4)

Clearly, the 6×22 states in the first line are also in the Cartan sub-algebra of SO(44).

They correspond to the geometrical moduli of this model: the background metric Gij , the
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antisymmetric tensor Bij and Wilson lines Aia (i, j = 1, . . . , 6, a = 1, . . . , 16). The states

in (5.4) are the matter fields. In the eventuality of a rank reduction, some of them might

become uncharged as well, if the corresponding Cartan generators in (5.1) are projected out.

The moduli (5.3) can be rewritten as

Gij , Bij :
∣

∣χi
〉

⊗
∣

∣ỹjω̃j
〉

, i, j = 1, . . . , 6 ; (5.5)

Aia :
∣

∣χi
〉

⊗
∣

∣

∣
Ψ̃+aΨ̃−a

〉

, a = 1, . . . , 16 . (5.6)

Because the boundary conditions of the worldsheet fermions χi are related by (2.2) to the

ones of yi, ωi, left-right asymmetric reflections of {yi, ωi| ỹi, ω̃i} project out all the moduli

in (5.5).

5.2 NAHE model

The massless non-chiral spectrum in the untwisted visible sector of the NAHE model

consists of chiral multiplets in (10,6I) and (6J ,6K) with J 6= K and I, J,K = 1, 2, 3.

Denoting the former by AI
a,iI

, with a = 1, . . . , 10 and iI = 1, . . . , 6, and the latter by

BI
iJ ,iK

, the tri-linear (tree-level exact) superpotential13 inherited from N = 4 reads

Wu−u−u = |εIJK |
(

AI
a,iI

BJ,iI
jKA

K,jK ,a +BI,iJ
jKB

J,jK
kIB

K,kI
iJ

)

. (5.7)

In each of the three twisted sectors one gets a massless chiral spectrum with SI,Λ
fI ,AI

in

the (2L,I |16,6I) and CI,Λ

ḟI ,ĀI
in the (2R,I |16∗,6I). The tri-linear u-t-t superpotential is of

the form

Wu−t−t = AI
a,iI

Γa
ΛΣ

[

ΓiI
AIBI

εfIhISI,Λ
fI ,AI

SI,Σ
hI ,BI

+ ΓiI
ĀI B̄I

εḟI ḣICI,Λ

ḟI ,ĀI
CI,Σ

ḣI ,B̄I

]

.

Although, at first look, the model seems to evade the problem between moduli stabilization

and chirality, since, except for the axion-dilaton, all massless fields are charged, at a closer

inspection one can identify exact flat directions. Setting for simplicity the twisted fields

S and C to zero, the left-over superpotential is a truncation of the one for N = 4 SYM.

For this reason we do not expect higher order terms at tree level or perturbatively. In

turn the N = 4 SYM admits flat directions for fields along the Cartan of the parent

SO(28). The fields of this kind surviving the Z2 × Z2 projection are exact flat directions.

In particular one can break any pair of SO(6) factors to the diagonal or SO(6)×SO(10) to

SO(6)diag × SO(4). Further evidence for the existence of exactly marginal deformations is

the existence of models with different fermionic sets and smaller symmetry. The Z2 × Z2

projections reduce the content of (5.5) and (5.6) to 12 moduli

∣

∣χI
〉

⊗
∣

∣ỹJ ω̃J
〉

, I, J = {1, 2}, {3, 4}, {5, 6} . (5.8)

They correspond to those states in the (6I , 6J) representations that are part of the Cartan

subalgebra.

13In toroidal orbifolds, the untwisted super-potential is always a truncation of the parent trilinear super-

potential WN=4 = ǫIJKTr(φI [φJ , φK ]).
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5.3 Heterotic counterpart of brane recombination

The effect of turning on VEV’s for scalar fields in the bi-fundamental representation is the

heterotic counterpart of brane recombination [61–64] in theories with open strings. From

the worldsheet viewpoint two isomorphic current algebras at level one combine to give a

single current algebra at level two. From the effective field theory viewpoint the product

gauge group gets broken to the diagonal. In the NAHE model, for instance, one can break

any product SO(6)× SO(6) to SO(6)diag. One can also break SO(10)× SO(6) to SO(4)×
SO(6)diag where the first factor arises from the decomposition SO(10) → SO(4)× SO(6).

More explicitly, one has to decompose the spectrum in representations of the current

algebra at level two.14 The “coset” CFT SO(2n)1 × SO(2n)1/SO(2n)2 is the Z2-orbifold

theory at R2 = 2n, in units where α′ = 2. Indeed, the central charge of SO(2n)k is

c
(2n)
k = kn(2n−1)/(k+2n−2), so that c

(2n)
2 = 2c

(2n)
1 −1. The deficit is exactly compensated

by a c = 1 rational orbifold CFT. The spectrum of the latter consists of primaries of

dimension h = p2/(4n) with p = 0, 1, . . . n, two spin fields of dimension h = 1/16 and

h = 9/16 and a chiral “current” of dimension h = 1 broken by the boundary conditions.

While at level k = 1 the only “integrable” representations are the singlet O2n, the

vector V2n and the two spinors S2n and C2n, at level k = 2 new representations become

integrable in that they satisfy the constraint ρ · wR ≤ k where ρ is the maximal root and

wR is the highest weight of the representation R.

The scaling dimension of the primary in the representation R is given by h
(2n)
R,k =

C2(R)/(k+ 2n− 2). In particular, at k = 2 for the vector one finds h
(2n)
V,2 = (2n− 1)/(4n),

while for the adjoint h
(2n)
A,2 = (n − 1)/n. It is amusing that for the symmetric traceless

tensor one has h
(2n)
T,2 = 1, independently of n.

By current algebra analysis, one can derive the following decompositions

O2nO2n = Ô2nξ0 + Â2nξ1/n + T̂2nξ1 + . . . ;

V2nV2n = Ô2nξ1 + Â2nξ1/n + T̂2nξ0 + . . . ;

O2nV2n = V̂2nξ1/4n + . . . ;

O2nS2n = Ŝ2nξ1/16 + Ŝ′
2nξ9/16 ;

V2nS2n = Ĉ2nξ9/16 + Ĉ ′
2nξ1/16 , (5.9)

where L̂2n denote characters of SO(2n) at k = 2 and ξh denote characters of the c = 1

coset CFT. Tensor products of spinorial representations depend on the parity of n. For n

even one gets

S2nS2n = Ô2nξn/4 + Â2nξ(n−2)2/4n + . . . ;

S2nC2n = V̂2nξ(n−1)2/4n + . . . . (5.10)

For n odd one gets instead

S2nS2n = V̂2nξ(n−1)2/4n + . . . ,

S2nC2n = Ô2nξn/4 + Â2nξ(n−2)2/4n + . . . . (5.11)

14See, for example, [65].
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For our considerations it is crucial that V2nV2n contains Ô2nξ1, i.e. the combination of

the singlet of SO(2n) at k = 2 and the “current” ξ1. The latter corresponds to the

(chiral) deformation of the radius under which all the primaries, except for the twist fields,

change conformal dimension and ξh decomposes into an infinite number of primaries of the

resulting irrational CFT. In order to get a modular invariant partition function one has

to combine it with an anti-chiral deformation of the “radius”. This is precisely what the

anti-chiral part of the vertex operator for the bi-fundamental moduli fields does. Indeed in

the non-canonical q = 0 picture at zero momentum

V = ∂X∂̄X ′ , (5.12)

where ∂̄X ′ represents the “current” in the orbifold CFT. It is straightforward, though

rather tedious, to decompose the entire partition function in terms of “orbifold” characters.

In so far as the massless spectrum is concerned, in addition to rank reduction, a number of

massless states get masses. The only states that remain massless are the ones that involve

the ‘coset’ primary with fixed dimension, i.e. the identity, the current and the two twist

fields. A detailed analysis is beyond the scope of the present investigation and will be

presented elsewhere [66].

6 Conclusions and outlook

Let us summarize our results and draw lines for further investigation. In the framework

of the free fermionic construction, we have studied non-geometric “compactifications” of

the heterotic superstring in D=4, with a small number of neutral moduli. We performed

a systematic scan for models with four a priori left-right asymmetric Z2 projections that

eliminate neutral moduli and we identified 18 classes, together with variants resulting from

discrete torsions. For simplicity, we have focused on models with world-sheet fermions

twisted at least in pairs in each sector, excluding thus Ising fermions. We were able to

compare five of our classes to Type II models obtained in a previous study [5].

Contrary to Type II models, where N = 2 supersymmetry allows to define “effective”

Hodge numbers even in such a non-geometric setting, we have not found in general a simple

interpretation of the massless spectrum in terms of “effective” topological invariants. Our

construction corresponds to NAHE-like models with non-standard embedding of the spin

connection in the (enhanced) gauge group. We cannot exclude that at least the chiral

spectrum be associated to the topology of (non-abelian) gauge bundles existing only for

special choice of the moduli, that are consequently frozen. When the charged spectrum

assembles into complete representations of different E6’s in different sectors, an “inverse”

Gepner map could allow to associate an N = 2 Type II model to the heterotic model and

to define reliable “effective” topological invariants.

Finally, we discussed exactly marginal deformations along charged directions and iden-

tified patterns of symmetry breaking where product gauge groups, realized at level one,

are broken to their diagonal at higher level. We should thus conclude that the exclusion of

truly neutral moduli does not prevent the presence of exactly marginal deformations along

charged directions. Eventually, adjoint scalars may appear that could break the gauge
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group to abelian factors. If and how this could be get rid of by FI terms or otherwise

remains to be seen. It would also be interesting to analyze possible F-theory duals along

the lines of ref. [67] Another promising direction of investigation would be to include Ising

fermions and some complex twists and shifts. The road that leads to phenomenologically

viable chiral models with few moduli is still long and it may require to include fluxes and

non-perturbative (NS5-brane instanton) effects. The advantage of the heterotic string over

all other descriptions is that world sheet instantons are automatically incorporated when-

ever an exact CFT description is available. The only fluxes one can turn on are in the

NS sector, and so are amenable to a world sheet description and, finally, even NS5-brane

instantons admit a world sheet description, at least in some limits.
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A The most general choice of sets

In this section we derive all the inequivalent models that can be obtained from our basis

vectors (4.3). For this purpose, it is useful to write them in the slightly different form

b1 = (b1L, b1R) = { I3456 S1 | S̃1 } = {(χω)3456 (y ω)i1i2...|(ỹ ω̃)k1k2...} ,
b2 = (b2L, b2R) = { I1256 S2 | S̃2 } = {(χω)1256 (y ω)j1j2...|(ỹ ω̃)l1l2...} ,
b3 = (b3L, b3R) = {S3 | Ī3456 S̃3 } = {(y ω)k′1k′2...|(χ̃ ω̃)3456(ỹ ω̃)i′1i′2...} ,
b4 = (b4L, b4R) = {S4 | Ī1256 S̃4 } = {(y ω)l′1l′2...|(χ̃ ω̃)1256(ỹ ω̃)j′1j′2...} , (A.1)

where S1,2, S̃1,2, S3,4 and S̃3,4 are groups of shifts. Since we exclude Ising fermions from

our models, the groups of fermion labels {12}, {34}, {56} are unsplit in the following.

In oder to determine the inequivalent models we need to derive the inequivalent shifts,

since the twists are already fixed. Let’s first discuss the shifts that accompany the twists,

i.e. S1,2 and S̃3,4. Certain shifts are redundant when they follow twists. For instance, a shift

S1 in the 34 directions in b1 can be reabsorbed by redefining y34 ↔ ω34, without affecting

b2 (or b3,4). The same holds for a shift S2 = y12ω12 in b2. A shift in the 56 directions can

be absorbed if present in both S1 and S2. If a shift in the 56 directions is present only in

S2, then performing y56 ↔ ω56 will remove the shift from S2 and will make it appear in
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S1. We can pick the convention under which the shift in the 56-directions is always in S2,

if present at all. As such, the left moving part of b1 and b2 can take on the following values

b1L ∈
{

b
(1)
1L = {χ3456 ω3456}, b(2)1L = {χ3456 y12 ω1...6}

}

,

b2L ∈
{

b
(1)
2L = {χ1256 ω1256}, b(2)2L = {χ1256 y56 ω12}, b(3)2L = {χ1256 y34 ω1...6} ,

b
(4)
2L = {χ1256 y3456ω1234}

}

. (A.2)

Modular invariance of b1 implies that b
(1)
1L can only be combined in the right moving part

with a 4-shift or no shift, S̃1 ∈ {∅, {ỹijkl ω̃ijkl}}, while b(2)1L requires a 2-shift or a 6-shift,

S̃1 ∈ {{ỹij ω̃ij}, {ỹ1...6 ω̃1...6}}, with ij, kl ∈ {{12}, {34}, {56}}. Hence there are two choices

for the left part of b1 and eight possible choices for the shifts in the right part, but the first

modular invariance condition reduces by half the viable possibilities.

Similar arguments apply to the four choices of b2L. At this point there are 8 choices

for b1 and 16 choices for b2. To implement the next modular invariance constraint, b1 · b2 =
0 mod 4, we need to look at the left part of b1 and b2, because the right part always

contributes a multiple of 4. Then b
(1)
1L is compatible with b

(1,4)
2L and b

(2)
1L with b

(2,3)
2L . Hence

this modular invariance condition also cuts by half the number of possibilities.

The analysis can be repeated for b3 and b4, yielding

b
(1)
3 =

{

∅ or {yijkl ωijkl} | χ̃3456 ω̃3456

}

with

b4 ∈
{

b
(1)
4 =

{

∅ or {yijkl ωijkl} | χ̃1256 ω̃1256

}

,

b
(2)
4 =

{

{yijωij} or {y1..6 ω1...6} | χ̃1256 ỹ3456 ω̃1234

}

}

or

b
(2)
3 =

{

{yijωij} or {y1..6 ω1...6} | χ̃3456 ỹ12 ω̃1...6

}

with

b4 ∈
{

b
(3)
4 =

{

∅ or {yijkl ωijkl} | χ̃1256 ỹ56 ω̃12

}

,

b
(4)
4 =

{

{yijωij} or {y1..6 ω1...6} | χ̃1256 ỹ34 ω̃1...6

}

}

. (A.3)

Thus there are 212 different modular invariant models, many of which are still equivalent.

The other modular invariant constraints should reduce this number to the 28 = 256 dif-

ferent models found by the algorithm in appendix E, hence a reduction by a factor of 24,

corresponding to the four modular invariance conditions related to the products b1,2 · b3,4.
Next we search the inequivalent values for the shifts S̃1,2 and S3,4. For this we remark

that a given set {b1, b2, b3, b4} carries certain symmetries that transform it into an equivalent

set of the form (A.1). These symmetries can be expressed as

B1 : b1 → b1 + b2 , {χ12 y12 ω12} ↔ {χ56 y56 ω56},
B2 : b2 → b1 + b2 , {χ34 y34 ω34} ↔ {χ56 y56 ω56},
B3 : b3 → b3 + b4 , {χ̃12 ỹ12 ω̃12} ↔ {χ̃56 ỹ56 ω̃56},
B4 : b4 → b3 + b4 , {χ̃34 ỹ34 ω̃34} ↔ {χ̃56 ỹ56 ω̃56},
L : {χ12 y12 ω12} ↔ {χ34 y34 ω34},
R : {χ̃12 ỹ12 ω̃12} ↔ {χ̃34 ỹ34 ω̃34}. (A.4)
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The transformation B1 adds the shifts S̃2 from the basis set b2 to the shifts S̃1 in b1, while

B2 adds the shifts from b1 to the ones in b2 (and similar for B3,4). The transformation

L = B1B2B1 = B2B1B2 is basically switching the shifts S̃1 and S̃2 between b1 and b2
and, likewise, R = B3B4B3 = B4B3B4 is switching S3 and S4. In order to always come

back to our conventional choice in (A.2) and (A.3), one also has to reabsorb some shifts

in S1,2 and S̃3,4 as explained in the previous appendix. This implies that sometimes the

transformations in (A.4) are accompanied by redefinitions of the form yij ↔ ωij or ỹij ↔
ω̃ij , with ij ∈ {{12}, {34}, {56}}.

The transformations in (A.4) form a group of 36 elements with identity:

I B1 B2 B3 B4 B1B3 B1B4 B2B3 B2B4

L B1L B2L B3L B4L B1B3L B1B4L B2B3L B2B4L

R B1R B2R B3R B4R B1B3R B1B4R B2B3R B2B4R

LR B1LR B2LR B3LR B4LR B1B3LR B1B4LR B2B3LR B2B4LR.

Hence, each class of equivalent models should contain a priori 36 elements. However, in

most cases, some of the previous symmetries are trivial due to the particular form of the

basis vectors(for instance lack of shifts), so some classes will contain fewer elements.

For the shifts S̃1,2 the relevant symmetries are B1, B2 and L. The possible values of
(

S̃1
S̃2

)

split into the following equivalence classes according to these three symmetries

• Both zero,

(

S̃1
S̃2

)

=

(

0

0

)

. The symmetries B1, B2, L are trivial in this case.

• One zero,

(

S̃1
S̃2

)

=

(

x

0

)

, with x being a 2-shift (yijωij), a 4-shift (yijklωijkl) or

6-shift (y1...6ω1...6). The case

(

x

0

)

is equivalent through L to

(

0

x

)

and by B2 to

(

x

x

)

. B1 is trivial in this context.

• Two different 2-shifts,15

(

2x
2y

)

, x 6= y. By L this is equivalent to

(

2y
2x

)

, while B1

and B2, alone or combined with L, yield

(

2x or y

4xy

)

and

(

4xy
2x or y

)

.

•
(

4xy
4xz

)

, y 6= z, together with

(

4xz
4xy

)

,

(

4xy
4yz

)

,

(

4yz
4xz

)

,

(

4xz
4yz

)

,

(

4yz
4xy

)

.

•
(

6

2x

)

, together with

(

2x
6

)

,

(

6

4yz

)

,

(

4yz
6

)

,

(

4yz
2x

)

and

(

2x
4yz

)

.

15The case of two equal 2-shifts is contained in the previous class.
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Due to the symmetry of our setup the values of S3,4 fall into the same equivalence

classes as S̃1,2. We can think of the values listed above as building blocks. The last step

we need to take is to determine how the values of S̃1,2 combine with those of S3,4 in order

to respect modular invariance. We report in the appendix B the resulting models.

B Inequivalent models

In this section we combine the various possible values of S̃1,2 with those of S3,4, keeping

in mind the restrictions and conventions in (A.2), (A.3), in order to write all possible

inequivalent models, gathered in table 1.16

The first option is to put to zero all four shifts S̃1,2, S3,4 . This leads to the first model

in table 1. All symmetries (A.4) are trivial in this case.

Next we combine the building block

(

S3
S4

)

=

(

0

0

)

with one of the others. The form

of the basis vectors b3 and b4 in this case

b3 = { | χ̃3456 ω̃3456},
b4 = { | χ̃1256 ω̃1256}

is incompatible with a 2-shift or a 4-shift S̃1 or S̃2 because the modular invariance con-

straints related to b3 and b4 cannot be satisfied at the same time. Hence, the

(

0

0

)

block

can only be combined with

(

6

0

)

, leading to model 3 in table 1. By symmetry we also get

model 2. Both models belong to equivalence classes of 3 elements.

Now we look at the possibility of combining the building block

(

x

0

)

to itself or one

of the remaining blocks. Models with

(

S̃1
S̃2

)

=

(

x

0

)

and

(

S3
S4

)

=

(

y

0

)

will lead to

equivalence classes of 9 elements, since each building block can be rewritten in 3 ways.

There are 9 cases corresponding to x = 2, 4, 6 and y = 2, 4, 6. Out of these only those for

which (x, y) is of the form (2, 2), (4, 4), (6, 6), (2, 4), (4, 2) are modular invariant.

For (x, y) = (2, 2) the basis vectors take the form

b1 = {χ3456 y12 ω1...6| S̃1},
b2 = {χ1256 y56 ω12 | },
b3 = { S3 | χ̃3456 ỹ12ω̃1...6},
b4 = { | χ̃1256 ỹ56ω̃12}.

Compatibility of S̃1 with b4 and S3 with b2 forces both shifts to be in the 34 directions,

leading to model 5.

16The order of the models in the table is slightly altered in respect to this section, because it takes into

account repetitions of the gauge group.
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Similarly, in the case (4,4) the shifts must be in the 1256 directions leading to model 6,

while the case (6,6) yields model 4. Case (2,4) is also unique (model 8), since the 2-shift and

4-shift are again restricted to one single possible value, S̃1 = ỹ34ω̃34 and S3 = y1256ω1256.

By symmetry we also obtain the case (4,2) called model 7.

Case (6,4), for instance, fails because either b1 = {χ3456 y12 ω1...6| ỹ1...6ω̃1...6} or

b2 = {χ1256 y56ω12| } have an odd (complex) intersection in the left part with b3 =

{S3| χ̃3456 ω̃3456}.17 Similar arguments apply for (6,2), (2,6), (4,6).

If

(

S3
S4

)

=

(

x

0

)

we cannot find two distinct 2-shifts or 4-shifts S̃1 and S̃2 that are

compatible with b4 = { | χ̃1256 ω̃1256} or b4 = { | χ̃1256 ỹ56 ω̃12}. So we can only hope to

combine this building block with

(

6

2

)

. For x = 2 we obtain model 11, which is part of a

class of 18 elements, because B3 is trivial in this case. By symmetry we also obtain model

9. Similarly, for x = 4 we find the models 10 and 12, which are also part of equivalence

classes of 18 elements. No solution is modular invariant when x = 6.

Coming to the case

(

2x
2y

)

, let’s look at the option

(

S̃1
S̃2

)

=

(

2x
2y

)

and

(

S3
S4

)

=

(

2z
2t

)

, with x 6= y and z 6= t. When S̃1 is a 2-shift there is only one option for the left

part of b1, b
(2)
1L , and only one option for the left part of b2 compatible both with a 2-shift

in the right part of b2 and with b1. The same option for the left part of b1 is mirrored

for the right part of b3 (and similarly b2 is mirrored by b4). There are two independent

and modular invariant models. One of them has L = R and so it gives rise to a class of

18 elements, model 15, while the other gives rise to a class of 36 elements, model 14. The

remaining choices for the 2-shifts are either already contained in these two classes or do

not satisfy modular invariance.

Combining

(

2x
2y

)

with

(

4xy
4xz

)

we also find only two independent cases, model 16 and

model 17. Both models exhibit the symmetry L = R and are part of equivalence classes of

18 elements. No solution is obtained when combining

(

2x
2y

)

with

(

6

2

)

.

If all four shifts S̃1,2, S3,4 are 4-shifts we get one model, number 18, from a class of 6

elements, since L = R, B1 = B3 and B2 = B4 (hence the only independent transformations

are I, L,B1, B2, B1L,B2L). Next we note that

(

4xy
4xz

)

is not compatible with

(

6

2

)

.

Finally combining

(

6

2

)

with itself we obtain a class of 36 elements, namely model 13.

17b2 requires a shift in 1256, while b1 requires a shift in 3456.
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C Discrete torsions

In this appendix we discuss mainly the effect of turning on discrete torsions in model 13.

At the end of this section we also present an instance of a chiral model obtained via Gepner

map from a Type II model with heff11 = heff21 .

As explained in section 4.2 there are six independent discrete torsions in our setup,

aside from the untwisted projections. In the following, we use the labeling

cij = C

(

bi
bj

)

, i < j = 1, .., 4.

Since our models feature only Z2 twists, the discrete torsions can only take the values ±1.

Because the effect of turning on discrete torsion is very model dependent, we explore

in full detail the outcome only for model 13. The choice is motivated by the fact that

model 13 contains three NAHE-like twisted sectors that contribute chiral states. Below,

we reproduce the basis sets that generate model 13:

F = {ψµ χ1...6 y1...6 ω1...6| ỹ1...6 ω̃1...6 χ̃1...6 ψ̃1...10 φ̃1...16} ,
S = {ψµ χ1...6} ,
E = {φ̃1...16} ,
b1 = {χ3456 y12 ω1...6 | ỹ1...6ω̃1...6} ,
b2 = {χ1256 y34 ω1...6 | ỹ12ω̃12} ,
b3 = {y1...6 ω1...6 | χ̃3456 ỹ12 ω̃1...6} ,
b4 = {y12 ω12 | χ̃1256 ỹ34 ω̃1...6} .

The untwisted sector is independent of discrete torsions and gives rise to

• gauge bosons of SO(2)7 × SO(4)× SO(10)× Ehidden
8 ;

• vector multiplets in the bi-fundamentals

(2, 14, 2, 14), (1, 2, 14, 2, 13), (1, 2, 15, 4, 12), (12, 2, 1, 2, 15), (13, 2, 14, 10, 1),

(16, 2, 4, 12) .

The following twisted sectors contribute massless states

• sectors contributing spinorials of SO(10)

α1 = F + b1 + E , α123 = F + b1 + b2 + b3 + E ,

α3 = F + b3 + E , α134 = F + b1 + b3 + b4 + E ,

α24 = F + b2 + b4 + E , α1234 = F + b1 + b2 + b3 + b4 + E .

• sectors contributing vectorials of SO(10)

β12 = b1 + b2 , β23 = b2 + b3 ,

β13 = b1 + b3 , β124 = b1 + b2 + b4 ,

β14 = b1 + b4 , β234 = b2 + b3 + b4 .
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Table 2 details the form of the states in each of the twisted sectors, the effect of turning

on discrete torsions on the states and, as an example, the spectrum for the case with no

discrete torsion. The SO(2) charges in the spinorial and anti-spinorial representations are

denoted by q and q̄. The gauge groups SO(2)1, SO(2)2 and SO(2)6 always appear as q+q̄ in

the spinorial representations. This happens because the right moving fermions generating

the mentioned gauge groups are always accompanied by a left moving complex fermion

and, as a result, the charge of the corresponding Ramond vacuum is not fixed.

Sectors α1, α3 and α1234 always contribute an equal number of 16’s and 16’s. On the

other hand, the chirality of the states arising in sectors α24, α123 and α134 is governed

by the same factor c12c14c23c24c34 =
∏4

i<j=1 cij/c13. This occurs because of the following

relations

(F + b2 + b4 + E) ∩ (F + b1 + b2 + b3 + E) = {ψµ | ψ̃1...10} ,
(F + b2 + b4 + E) ∩ (F + b1 + b3 + b4 + E) = {ψµ | ψ̃1...10} , (C.1)

that can be interpreted as follows: in sector α24 the charge of the fermions ψ̃1...10 is de-

termined by the projections by F , b1, b2, b3 and E (or equivalently the projections by

F , b1, b3, b4 and E), while in sectors α123 and α134 the same charge is controlled by the

projections by F , b2, b4 and E. Taking into account the relation between discrete torsion

coefficients C

(

a

b+ c

)

= δa C

(

a

b

)

C

(

a

c

)

, where δa relates to spin statistics, one can

see that the relevant discrete torsion coefficients are indeed c12, c14, c23, c24 and c34. As a

result, the model is chiral for all choices of discrete torsion.

Other relations similar to (C.1) explain the repetitions in the discrete torsion coeffi-

cients that govern various gauge group representations in different twisted sectors. It is

also interesting to note that the individual values of c12 and c24 are irrelevant, only their

product c12c24 matters, as shown in table 2. This means that varying the discrete torsions

leads to only 25 different spectra.

Let us also mention the effect of varying the discrete torsion in a heterotic model

obtained via the Gepner map from the Type II model with (heff11 , h
eff
21 ) = (9, 9). The sets of

the Type II (9,9) model correspond to our model 14 in table 1. The result of the Gepner

map can be obtained by adding to model 14 the Wilson line

G = {χ̃1...6ψ̃1...10},

which, as explained in section 2, performs the separation of the compact degrees of freedom

and leads to the standard embedding. Via the Gepner map, G is the correspondent of the

set S̃ from Type II. Changing the sign of the discrete torsion C(1, G) with respect to

the value of C(1, S) leads from a model with 9 × 16 and 9 × 16 to a model with 15 ×
16 and 3×16. Incidentally, the same effect is obtained when reversing the discrete torsions

C(G, b3), C(G, b4) at the same time from 1 to -1.
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SO(2)7 × SO(10) : c13c14 = 1 ⇒ (q, 16) + (q̄, 16)

α1 (14, q or q̄ , q + q̄ , q or q̄ , 1 , 16 or 16 , 1) c13c14 = −1 ⇒ (q, 16) + (q̄, 16) (14, q , q + q̄ , q , 1 , 16 , 1)

(14, q or q̄ , q + q̄ , q or q̄ , 1 , 16 or 16 , 1) SO(2)5 × SO(2)7 : c14 = 1 ⇒ (q, q) + (q̄, q̄) (14, q̄ , q + q̄ , q̄ , 1 , 16 , 1)

c14 = −1 ⇒ (q, q̄) + (q̄, q)

SO(2)4 × SO(10) : c34 = 1 ⇒ (q, 16) + (q̄, 16) (12, q , q, q , 12 1 , 16 , 1)

α3 (12, q or q̄, q or q̄, q or q̄, 12, 1, 16 or 16, 1) c34 = −1 ⇒ (q, 16) + (q̄, 16) (12, q̄ , q̄, q̄ , 12 1 , 16 , 1)

SO(2)3 × SO(2)5 : c34 = 1 ⇒ (q, q) + (q̄, q̄) (12, q , q̄, q , 12 1 , 16 , 1)

c34 = −1 ⇒ (q, q̄) + (q̄, q) (12, q̄ , q, q̄ , 12 1 , 16 , 1)

SO(2)7 : c12c13c24c34 = 1(−1) ⇒ q̄(q)

(1, q + q̄, q or q̄, 13, q or q̄, 1, 16 or 16, 1) SO(2)3 × SO(10) : (1, q + q̄ , q , 13, q̄ , 1 , 16 , 1)

α1234 (1, q + q̄, q̄ or q, 13, q̄ or q, 1, 16 or 16, 1) c13c23c34 = 1 ⇒ (q, 16) + (q̄, 16) (1, q + q̄ , q̄ , 13 , q̄ , 1 , 16 , 1)

c13c23c34 = −1 ⇒ (q, 16) + (q̄, 16)

α24 (1, q + q̄, 1, q or q̄, 1, q + q̄, 1, 1, 16 or 16, 1) SO(2)4 : c12c14c24 = 1(−1) ⇒ q̄(q) (1, q + q̄, 1, q̄, 1, q + q̄, 1, 1, 16, 1)

SO(10) :
∏

4

i<j=1
cij/c13 = 1(−1) ⇒ 16(16)

α123 (14, q or q̄, 12, 2L + 2R, 16 or 16, 1) SO(2)5 :
∏

4

i<j=1
cij/c23 = 1(−1) ⇒ q(q̄) (14, q , 12, 2L + 2R , 16 , 1)

SO(10) :
∏

4

i<j=1
cij/c13 = 1(−1) ⇒ 16(16)

SO(2)3 :
∏

4

i<j=1
cij/c34 = 1(−1) ⇒ q(q̄)

α134 2× (q + q̄, 1, q or q̄, 13, q or q̄, 1, 16 or 16, 1) SO(2)7 :
∏

4

i<j=1
cij/c14 = 1(−1) ⇒ q(q̄) 2× (q + q̄ , 1, q , 13, q , 1 , 16, 1)

SO(10) :
∏

4

i<j=1
cij/c13 = 1(−1) ⇒ 16(16)

β12

(2, 1, q or q̄, q or q̄, 1, 1, 1, 2L + 2R, 1, 1) SO(2)3 :
∏

4

i<j=1
cij/c34 = 1(−1) ⇒ q̄(q) (2, 1, q̄, q̄, 1, 1, 1, 2L + 2R, 1, 1)

(1, 1, q or q̄, q or q̄, 1, 1, 2, 2L + 2R, 1, 1) SO(2)4 : c12c14c24 = 1(−1) ⇒ q̄(q) (1, 1, q̄, q̄, 1, 1, 2, 2L + 2R, 1, 1)

(1, 2, q or q̄, q or q̄, 1, 1, 1, 2L + 2R, 1, 1) SO(2)3 :
∏

4

i<j=1
cij/c34 = 1(−1) ⇒ q(q̄) (1, 2, q, q, 1, 1, 1, 2L + 2R, 1, 1)

(1, 1, q or q̄, q or q̄, 1, 2, 1, 2L + 2R, 1, 1) SO(2)4 : c12c14c24 = 1(−1) ⇒ q(q̄) (1, 1, q, q, 1, 2, 1, 2L + 2R, 1, 1)

(1, 1, q or q̄, q or q̄, 2, 1, 1, 2L + 2R, 1, 1) SO(2)3 :
∏

4

i<j=1
cij/c34 = 1(−1) ⇒ q(q̄) (1, 1, q , q̄, 2, 1, 1, 2L + 2R, 1, 1)

SO(2)4 : c12c14c24 = 1(−1) ⇒ q̄(q)

(1, 1, q or q̄, q or q̄, 1, 1, 1, 2L + 2R, 10, 1) SO(2)3 :
∏

4

i<j=1
cij/c34 = 1(−1) ⇒ q̄(q) (1, 1, q̄, q, 1, 1, 1, 2L + 2R, 10, 1)
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SO(2)4 : c12c14c24 = 1(−1) ⇒ q(q̄)

SO(2)3 × SO(2)4 : c13 = 1 ⇒ (q, q) + (q̄, q̄)

(2, 1, q or q̄, q or q̄, 1, q + q̄, q or q̄, 1, 1, 1) c13 = −1 ⇒ (q, q̄) + (q̄, q) (2, 1, q, q, 1, q + q̄, q̄, 1, 1, 1)

SO(2)3 × SO(2)7 : c14c34 = 1 ⇒ (q, q̄) + (q̄, q) (2, 1, q̄, q̄, 1, q + q̄, q, 1, 1, 1)

c14c34 = −1 ⇒ (q, q) + (q̄, q̄)

β13

SO(2)3 × SO(2)4 : c13 = 1 ⇒ (q, q) + (q̄, q̄)

(1, 2, q or q̄, q or q̄, 1, q + q̄, q or q̄, 1, 1, 1) c13 = −1 ⇒ (q, q̄) + (q̄, q) (1, 2, q, q, 1, q + q̄, q, 1, 1, 1)

(1, 1, q or q̄, q or q̄, 1, q + q̄, q or q̄, 4, 1, 1) SO(2)3 × SO(2)7 : c14c34 = 1 ⇒ (q, q) + (q̄, q̄) (1, 2, q̄, q̄, 1, q + q̄, q̄, 1, 1, 1)

c14c34 = −1 ⇒ (q, q̄) + (q̄, q)

SO(2)3 × SO(2)4 : c13 = 1 ⇒ (q, q̄) + (q̄, q)

(1, 1, q or q̄, q or q̄, 2, q + q̄, q or q̄, 1, 1, 1) c13 = −1 ⇒ (q, q) + (q̄, q̄) (1, 1, q, q̄, 2, q + q̄, q, 1, 1, 1)

SO(2)3 × SO(2)7 : c14c34 = 1 ⇒ (q, q) + (q̄, q̄) (1, 1, q̄, q, 2, q + q̄, q̄, 1, 1, 1)

c14c34 = −1 ⇒ (q, q̄) + (q̄, q)

SO(2)3 × SO(2)4 : c13 = 1 ⇒ (q, q̄) + (q̄, q)

(1, 1, q or q̄, q or q̄, 1, q + q̄, q or q̄, 1, 10, 1) c13 = −1 ⇒ (q, q) + (q̄, q̄) (1, 1, q, q̄, 1, q + q̄, q̄, 1, 10, 1)

SO(2)3 × SO(2)7 : c14c34 = 1 ⇒ (q, q̄) + (q̄, q) (1, 1, q̄, q̄, 1, q + q̄, q, 1, 10, 1)

c14c34 = −1 ⇒ (q, q) + (q̄, q̄)

SO(2)4 : c12c14c24 = 1(−1) ⇒ q(q̄)

2× (q + q̄, 2, 1, q or q̄, q or q̄, 1, q or q̄, 1, 1, 1) SO(2)5 :
∏

4

i<j=1
cij/c23 = 1(−1) ⇒ q(q̄) 2× (q + q̄, 2, 1, q, q, 1, q, 1, 1, 1)

SO(2)7 : c12c13c24c34 = 1(−1) ⇒ q(q̄)

SO(2)4 : c12c14c24 = 1(−1) ⇒ q̄(q)

2× (q + q̄, 1, 2, q or q̄, q or q̄, 1, q or q̄, 1, 1, 1) SO(2)5 :
∏

4

i<j=1
cij/c23 = 1(−1) ⇒ q(q̄) 2× (q + q̄, 1, 2, q̄, q, 1, q, 1, 1, 1)

SO(2)7 : c12c13c24c34 = 1(−1) ⇒ q(q̄)

β14 SO(2)4 : c12c14c24 = 1(−1) ⇒ q(q̄)

2× (q + q̄, 1, 1, q or q̄, q or q̄, 2, q or q̄, 1, 1, 1) SO(2)5 :
∏

4

i<j=1
cij/c23 = 1(−1) ⇒ q(q̄) 2× (q + q̄, 1, 1, q, q, 2, q̄, 1, 1, 1)
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SO(2)7 : c12c13c24c34 = 1(−1) ⇒ q̄(q)

SO(2)4 : c12c14c24 = 1(−1) ⇒ q̄(q)

2× (q + q̄, 1, 1, q or q̄, q or q̄, 1, q or q̄, 4, 1, 1) SO(2)5 :
∏

4

i<j=1
cij/c23 = 1(−1) ⇒ q̄(q) 2× (q + q̄, 1, 1, q̄, q̄, 1, q̄, 4, 1, 1)

SO(2)7 : c12c13c24c34 = 1(−1) ⇒ q̄(q)

SO(2)4 : c12c14c24 = 1(−1) ⇒ q(q̄)

2× (q + q̄, 1, 1, q or q̄, q or q̄, 1, q or q̄, 1, 10, 1) SO(2)5 :
∏

4

i<j=1
cij/c23 = 1(−1) ⇒ q̄(q) 2× (q + q̄, 1, 1, q, q̄, 1, q, 1, 10, 1)

SO(2)7 : c12c13c24c34 = 1(−1) ⇒ q(q̄)

SO(2)7 :
∏

4

i<j=1
cij/c14 = 1(−1) ⇒ q̄(q)

(2, q + q̄, 1, q or q̄, q or q̄, 1, q or q̄, 1, 1, 1) SO(2)4 × SO(2)5 : c13c23c34 = 1 ⇒ (q, q) + (q̄, q̄) (2, q + q̄, 1, q, q, 1, q̄, 1, 1, 1)

c13c23c34 = −1 ⇒ (q, q̄) + (q̄, q) (2, q + q̄, 1, q̄, q̄, 1, q̄, 1, 1, 1)

β124 (1, q + q̄, 1, q or q̄, q or q̄, 2, q or q̄, 1, 1, 1) SO(2)7 :
∏

4

i<j=1
cij/c14 = 1(−1) ⇒ q(q̄) (1, q + q̄, 1, q, q, 2, q, 1, 1, 1)

SO(2)4 × SO(2)5 : c13c23c34 = 1 ⇒ (q, q) + (q̄, q̄) (1, q + q̄, 1, q̄, q̄, 2, q, 1, 1, 1)

(1, q + q̄, 1, q or q̄, q or q̄, 1, q or q̄, 4, 1, 1) c13c23c34 = −1 ⇒ (q, q̄) + (q̄, q) (1, q + q̄, 1, q, q, 1, q, 4, 1, 1)

(1, q + q̄, 1, q̄, q̄, 1, q, 4, 1, 1)

(1, q + q̄, 2, q or q̄, q or q̄, 1, q or q̄, 1, 1, 1) SO(2)7 :
∏

4

i<j=1
cij/c14 = 1(−1) ⇒ q̄(q) (1, q + q̄, 2, q, q̄, 1, q̄, 1, 1, 1)

SO(2)4 × SO(2)5 : c13c23c34 = 1 ⇒ (q, q̄) + (q̄, q) (1, q + q̄, 2, q̄, q, 1, q̄, 1, 1, 1)

(1, q + q̄, 1, q or q̄, q or q̄, 1, q or q̄, 1, 10, 1) c13c23c34 = −1 ⇒ (q, q) + (q̄, q̄) (1, q + q̄, 1, q, q̄, 1, q̄, 1, 10, 1)

(1, q + q̄, 1, q̄, q, 1, q̄, 1, 10, 1)

(2, q + q̄, q or q̄, 1, q or q̄, q + q̄, 1, 1, 1, 1) SO(2)3 :
∏

4

i<j=1
cij/c34 = 1(−1) ⇒ q̄(q) (2, q + q̄, q̄, 1, q, q + q̄, 1, 1, 1, 1)

(1, q + q̄, q or q̄, 1, q or q̄, q + q̄, 2, 1, 1, 1) SO(2)5 :
∏

4

i<j=1
cij/c23 = 1(−1) ⇒ q(q̄) (1, q + q̄, q̄, 1, q, q + q̄, 2, 1, 1, 1)

β234 (1, q + q̄, q or q̄, 2, q or q̄, q + q̄, 1, 1, 1, 1) SO(2)3 :
∏

4

i<j=1
cij/c34 = 1(−1) ⇒ q(q̄) (1, q + q̄, q, 2, q, q + q̄, 1, 1, 1, 1)

SO(2)5 :
∏

4

i<j=1
cij/c23 = 1(−1) ⇒ q(q̄)

(1, q + q̄, q or q̄, 1, q or q̄, q + q̄, 1, 4, 1, 1) SO(2)3 :
∏

4

i<j=1
cij/c34 = 1(−1) ⇒ q(q̄) (1, q + q̄, q, 1, q̄, q + q̄, 1, 4, 1, 1)

SO(2)5 :
∏

4

i<j=1
cij/c23 = 1(−1) ⇒ q̄(q)

(1, q + q̄, q or q̄, 1, q or q̄, q + q̄, 1, 1, 10, 1) SO(2)3 :
∏

4

i<j=1
cij/c34 = 1(−1) ⇒ q̄(q) (1, q + q̄, q̄, 1, q̄, q + q̄, 1, 1, 10, 1)
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SO(2)5 :
∏

4

i<j=1
cij/c23 = 1(−1) ⇒ q̄(q)

β23 c23 = 1 : (2, 14, q + q̄, q or q̄, 2L + 2R, 12) SO(2)7 : c12c13c24c34 = 1(−1) ⇒ q̄(q) (2, 1, 1, 1, 1, q + q̄, q̄, 2L + 2R, 12)

c23 = 1 : (1, 2, 13, q + q̄, q or q̄, 2L + 2R, 12) SO(2)7 : c12c13c24c34 = 1(−1) ⇒ q(q̄) (1, 2, 1, 1, 1, q + q̄, q, 2L + 2R, 12)

c23 = −1 : (12, 2, 12, q + q̄, q or q̄, 2L + 2R, 12) SO(2)7 : c12c13c24c34 = 1(−1) ⇒ q(q̄)

(15, q + q̄, q or q̄, 2L + 2R, 10, 1)

c23 = −1 : (13, 2, 1, q + q̄, q or q̄, 2L + 2R, 12) SO(2)7 : c12c13c24c34 = 1(−1) ⇒ q̄(q)

(14, 2, q + q̄, q or q̄, 2L + 2R, 12)

Table 2. Discrete torsions in model 13.
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D Z2 × Z2 characters

In this appendix we report the characters τ and the amplitudes ρ used for the Z2 × Z2

twists in the space-time directions. The τ characters are defined as follows [51]:

τ00 = V OOO +OV V V − SCCS − CSSC ∼ V − S − C ;

τ01 = V OV V +OV OO − SCSC − CSCS ∼ 2O − S − C ;

τ02 = V V OV +OOV O − SSCC − CCSS ∼ 2O − S − C ;

τ03 = V V V O +OOOV − SSSS − CCCC ∼ 2O − S − C ;

τ10 = OOCS + V V SC − SSOO − CCV V ∼ O − S ;

τ11 = OOSC + V V CS − SSV V − CCOO ∼ O − C ;

τ12 = OV CC + V OSS − SCOV − CSV O ;

τ13 = OV SS + V OCC − SCV O − CSOV ;

τ20 = OCOS + V SV C − SOSO − CV CV ∼ O − S ;

τ21 = OCV C + V SOS − SOCV − CV SO ;

τ22 = OSOC + V CV S − SV SV − COCO ∼ O − C ;

τ23 = OSV S + V COC − SV CO − COSV ;

τ30 = OSSO + V CCV − SV V C − COOS ∼ O − C ;

τ31 = OSCV + V CSO − SV OS − COV C ;

τ32 = OCSV + V SCO − SOV S − CV OC ;

τ33 = OCCO + V SSV − SOOC − CV V S ∼ O − S , (D.1)

where we have also indicated the space-time (potential) massless contributions in terms

of the transverse Lorentz SO(2) representations in four dimensions. The corresponding

amplitudes are the combinations respecting the Z2 × Z2 orbifold group structure. They

are given by

ρα0 = τα0 + τα1 + τα2 + τα3 ;

ρα1 = τα0 + τα1 − τα2 − τα3 ;

ρα2 = τα0 − τα1 + τα2 − τα3 ;

ρα3 = τα0 − τα1 − τα2 + τα3 .

In the partition function they must be supported by the internal amplitudes, that can

be arranged in terms of the characters of the corresponding so(2n) affine algebras.

E The algorithm

We give here a brief description of the algorithm that was created to scan our 220 models and

used Wolfram Mathematica 8.0 as software environment. The algorithm consists of three

modules. The first one generates all the possible fermion configurations describing the four

sets of twists/shifts and selects only the ones consistent with worldsheet supersymmetry

– 30 –
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and modular invariance constraints. The second module constructs the modular invariant

amplitude for a given consistent model. The third one extracts the spectrum in terms of

(super)characters.

• Module 1. The algorithm generates all the possible quartets of sets related to the

fermionized degrees of freedom of the heterotic string as described in section 2. In

their raw form the sets consist in arrays of 1 and -1 (-1 for twisted fermions). Then the

consistency conditions (2.5), (2.6) filter only those sets compatible with world-sheet

supersymmetry and modular invariance. For each consistent model, the four sets

determine 24 = 16 classes of fermions for left and right modes separately, according

to the fact that a single fermion can be twisted along the “space” and/or “time”

direction of the world-sheet. A single model — namely a set of four specific fermion

sets — can be also identified with this ordered array of integers that corresponds

precisely to the thetas’ exponents in the untwisted amplitude. Two different lists

of 4 sets can produce the same array of integers, and in this case these models are

considered completely equivalent. On the other hand, two arrays with the same

integers in different orders, produce in general the same untwisted amplitude, but

different twisted sectors, and, therefore, are not equivalent.

• Module 2. Once the correspondence between models and integer arrays has been

settled, the algorithm works directly with the arrays. The torus partition function,

in terms of Jacobi thetas, is splitted as dictated by the integers and projected to

produce the untwisted amplitude. Moreover, each power of theta comes with one of

the 16 class label that uniquely identifies the action of the four basis sets. Starting

from the initial torus, the full modular invariant Partition Function consists of 256

amplitudes, due to the 16-dimensional orbifold group acting on the 16 (1 untwisted

and 15 twisted) sectors. The amplitudes are of two types: the ones reached by a

modular transformation (T or S) from another amplitude, and the “disconnected”

ones. As stated in section 4.2, there are 15 “orbits” of 6 elements related by T and

S transformations and an untwisted orbit of 46 elements.

• Module 3. Each orbit has a phase (1 or -1) hidden in the definition of tau’s. To fix

the 15 orbit signs (the untwisted orbit phase is by definition fixed to 1) we scan the

spectra and keep the consistent ones. They can be recognized, once the Jacobi thetas

of the internal part are expanded in q powers and written in terms of characters,

by requiring the coefficient of the characters to be integer and positive. Once the

consistent signs configuration is found, the spectrum is finally printed out for each

sector, separately. Of course, not all orbit phases are constrained. Six of them are

independent and correspond to the 26 = 64 discrete torsion variations of the same

model. These are exhaustively explored.
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