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1 Introduction

String dualities reveal intriguing relations among perturbatively different theories. While

T-duality establishes the physical equivalence of theories defined on dual backgrounds with

very different geometries, S-duality relates the strong and weak coupling limits of dual

theories, and finally U-duality has been conjectured to be a symmetry of the full string

theory.
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Much progress has been achieved in the construction of duality covariant models aiming

at an effective description of the low-energy states of the string, their interactions and

properties. The stringy nature of the dualities alters the standard notions of geometry,

and in some of the approaches duality invariance is achieved through an enlargement of

the coordinate space. The idea of implementing T-duality as a manifest symmetry was first

considered by M. Duff [1, 2] and A. Tseytlin [3, 4] and further developed by W. Siegel [5, 6].

More recently, it received renewed attention after the works by C. Hull, B. Zwiebach and

O. Hohm [7–10], where the theory defined on the doubled space was named Double Field

Theory (DFT) (see also [11–16]). The equivalence between the formulations in [5, 6] and [7–

10] was established in [17]. Closely related is the framework of Generalized Geometry [18,

19]. More general U-duality covariant frameworks have been constructed in [20–30] and [31–

36], and the relation between some of these theories and DFT was explained in [37]. Reviews

of these achievements can be found in [38–40].

DFT is usually supplemented ad hoc with a differential constraint on fields and gauge

parameters, named strong constraint or section condition. It effectively un-doubles the dou-

ble coordinate dependence, and implies that locally DFT is a reformulation of supergravity.

Given the coordinates of the double space XM , M “ 1, . . . , 2D, and the corresponding

derivatives BM “ B{BXM , the constraint states that

ηMNBMBN ¨ ¨ ¨ “ 0 , ηMN “
˜

0 δi
j

δij 0

¸
, (1.1)

where ηMN is the OpD,Dq invariant metric, i, j “ 1, . . . , D and the dots stand for arbitrary

(products of) fields and gauge parameters. Generalized diffeomorphisms in the double-

space then reduce to standard diffeomorphisms and two-form gauge transformations.

The first step towards a relaxation of the strong constraint was implemented in the

Ramond-Ramond sector [41]. For the Neveu-Schwarz sector, it was shown in [42–44] that

closure of the algebra of generalized diffeomorphisms and gauge invariance of the action

of DFT give rise to a set of constraints that are not in one to one correspondence with

the strong constraint. Although they imply that DFT is a restricted theory, solutions that

violate the strong constraint and are thus truly doubled are allowed.

Scherk-Schwarz (SS) compactifications [45] provide a scenario where fields and gauge

parameters are restricted: given a background defined by a duality twist, the fields and

gauge parameters must accommodate to it, and can no longer be generic. The perturbations

around the background then correspond to the dynamical degrees of freedom of the effective

action, which is a gauged supergravity. When the restricted fields are inserted into the

consistency constraints of DFT, the duality twist generates gaugings (including the so-

called non-geometric gaugings [46–48]) that arrange in the form of the quadratic constraints

of gauged supergravities [42–44]. Then, under a SS reduction, the constraints of DFT are in

one to one correspondence with the constraints of gauged supergravity. U-duality invariant

scenarios exhibit the same behavior [30, 49, 50]. The quadratic constraints were completely

solved in some particular gauged supergravities in [51], where it was shown that the duality

orbits of non-geometric fluxes are only generated through truly doubled duality twists.
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From a phenomenological point of view, these duality orbits (which necessarily violate the

strong constraint) are the most interesting ones since they favour moduli stabilization and

dS vacua, evading the many no-go theorems for geometric fluxes [52–57]. Then, from a

four-dimensional perspective, the effect of the strong constraint is to eliminate the orbits

that give rise to vacua with desirable phenomenological features.

The purpose of this paper is to explore to what extent one can deal with the gauge

consistency constraints in DFT without imposing the strong constraint, and survey exten-

sions of DFT with strong constraint-violating terms. To achieve this goal, we closely follow

the formulation in [5, 6, 17]:

• The fields of the theory, namely the generalized dilaton dpXq and bein EA
M pXq, which

turns flat indices A,B, . . . into curved ones M,N, . . . , are arranged in “dynamical”

fluxes defined as:

FABC “ 3ΩrABCs , (1.2)

FA “ ΩBBA ` 2DAd , (1.3)

where

ΩABC “ DAEB
NECN , (1.4)

and we have introduced a planar derivative DA “ EA
MBM . The fluxes FABC and

FA are thus field-dependent and non-constant. The different components of FABC
correspond to the standard geometric (Habc and τab

c) and non-geometric (Qa
bc and

Rabc) fluxes, and give rise to the corresponding gaugings upon compactification. This

is similar to the constructions of [58–62], where ten-dimensional actions with their

associated differential geometries were built in terms of field dependent quantities

related to the non-geometric fluxes.

• Some consistency constraints take the form of generalized quadratic constraints, and

involve the following Bianchi identities (BI) for the dynamical fluxes

DrAFBCDs ´ 3

4
FrAB

EFCDsE “ ZABCD ,

DCFCAB ` 2DrAFBs ´ FCFCAB “ ZAB ,

(1.5)

where

ZABCD ” ´3

4
ΩErABΩ

E
CDs ,

ZAB ”
`
BMBMErA

N
˘
EBsN ´ 2ΩCABDCd .

(1.6)

Upon SS compactifications, the constraints lead to the quadratic constraints for the

constant electric bosonic gaugings of half-maximal gauged supergravity. Both these

expressions vanish under the strong constraint (1.1), but more generally the full set

of constraints admits truly double configurations. Let us emphasize that the strong

constraint can be imposed on all the results of this paper, which would then reduce

to known results in the literature.
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Besides (1.5) there are additional BI associated to the quadratic constraints of the

maximal theory, which arise upon completing the NS-NS action with the Ramond-

Ramond (RR) sector

DAFA ´ 1

2
FAFA ` 1

12
FABCFABC “ ´2DAdDAd` 2BMBMd` 1

4
ΩABCΩABC ” Z

{∇G “ ZRR , (1.7)

where G contains the information on RR forms, and {∇ is a generalized Dirac operator.

All Z . . . vanish under the strong constraint.

• The action takes the form of the scalar potential of the bosonic electric sector of half-

maximal gauged supergravity [63] when the fluxes are identified with the constant

electric gaugings and the flat metric is identified with the moduli scalar matrix:

S “
ż
dXe´2d

ˆ
´ 1

4
FAD

CFBC
DSAB ´ 1

12
FAC

EFBD
FSABSCDSEF ` FAFBS

AB

´ 1

6
FABCFABC ´ FAFA

˙
, (1.8)

where SAB is the generalized metric in planar indices, and it is written purely in

terms of the dynamical fluxes. Up to boundary terms, the first line in this action

equals that of DFT [7–10] plus an additional term that violates the strong constraint.

The second line, on the other hand, identically vanishes under the strong constraint.

So, when the strong constraint is imposed, this action can be cast in the form of

the generalized metric formulation of DFT [7–10]. These results refer to the NS-

NS sector, but we also include Ramond-Ramond fields and heterotic vectors in the

analysis.

The action (1.8) includes many strong constraint-violating terms, some of which were

added by hand in [42–44], and of course were absent in the original formulations of DFT.

These terms are covariant under the global and local symmetries, up to the quadratic con-

straints, and are needed to make contact with half-maximal gauged supergravities contain-

ing duality orbits of non-geometric fluxes in four-dimensions upon a SS compactification.

Here, we construct this action systematically as in [5, 6] closely following the guidelines

of [64, 65] (and also [17, 66–68]): we first introduce connections to covariantize the deriva-

tives under the gauge symmetries of the theory and then impose a set of conditions on

them, such as vanishing generalized torsion and compatibility with the dynamical degrees

of freedom and the OpD,Dq metric. Although only some projections of the connection

are determined, a notion of generalized Riemann tensor can be introduced which, upon

traces and projections, leads to a fully determined generalized Ricci tensor (whose flatness

determines the equations of motion) and a generalized Ricci scalar (that defines the ac-

tion (1.8)). This procedure is followed here without assuming the strong constraint (this

was also done in the U-duality case in [30], and also in a different geometric construction of

DFT [69]). We find that the strong constraint-violating terms appearing in the generalized

Ricci scalar are those introduced in [42–44] plus others that are needed to guarantee gauge
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invariance (the latter play no role when a SS compactification is performed) up to the

consistency constraints.

Let us emphasize that in this paper we don’t assume a SS form of fields and gauge

parameters: we simply list the consistency constraints of the theory that appear through

the computations, and show that in particular they admit truly doubled solutions of the

SS form. Other compactification scenarios might provide new solutions to the constraints.

Interestingly, the expressions (1.5) appear all along the many computations in the

paper. They arise when analyzing closure of the gauge transformations, covariance of the

generalized fluxes (which in turn implies gauge invariance of the action), invariance of the

action under double Lorentz transformations, covariance of the generalized Riemann and

Ricci tensors, and they also show up in the BI for the generalized Riemann tensor.

It is also interesting to note that when the strong constraint is imposed on the

fields, (1.5) become the BI of [46–48, 70, 71] for constant fluxes, and those of [72] for

non-constant fluxes. They span T-duality orbits of BI, containing BriHjkls “ 0 as a partic-

ular representative. These identities are known to be sourced by localized branes (see for

example [73, 74]), like the NS5-brane. More generally, we have here duality orbits of BI for

non-geometric fluxes that can be related to more exotic T-fold-like objects with non-trivial

monodromies, such as the 522 brane [75–77], or other Q and R-branes [78], etc. We also

have duality orbits of generalized BI for branes in other dimensions and D-branes [79, 80],

all related to the consistency constraints of DFT.

We stress that the formalism implemented here to analyze possible relaxations of the

strong constraint was introduced in the pioneer work by W. Siegel [5, 6] many years ago,

and was recently extensively discussed in [17] by O. Hohm and S. Kwak. This includes the

fluxes, action, BI, and other issues considered in this paper.

The paper is organized as follows. In section 2 we introduce the dynamical fluxes and,

in terms of them, the action, equations of motion and gauge consistency constraints. In

section 3 the novel notions of stringy differential geometry are adapted to hold beyond

the strong constraint. The inclusion of Ramond-Ramond fields and heterotic vectors is

discussed in section 4. In section 5 we analyze the generalized BI, we present a first order

formulation of DFT and discuss duality orbits of generalized BI for different types of branes.

Finally we conclude and summarize in section 6.

2 Double Field Theory and generalized fluxes

Double Field Theory is a manifestly T-duality invariant field theory in which the fields

depend on a double set of coordinates dual to momentum and winding. Its simplest version

contains only NS-NS fields, namely the metric gij , the antisymmetric Kalb-Ramond two-

form Bij and the dilaton φ. Extensions that include heterotic vector fields [81], Yang-Mills

symmetries [82], R-R forms [83–86] and fermions in a supersymmetric fashion [87–89]

were also considered. The connection with OpD,Dq covariant world-sheet theories was

established in [90–95].

– 5 –
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In its simplest version, the theory has a global symmetry group G “ OpD,Dq with

metric

ηMN “
˜

0 δij

δi
j 0

¸
, M,N “ 1, . . . , 2D , i, j “ 1, . . . , D . (2.1)

Curved indicesM,N, . . . are raised an lowered with this metric. Every object appearing in

a duality invariant theory must belong to some representation of the duality group G. In

particular, the space-time coordinates xi have to be supplemented with G-dual coordinates

x̃i to form generalized coordinates XM “ px̃i, xiq, lying in the fundamental representation

of G. It is in this sense that the theory is doubled. It also enjoys a gauge invariance

generated by a pair of parameters pξ̃i, ξiq, that can be packed in the G-vector ξM . Gauge

invariance and closure of the gauge algebra lead to a set of differential constraints that

restrict the theory. In particular, these constraints are satisfied when a stronger condition

named strong constraint is enforced:

BMBM ¨ ¨ ¨ “ 0 , (2.2)

where the dots denote (products of) fields and gauge parameters. The effect of (2.2) is to

locally restrict the coordinate dependence of the fields and gauge parameters so that they

live on a null D-dimensional subspace of the double space. In other words, when the strong

constraint is imposed, the theory is not truly doubled but only lives on a D-dimensional

slice of the doubled space. However, by explicitly breaking the gauge symmetry, for instance

when compactifying, it is possible to relax the strong constraint. All through this paper

we will keep terms that would vanish by this constraint.

In DFT, the dilaton φ is contained in the G-scalar

d “ φ´ 1

2
log

?
g , (2.3)

which is manifestly T-duality invariant. The D-dimensional metric gij and two-form Bij

are contained in a symmetric generalized metric HMN , living in the coset G{H where H “
Op1, D´ 1q ˆOp1, D´ 1q is the maximal (pseudo-)compact subgroup of G, corresponding

to a local symmetry of the theory. Therefore HMN satisfies the constraint

HMP η
PQHQN “ ηMN . (2.4)

A possible parameterization is the following

HMN “
˜

gij ´gikBkj
Bikg

kj gij ´Bikg
klBlj

¸
. (2.5)

Given these objects, an invariant action under the gauge and global transformations

can be found, namely [7–10]

S “
ż
dXe´2dRpH, dq , (2.6)

with

R ” 4HMNBMBNd´ BMBNHMN ` 4BMHMN BNd´ 4HMNBMd BNd

´ 1

2
HMNBMHKL BKHNL ` 1

8
HMNBMHKL BNHKL ` ∆SCR ,

(2.7)

– 6 –
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where ∆SCR stands for terms that vanish under (2.2) and were not included in [7–10].

This action reduces to the standard supergravity action for the NS-NS sector when HMN

is parameterized as in (2.5) and the strong constraint (2.2) is enforced in a frame in which

B̃i “ 0.

In the frame formulation of DFT, one takes the H-invariant metric as

SAB “
˜
sab 0

0 sab

¸
, a, b “ 1, . . . , D , sab “ diagp´ ` ¨ ¨ ¨ `q . (2.8)

When compared with standard supergravity, one of the Op1, D ´ 1q factors reproduces

the local Lorentz symmetry. The generalized metric can then be written in terms of a

generalized bein EAM as

HMN “ EAMSABE
B
N . (2.9)

A possible parameterization, leading to (2.5), is

EAM “
˜
ea
i ea

kBki

0 eai

¸
, (2.10)

where eai is a D-dimensional bein of the metric gij “ eaisabe
b
j .

The indices in H are always raised and lowered with the flat counterpart of the G-

metric

ηAB “ EA
MEB

NηMN “
˜

0 δab

δa
b 0

¸
. (2.11)

The last equality is verified by the parameterization (2.10), but for a generic doubled bein

this gauge choice is a constraint forcing EA
M to be an element of G itself. The additional

degrees of freedom contained in the bein compared to those in HMN are then un-physical

due to the new local symmetry H. Throughout this paper, we will generally not make

use of any particular parameterization but rather consider the bein as a constrained field

satisfying (2.11).

Under global G transformations, the generalized coordinates and fields transform as

XM Ñ X 1M “ gMNX
N , EA

M pXq Ñ EA
N pX 1qgNM , dpXq Ñ dpX 1q , (2.12)

where g P G satisfies ηMN “ gM
P ηPQgN

Q. As mentioned above, when introducing beins,

the theory enjoys a new Lorentz-like local symmetryH “ Op1, D´1qˆOp1, D´1q acting on
EAM from the left. We note however that the constraint (2.11), and all differential identities

that follow from it, are invariant under local G transformations (denoted GL „ G) acting

on the bein from the left

EA
M pXq Ñ hA

BpXq EBM pXq , (2.13)

where h P GL satisfies ηAB “ hA
CηCDhB

D. The action and dynamical equations are

however only invariant under the subgroup H Ă GL, i.e. under transformations satisfying

in addition SAB “ hA
CSCDhB

D.

– 7 –
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2.1 Flux formulation

We would now like to rewrite DFT in terms of G-singlets only, along the lines of [5, 6]. For

this purpose we define the flat derivative DA “ EA
MBM and the Weitzenböck connection

ΩABC “ DAE
M
B ECM “ ´ΩACB , (2.14)

where the antisymmetry follows from (2.11). Comparing compactifications of DFT with

N “ D “ 4 gauged supergravity, it was remarked in [42–44] that the objects:

FABC “ 3ΩrABCs , (2.15)

FA “ ΩBBA ` 2DAd , (2.16)

play an important role. In particular, after compactification they give rise to the electric

gauging parameters fABC and ξA, or fluxes, entering the embedding tensor. Moreover,

the different components of these dynamical fluxes correspond to covariant derivatives of

scalars, curvature of the gauge fields, and other covariant combinations that appear in the

effective action.

The dynamics of the NS-NS sector of DFT is described by an action that can be written

in a compact form (up to total derivatives) in terms of a scalar function of the generalized

bein and dilaton as

S “
ż
dX e´2dRpE , dq , (2.17)

where

R “ SABp2DAFB ´ FAFBq ` FABCFDEF

„
1

4
SADηBEηCF ´ 1

12
SADSBESCF



´2DAFA ` FAFA ´ 1

6
FABCFABC . (2.18)

Here, the bein appears only through DA, FABC and FA. When the parameterization (2.10)

is chosen, and the strong constraint is imposed in the global frame in which the dual coor-

dinate dependence vanishes, this action reduces to the usual NS-NS action of supergravity.

Other parameterizations and global frames are better to describe the dynamics of non-

geometry [58–62].

The second line in (2.18) identically vanishes under the strong constraint. Up to

boundary terms, the first line can be taken to the form of the standard action of DFT (2.7),

modulo a single strong constraint-violating term that was introduced in [42–44]. It was

also mentioned in [42–44] that a term proportional to FABCFABC should be added to

the action (2.6) to recover the scalar potential of half-maximal gauged supergravity in

four dimensions. The second line in (2.18) corresponds to the H (and GL, since it does

not depend on the planar generalized metric) invariant extension of this term, up to the

consistency constraints. When non-vanishing, its effect for compactifications is to add a

piece to the dilaton potential, which is indispensable to reproduce duality orbits of non-

geometric fluxes.

Comparing (2.18) with (2.7) we see that the missing strong constraint-like terms read

∆SCR “ 1

2
pSAB ´ ηABqBMEAP BMEBQη

PQ ` 4BMdBMd´ 4BMBMd . (2.19)

– 8 –
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The first line in (2.18) is also invariant under a Z2 symmetry reproducing the B Ñ ´B
symmetry of supergravity. This symmetry acts at the same time on the left and on the

right of the bein by an Op2Dq transformation

Z “
˜
I

´I

¸
, E Ñ ZEZ . (2.20)

Since ZηZ “ ´η, only terms involving an even number of contractions with η are invariant,

and so is the first line in (2.18). The second line in (2.18) instead breaks the Z2 symmetry. It

was shown in [42–44], based on the results of [96–98], that its presence forbids an embedding

of the effective action of DFT into N “ 8 supergravity in four dimensions. In order to

truncate N “ 8 Ñ 4 in four-dimensions, a Z2 symmetry is imposed, and only the invariant

terms are kept. It is therefore to be expected that such a symmetry is related to the

one mentioned here. Actually, let us mention that the quadratic constraints of gauged

supergravities are automatically solved by the strong constraint (2.2). The second line

in (2.18) can be recast as

Z “ DAFA´ 1

2
FAFA` 1

12
FABCFABC “ ´2DAdDAd`2BMBMd` 1

4
ΩABCΩABC (2.21)

and written in this way, it is easy to see that it vanishes under the strong constraint. In

terms of Z, (2.19) can then be written as

∆SCR “ 1

2
SABBMEAP BMEBQη

PQ ´ 2Z . (2.22)

Given its relation to the quadratic constraints of maximal supergravity [42–44], Z “ 0

must not be imposed as a constraint here, unless we intend to embed DFT in some U-

duality invariant theory. In this paper we will keep this term, which in fact allows for the

possibility of obtaining duality orbits of non-geometric fluxes upon compactifications [51].

Interestingly, when analyzing the RR sector of the theory, Z will appear as part of the

consistency constraints.

2.2 Gauge symmetries and constraints

Under an infinitesimal GL-transformation parameterized by ΛA
B, with ΛAB “ ´ΛBA, the

bein transforms as

δEA
M “ ΛA

BEB
M . (2.23)

Referring to definitions (2.14)–(2.16), we then obtain the variations

δΛΩABC “ DAΛBC ` ΛA
DΩDBC ` ΛB

DΩADC ` ΛC
DΩABD , (2.24)

δΛFABC “ 3
`
DrAΛBCs ` ΛrA

DFBCsD

˘
, (2.25)

δΛFA “ DBΛBA ` ΛA
BFB . (2.26)

For H-transformations, the parameters also satisfy Λ qAB “ Λ
A qB, where we introduced

the notation

Λ qAB “ SA
CΛCB . (2.27)

– 9 –
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Then, up to boundary terms we find

δΛS “
ż
dXe´2dΛA

CpηAB ´ SABqZBC , (2.28)

where

ZAB “ DCFCAB ` 2DrAFBs ´ FCFCAB “
`
BMBMErA

N
˘
EBsN ´ 2ΩCABDCd . (2.29)

Notice that this vanishes under the strong constraint (2.2), but more generallyH-invariance

only requires the following minimal constraint

pδrA
C ´ SrA

CqZBsC “ 0 . (2.30)

Here the S contribution comes from the first line in (2.18) and the η term from the second

line. Notice that invariance of the full action requires this projection of ZAB to vanish,

but if ZAB is requested to vanish entirely as a constraint, then the action splits in two

sectors (the first and second line in (2.18)) both being invariant under all the symmetries

independently (up to ZAB “ 0). This allows some freedom to fix the relative coefficient

between both sectors, but we believe that this coefficient would be fixed as in (2.18) due

to supersymmetry, since it is the one required to match half-maximal supergravity in four

dimensions [42–44, 51].

On the other hand, generalized diffeomorphisms are generated by infinitesimal param-

eters ξM “ EA
MλA in the fundamental representation of G that take the form

δξd “ ξMBMd´ 1

2
BMξM “ 1

2
λAFA ´ 1

2
DAλ

A,

δξE
A
M “ ξP BPEAM ` pBMξP ´ BP ξM qEAP “ EBM

`
2DrBλAs ` FAB

Cλ
C
˘
.

(2.31)

This further implies

δξFABC “ λDDDFABC ` 4ZABCDλ
D ` 3DDλrAΩ

D
BCs , (2.32)

δξFA “ λDDDFA ` ZABλ
B ` FBDBλA ´ DBDBλA ` ΩCABDCλ

B, (2.33)

where

ZABCD “ DrAFBCDs ´ 3

4
FrAB

EFCDsE “ ´3

4
ΩErABΩ

E
CDs , (2.34)

and ZAB was defined in (2.29). Again, the failure of FABC and FA to transform as scalars

implies that DFT is a restricted theory and can only be consistently defined for a subset of

fields and gauge parameters that ensure gauge invariance and closure. The quantity (2.34)

also vanishes if (2.2) is imposed, but demanding that FABC and FA transform as scalars

only requires a relaxed version of the strong constraint

4ZABCDλ
D ` 3DDλrAΩ

D
BCs “ 0 ,

ZABλ
B ` FBDBλA ´ DBDBλA ` ΩCABDCλ

B “ 0 . (2.35)

We will now show that both, invariance of the action under H-transformations (2.30) and

generalized diffeomorphisms (2.35) follow from closure constraints.
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Consider a gauge transformation for a generic tensorial density VM of weight ωpV q

δξV
M “ ξP BPVM ` pBMξP ´ BP ξM qV P ` ωpV qBP ξPVM , (2.36)

the equations (2.31) are then recovered for ωpe´2dq “ 1 and ωpEq “ 0. These transforma-

tions define the so-called C-bracket

rξ1, ξ2sMC “ 1

2
pδξ1ξ2 ´ δξ2ξ1qM “ 2ξNr1BNξM2s ´ ξPr1BMξ2sP

“ EA
M
`
rλ1, λ2sAC ` FBC

AλB1 λ
C
2

˘
. (2.37)

Generically, the commutator of two transformations of an arbitrary vector VM is not a

transformation, but differs as

rδξ1 , δξ2sVM “ δrξ1,ξ2sCV
M ´ FM pξ1, ξ2, V q , (2.38)

where

FM pξ1, ξ2, V q “ ξ
Q

r1BP ξ2sQBPVM ` 2BP ξr1QBP ξM
2s V

Q ` ωpξ3qξQr1BP BP ξ2sQV
M (2.39)

carries the same index structure as V . This indicates that the gauge transformation of a

tensor is not automatically a tensor, and that the vanishing of its failure (denoted as ∆ξ)

must be imposed as a constraint

∆ξ1δξ2V
M “ 0 . (2.40)

The vanishing of FM in (2.38) then follows from (2.40). We will refer to (2.40) as the

closure constraints. Notice that in particular they imply1

∆ξ1FAB
C “ ECM∆ξ1δEAEB

M “ 0 ,

∆ξ1FA “ ´e2d∆ξ1δEAe
´2d “ 0 , (2.41)

and then they guarantee that the dynamical fluxes transform as scalars under general-

ized diffeomorphisms, guaranteing in turn the gauge invariance of the action, i.e. closure

implies (2.35). Also, notice that due to closure

ZABCD “ ∆EAFBCD “ 0 , ZAB “ ∆EAFB “ 0 , (2.42)

and then H-invariance of the action (2.30) is also guaranteed by closure.

Summarizing, closure requires the imposition of constraints (2.40) that guarantee gauge

invariance of the action, i.e. closure implies (2.30) and (2.35). There are further constraints

arising from their gauge transformed. Since they are known to admit solutions beyond the

strong constraint [42–44], let us now briefly review the solutions of [42–44] (which contain

the strongly constrained case as a particular example). In the next section we will deal

with geometry, and new constraints will arise, which are also satisfied by these solutions.

1The fact that the bein is not infinitesimal is not a problem here: when used as a gauge parameter one

can always assume that it is multiplied by some infinitesimal constant that factorizes out, preserving the

results (2.41)–(2.42).
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2.2.1 Scherk-Schwarz solutions

All the constraints above are solved by restricting the fields as

EA
M pXq “ pEAIpxqUIM pY q , d “ pdpxq ` λpY q , (2.43)

and the gauge parameters as

ξM pXq “ λApxq pEAIpxqUIM pY q . (2.44)

Here we have used the following notation for the coordinate dependence X “ px̃, ỹ;x, yq,
Y “ pỹ, yq. So, while the Y coordinates are double and play the roll of internal coordinates

in a SS compactification, the x coordinates correspond to the un-doubled external space-

time directions (the hats indicate dependence on x only). For more details we refer to [42–

44]. This ansatz satisfies all the constraints, when UpY q, which is an element of OpD,Dq
called duality twist matrix, is constrained to satisfy

• pUIM ´ δI
M qBMpg “ 0

• fIJK “ 3Ω̃rIJKs “ const. , Ω̃IJK “ UI
MBMUJNUKN

• fI “ Ω̃JJI ` 2UI
MBMλ “ 0

• the quadratic constraints of half-maximal supergravity [63]

fHrIJf
H
KLs “ 0 . (2.45)

Moreover, the first, third and fourth conditions can be further relaxed through the in-

troduction of a warp factor [42–44] in order to account for gaugings in the fundamental

representation of OpD,Dq, but here we introduce this ansatz for simplicity. It was shown

in [51] that all the possible solutions to (2.45) can be reached by means of proper selec-

tions of duality twist matrices. Some solutions (the duality orbits of non-geometric fluxes)

require truly double twist matrices, i.e. depending on both y and ỹ in such a way that

the strong constraint is violated, and no T-duality can be performed to get rid of the dual

coordinate dependence.

Of course, there might be other solutions to these constraints, perhaps associated to

other kind of compactifications. Let us emphasize that this ansatz contains the usual

decompactified strong constrained case. In fact, taking U “ 1, λ “ 0 and the coordinates

xi taking values i “ 1, . . . , D, one obtains the usual situation analyzed in the literature.

From the point of view of this ansatz, this is just a particular limit in which all the compact

directions are decompactified.

For these configurations all the consistency constraints are satisfied. In fact, it can be

checked that

ZABCD “ 0 , ZAB “ 0 , (2.46)

and also relations of the form

BMλABMλB “ 0 , BMBMλA “ 0 , ΩDABDDλ
C “ 0 , (2.47)
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hold as well. Notice also that now the set of generalized diffeomorphisms has been reduced

to a residual subgroup broken by the background. The SS ansatz can be thought of as a

fixed background U , with perturbations pE around it, such that when this is plugged in the

action and equations of motion one obtains an effective action for the perturbations. All

these issues are discussed in [42–44], where the compactification to four-dimensions was

shown to reproduce the electric sector of half-maximal gauged supergravity.

Under a SS reduction, the dynamical fluxes become

FABC “ pFABC ` fIJK pEAI pEBJ pECK , pFABC “ 3pΩrABCs , (2.48)

FA “ pΩBBA ` 2 pEAIBI pd , (2.49)

where
pΩABC “ pEAIBI pEBJ pECJ , (2.50)

so they are purely x-dependent, and all the truly double dependence has accommodated into

the constant gaugings. This is in fact a generic feature of SS compactifications: covariant

tensors with planar indices only depend on external coordinates.

We now continue without assuming this particular form of the fields and gauge pa-

rameters, but we will show that this ansatz also solves the forthcoming constraints in

section 3.

2.3 Equations of motion

The equations of motion of the DFT action (2.6) (without the terms we denoted ∆SCR)

were derived and analyzed in [7–10] and [99]. Here we obtain the equations of motion of

the action (2.17).

The variations of the objects appearing in the flux formulation of DFT with respect

to EA
M and to d are given by

δEΩABC “ DA∆BC ` ∆A
DΩDBC ` ∆B

DΩADC ` ∆C
DΩABD , (2.51)

δEFABC “ 3
`
DrA∆BCs ` ∆rA

DFBCsD

˘
, (2.52)

δEFA “ DB∆BA ` ∆A
BFB , (2.53)

δdFA “ 2DA δd , (2.54)

and these in turn translate into variations of the action (2.17) given by

δES “
ż
dXe´2d GAB∆AB , (2.55)

δdS “
ż
dXe´2d Gδd , (2.56)

where

∆AB “ δEA
MEBM “ ´∆BA , (2.57)

must be antisymmetric to enforce the constraint EA
MEBM “ ηAB. The equations of motion

are then

GrABs “ 0 , (2.58)

G “ 0 , (2.59)
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where

GrABs “ 2
`
SDrA ´ ηDrA

˘
DBsFD ` pFD ´ DDq qFDrABs ` qFCDrAFCD

Bs (2.60)

“ ZAB ` 2SDrADBsFD ` pFD ´ DDqF̆DrABs ` F̆CDrAFCD
Bs ,

G “ ´2R . (2.61)

Here, we have introduced the notation

qFABC “ qSABCDEF FDEF , F̆ABC “ qFABC ` FABC , (2.62)

where

qSABCDEF “ 1

2
SADηBEηCF ` 1

2
ηADSBEηCF ` 1

2
ηADηBESCF ´ 1

2
SADSBESCF

´ηADηBEηCF

“ S̆ABCDEF ´ ηADηBEηCF . (2.63)

The operator S̆ defines an involutive map S̆2 “ 1, so ´qS{2 is a projector.

In the next section, these equations of motion will be re-obtained from a generalized

notion of Ricci flatness.

3 Geometry, connections and curvature

It was shown in [5, 6, 17, 64, 65]–[68] that the action and equations of motion of DFT can

be obtained from traces and projections of a generalized Riemann tensor. The construction

goes beyond Riemannian geometry because it is based on the generalized rather than the

standard Lie derivative. Then, the notions of connections, torsion and curvature have to be

generalized and many interesting features arise in this framework. For example, it turns out

that the vanishing torsion and compatibility conditions do not completely determine the

connections and curvatures but only fix some of their projections. The strong constraint

was always assumed in these constructions. In this section we re-examine these generalized

objects without imposing the strong constraint, but only the relaxed constraints discussed

in the previous section, plus new ones arising here. Our route will closely follow that

of [64, 65].

3.1 Generalized connections

We begin by defining a covariant derivative acting on tensors with curved and/or planar

indices as

∇MVA
K “ BMVAK ` ΓMN

KVA
N ´ ωMA

BVB
K , (3.1)

where ΓMN
K is a Christoffel connection, and ωMA

B a spin connection. The forthcoming list

of conditions were imposed in [5, 6, 17, 64, 65]–[68] to restrict these connections, following

a similar procedure to the usual one in Riemannian geometry. The list is ordered in such

a way that each item assumes the previous ones.
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• Compatibility with the generalized frame. Covariant constancy of EA
N

∇MEA
N “ 0 , (3.2)

relates the Christoffel, spin and Weitzenböck connections

ΓML
N “ ´ΩML

N ` EALEB
NωMA

B. (3.3)

Since the Weitzenböck connection is fully determined by the generalized frame, this

condition simply relates the Christoffel and spin connections.

• Compatibility with the OpD,Dq invariant metric. Given the covariant con-

stancy of the generalized frame, covariant constancy of the metric ηMN can be equally

cast as

∇Mη
NP “ 0 ðñ ∇Mη

AB “ 0 , (3.4)

which in turn imply

ΓMNP “ ´ΓMPN ðñ ωMAB “ ´ωMBA . (3.5)

• Compatibility with the generalized metric. Covariant constancy of the gener-

alized metric

∇MHNK “ 0 ðñ ∇MSAB “ 0 , (3.6)

implies that

BMHNK ´ ΓMN
PHPK ´ ΓMK

PHNP “ 0 ðñ ω
MA qB “ ´ω

MB qA . (3.7)

Here we used the check notation for indices contracted with the planar generalized

metric (2.27).

• Covariance under generalized diffeomorphisms. The spin connection is re-

quested to transform covariantly under generalized diffeomorphisms

δξωAB
C “ ξP BPωABC . (3.8)

Through bein compatibility we then have

∆ξΓMNP “ ´∆ξΩMNP “ 2BMBrNξP s ´ BQξMΩQNP , (3.9)

where we define ∆ξ as the failure of an expression to transform covariantly.

• Covariance under double Lorentz transformations. Under local H transfor-

mations, we demand that ∇MVA
K transforms as a Lorentz vector. This implies that

δΛΓMN
K “ 0 , (3.10)

and

δΛωMA
B “ BMΛA

B ` ωMC
BΛA

C ´ ωMA
CΛC

B. (3.11)
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• Vanishing generalized torsion. The standard definition of torsion turns out to

be non-covariant under generalized diffeomorphisms. Then, one has to resort to a

generalized definition [68]

pδ∇ξ ´ δξqVM “ TQP
MξQV P , (3.12)

where VM is a vector and δ∇ is the generalized gauge transformation with BM replaced

by ∇M . This definition yields

TQP
M “ 2ΓrQP s

M ´ ΓMPQ . (3.13)

Combined with compatibility with the OpD,Dq metric, one finds that

TMNK “ 3ΓrMNKs ðñ TABC “ 3ωrABCs ´ FABC , (3.14)

and then setting the torsion to zero, we obtain

ΓrMNKs “ 0 ðñ FABC “ 3ωrABCs . (3.15)

Note that this condition is consistent with the transformation properties of FABC
under generalized diffeomorphisms provided the gauge consistency constraints hold.

The antisymmetrization of the spin connection (which is requested to be covariant)

coincides with the dynamical fluxes, which were also requested to be covariant. It

then follows from the constraints that the generalized torsion is covariant as well.

• Compatibility with the generalized dilaton. Demanding partial integration in

the presence of the dilaton measure e´2d:
ż
e´2dW∇MU

M “ ´
ż
e´2dUM∇MW, (3.16)

one finds

ΓPM
P “ ´2BMd ðñ ωBBA “ FA . (3.17)

Again we find consistency in requiring that the spin connection is covariant, because

its trace is related to the dynamical fluxes which are covariant as well.

It was shown in [64, 65]–[68] that these constraints only determine some projections of

the connections, leaving undetermined pieces which cannot be identified with the physical

degrees of freedom. Still, some projections of a generalized Riemann tensor reproduce the

action and equations of motion. In some cases [66, 67] some further projections on the

connection are requested to vanish in order to eliminate the undetermined part. However,

in this case the derivative is only covariant under particular projections, and then, full co-

variance is lost. More recently, in [69] the connection was chosen to equal the Weitzenböck

connection, and then the spin connection vanishes. The advantage of the construction

in [69] is that the connection is simple and determined. The torsion (3.14) is non-vanishing

and equals the antisymmetric part of the Weitzenböck connection, so it coincides with the

dynamical fluxes discussed here. Although the generalized connection is flat, the dynamics
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is encoded in the torsion, and the action is constructed by demanding H-invariance. In-

terestingly, the strong constraint can be relaxed in this formulation as well. Here, we will

follow the route of [64, 65]–[68], obtaining the action and equations of motion from traces

of the generalized Riemann tensor. We will show that this provides a systematic way of

obtaining the full action (2.17), and equations of motion (2.58).

Imposing the additional constraint that the spin connection is linear in fluxes, a unique

solution to (3.5), (3.7), (3.15), (3.17) can be found

ωABC “ ´ 1

D ´ 1

`
FrBηCsA ` FDSDrBSCsA

˘

` 1

3

ˆ
FABC ` F

A qB qC ´ 1

2
F qA qBC ´ 1

2
F qAB qC

˙
.

(3.18)

However, a covariant derivative built from this particular connection does not satisfy (3.11)

under H-transformations, only some projections do, and then this connection is semi-

covariant. In what follows we will not make use of (3.18), but instead we will work only

with the previous conditions on the connections.

Notice that due to the above requirements, the derivative of the spin connection is

required to transform as a tensor under generalized diffeomorphisms

∆ξBMωABC “ BP ξMBPωABC “ 0 . (3.19)

Moreover, due to (3.9) we have an additional constraint from covariance of the covariant

derivative

∆ξ∇MVN “ ∆ξ

“
BMVN ´ ΓMNPV

P
‰

“ 0 , (3.20)

which can be recast in the form

BP ξMBPVN ` BP ξMΩPNQV
Q “ 0 . (3.21)

We now have new constraints, for the vectors, gauge parameters and connections, like (3.19)

and (3.21), that arise by demanding that this geometric construction is consistent with a

relaxation of the strong constraint. Notice that these constraints are not requested for

consistency of the theory. Moreover, only some projections of them are physical, because

of the undetermined components of the connection. In any case, as strong as they look,

they are all satisfied once again by the SS solutions of section 2.2.1. In fact, as we explained

in that section, in the SS scenario the covariant objects in planar indices only depend on

the external coordinates, and then it is easy to see that (3.19) is satisfied in a SS reduction

where the gauge parameters take the form (2.44). This is consistent with the fact that

projections of the spin connections give generalized fluxes, which also only depend on the

external coordinates in this case. As for (3.21), notice that the strong constraint terms

of the form ΩQMNΩQRS cancel, so it is also satisfied by the SS ansatz. Then, these new

constraints are also solved by truly double SS reductions, but more generally might be

solved by other truly double configurations.
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3.2 Generalized curvature

The usual Riemann tensor in planar indices (i.e., rotated with the bein)

RABC
D “ 2

`
DrAωBsC

D ´ ΩrABs
EωEC

D ´ ωrA|C
Eω|BsE

D
˘
, (3.22)

is not a scalar under generalized diffeomorphisms (even if the strong constraint were im-

posed) because the Weitzenböck connection is not covariant. However, following the steps

of [5, 6, 17, 68]–[64, 65] one can extend this definition in order to covariantize it.2 Consider

for example the following modified curvature

R̂ABCD “ RABCD ´ ΩEABωECD

“ 2DrAωBsCD ´ FAB
EωECD ´ 2ωrA|C

Eω|BsED .
(3.23)

An extra term is included in order to promote the Weitzenböck connection to a generalized

flux, which is covariant. This expression is now a scalar under generalized diffeomorphisms.

With the addition of the new term in (3.23), the GL covariance has now been compromised.

In order to restore it we further extend the definition as [5, 6]

RABCD “ R̂ABCD ` R̂CDAB ` ωEAB ωECD , (3.24)

which is also a scalar under generalized diffeomorphisms. Of course, we are expecting that

GL or H invariance is achieved only up to strong constraint violating terms, because so is

the action (2.28). A quick computation shows that

∆ΛRABCD “ DEΛBAΩ
E
CD ` DEΛDCΩ

E
AB , (3.25)

so if one pretends a fully covariant Riemann tensor, this must be set to zero. In particular,

under a SS reduction ΛAB would depend on external coordinates only, and this constraint

would be automatically satisfied.

Rotating all indices with the generalized bein, and using (3.3), the generalized Riemann

tensor in curved indices can be cast in the form

RMNKL “ R̂MNKL ´ ΩQMNΩ
Q
KL , (3.26)

where

R̂MNKL “ RMNKL `RKLMN ` ΓQMNΓ
Q
KL ,

RMNKL “ 2BrMΓNsKL ` 2ΓrM |QLΓ|NsK
Q.

(3.27)

Here, R̂MNKL is the generalized Riemann tensor found in [64, 65]. We see that the differ-

ence between (3.26) and (3.27) is a strong constraint-violating term which does not vanish

with our assumptions. This extra factor was also considered in [30], where the first geo-

metric construction with a relaxed strong constraint was built in the U-duality case. The

2Imposing the vanishing of its failure to transform covariantly as a new constraint, is not an option. We

are assuming that all the constraints of DFT are solved by the strong constraint, so that there is always a

limit that makes contact with supergravity.
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generalized Riemann tensor (3.26) enjoys the same symmetry properties of the usual one,

namely RMNKL “ RprMNsrKLsq.

Following the path of [64, 65] we now want to consider traces and projections of the

generalized Riemann tensor to get a generalized Ricci tensor and scalar. For instance,

imposing (3.15) and (3.17), we obtain

RAB
AB “ ´4Z , (3.28)

where Z was defined in (2.21). This vanishes under the strong constraint, but here it gives

rise to some of the strong constraint-violating terms in the action. On the other hand,

contractions with S (or H) give the same answer

R qA qB
AB “ ´4Z . (3.29)

Thus, we are led to consider traces of the generalized Riemann tensor with mixed SAC and

ηBD contractions. After imposing conditions (3.5), (3.7), (3.15), (3.17), all the undeter-

mined parts of the connection drop out from (3.24) and one gets

R qAB
AB “ ´2R ´ 4Z . (3.30)

In order to combine these results we introduce the projectors

PM
N “ 1

2
pδMN ´ HM

N q or PA
B “ EA

MEBNPM
N “ 1

2
pδAB ´ SA

Bq ,

P̄M
N “ 1

2
pδMN ` HM

N q or P̄A
B “ EA

MEBN P̄M
N “ 1

2
pδAB ` SA

Bq .
(3.31)

Using the results (3.28), (3.29) and (3.30) we see that the unique combination giving the

full generalized Ricci scalar in terms of projectors is

R “ 1

4
PACPBDRABCD , (3.32)

where R was defined in (2.18).3

Also, the completely antisymmetric part of RABCD only involves the antisymmet-

ric parts of the connection. Imposing (3.15) and (3.17) again, we obtain from (3.24) an

algebraic BI for the generalized Riemann tensor

RrABCDs “ 4

3
DrAFBCDs ´ FrAB

EFCDsE “ 4

3
ZABCD . (3.35)

Identities like this, and many others are extensively discussed in [64, 65].

3Other combinations give

P̄
MK

P
NL

RMNKL “ P
MK

P̄
NL

RMNKL “ 0 , (3.33)

P̄
MK

P̄
NL

RMNKL “ ´4R ´ 16Z . (3.34)

Note the difference between acting with PP and P̄ P̄ on RMNKL when the strong constraint is relaxed.
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3.3 Generalized Ricci flatness

The full action (2.17) can be written as

S “ 1

4

ż
dX e´2d PMKPNLRMNKL , (3.36)

and its variation with respect to the bein E gives

δES “ 1

4

ż
dX e´2d

`
2pδEPMKqPNLRMNKL ` PMKPNLδERMNKL

˘
. (3.37)

The projectors satisfy P 2 “ P , P̄ 2 “ P̄ , P ` P̄ “ 1 and PP̄ “ 0, and we require that the

shifted ones P 1 “ P ` δEP (or P̄ 1) also obey these relations. This implies that

δEP
MK “ PMRδEP

RLP̄KL ` P̄MLδEP
LRPR

K . (3.38)

Also, by definition we have

δEP
RL “ ´1

2
pδEARSABEBL ` EA

RSABδEB
Lq , (3.39)

and inserting this information in the first term of (3.38) we find

2pδEPMKqPNLRMNKL “ ´4∆AC P
BC P̄DAPEFRBEDF , (3.40)

where we used (2.57). Recalling (3.26), the second term of (3.37) is

ż
dX e´2d PMKPNLδERMNKL “

ż
dX e´2d PMKPNLδEpR̂MNKL ´ ΩQMNΩ

Q
KLq .
(3.41)

The infinitesimal variation of R̂MNKL with respect to E can be computed by first

varying with respect to Γ [64, 65]

δER̂MNKL “ 2∇rMδEΓNsKL ` 2∇rKδEΓLsMN . (3.42)

Inserting this variation into (3.41), the projectors pass through the covariant derivative

(since ∇η “ ∇H “ 0) and we get a total derivative, due to the dilaton compatibility

condition. The second term of (3.41) gives

ż
dX e´2d PMKPNLδEpΩQMNΩ

Q
KLq “ ´2

ż
dX e´2d∆ACP

AEPCFZEF . (3.43)

Putting all this together, we finally get

δES “ 1

4

ż
dX e´2d∆ACP

BC P̄ADp´4PEFRBEDF ´ 2ZBDq “
ż
dX e´2d∆AC GrACs .

(3.44)

Then the equations of motion are

GrACs “ PBrAP̄CsD

ˆ
PEFRBEDF ` 1

2
ZBD

˙
“ 0 , (3.45)

which match those found in (2.58).
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It might seem surprising at first sight that this form of generalized Ricci flatness is

governed by an antisymmetric tensor. We recall however that there is a remarkable property

of the projections with P and P̄

PM
RP̄N

SKRS “ 0 ñ PrM
RP̄Ns

SKRS “ 0 ñ PQ
MPrM

RP̄Ns
SKRS “ 0

ò õ ó
PQ

MPpM
RP̄Nq

SKRS “ 0 ð PpM
RP̄Nq

SKRS “ 0 ð PM
RP̄N

SKRS “ 0

(3.46)

Namely, the symmetric and antisymmetric pieces contain the same information. Then, it is

possible to define a symmetric generalized Ricci tensor, whose flatness gives the equations

of motion as well

RAC “ PBpAP̄CqD

ˆ
PEFRBEDF ` 1

2
ZBD

˙
“ 0 . (3.47)

4 Type II and heterotic DFT

4.1 Type II

In addition to the NS-NS sector, type II supergravity has a set of p-form gauge fields,

C1 and C3 for type IIA or C0, C2 and C4 for IIB, belonging to the R-R sector. The

inclusion of R-R fields was extensively addressed in [68, 83–86]. Here we only intend to

relate the constraints in this sector with the results of the previous sections. In the so-called

democratic formulation, the set of gauge field strengths Gp is completed by magnetic duals

G10´p and packed in a sum of differential forms, or polyform,

G “
10,9ÿ

p“0,1

Gp “
10,9ÿ

p“0,1

1

p!
Gi1...ipdx

i1 ^ . . .^ dxip , (4.1)

where p is odd for IIB or even for IIA. To recover the correct number of degrees of freedom,

a self-duality condition is imposed by hand on the total field strength

G “ ‹σG , (4.2)

where ‹ is the Hodge star and σ is an involution reversing the order of the differentials dxi,

or equivalently flipping the sign for p “ 2, 3 mod 4. The total field strength G descends

from a gauge potential polyform C “ C0,1 ` C2,3 ` . . . which contains all the electric and

magnetic potentials [100, 101]

G “ pd`H^qC `me´B,

pd`H^qG “ 0 ,
(4.3)

where m “ G0 is Roman’s mass parameter. Notice that the twisted exterior derivative

d ` H^ is nilpotent due to the BI of the NS-NS three-form dH “ 0. The field strengths

H and G are invariant under the following gauge transformations

δB “ dλ ,

δC “ pd`H^qΛ `mλ^ e´B,
(4.4)
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respectively, where λ is an arbitrary one-form and Λ “ Λ0,1 ` Λ2,3 ` . . . is an arbitrary

polyform.

The total field strength G transforms as an Op10, 10q spinor under T-duality. Since

D-dimensional polyforms live in a spinorial representation of G “ OpD,Dq, it is natural

to consider the R-R fields as OpD,Dq spinors in DFT, as achieved in [83–86]. When the

theory is formulated in terms of the G-singlets FABC and FA, a possible formulation is to

take R-R fields in a representation of GL “ OpD,Dq while keeping them invariant under

G. Roman’s mass m will be set to zero in what follows, we refer the reader to [41] for a

DFT treatment with a non-vanishing value.

For the signature pD,Dq, there always exist real gamma matrices ΓA “ pΓa,Γaq giving
a representation of the GL “ OpD,Dq Clifford algebra tΓA,ΓBu “ ηAB. Since the matrices

pΓa,Γaq span a fermonic oscillator algebra tΓa,Γbu “ δab , any polyform such as G can be

mapped to an OpD,Dq spinor G as

G “
ÿ

p

eφ

p!
Gi1...ip ea1

i1 . . . eap
ip Γa1...ap |0y , (4.5)

where |0y is a Clifford vacuum annihilated by Γa and where the dilaton factor has been

added for convenience. For OpD,Dq spinors it is possible to find a matrix that mimics the

effect of the operator ‹σ when acting on a spinor written as in (4.5). For D “ 1 ` 9 this

operator reads

Ψ` “ pΓ0 ´ Γ0qpΓ1 ` Γ1q . . . pΓ9 ` Γ9q , (4.6)

and squares to the identity. We refer the reader to appendix A for the definition and

properties of this operator for generic dimension. The self-duality condition (4.2) can then

be implemented on the spinor G by

G “ Ψ`G . (4.7)

We also note that the (anti-)chirality condition on the spinor G is simply translated by

(odd) even forms in the expansion (4.5), so that the spinorial field strength is chiral for

IIB and anti-chiral for IIA. Being a spinor, the field strength G transforms under GL as

δG “ 1

2
ΛABΓ

ABG . (4.8)

It is then possible to build a derivative operator ∇A, in a way that ∇AG transforms co-

variantly under GL.

When (3.5) is satisfied, the covariant derivative can be extended to act in any repre-

sentation of GL, with generators ΣAB and Lorentz algebra rΣAB,ΣCDs “ 4ηrA|rCΣDs|Bs.

In order to have only explicit Lorentz indices, a covariant derivative and connection with

flat indices can be defined

∇AT “ EA
M∇MT “

ˆ
DA ´ 1

2
ωABCΣ

BC

˙
T , (4.9)

where T generically transforms as δΛT “ 1

2
ΛABΣ

ABT and it is a scalar under generalized

diffeomorphisms. For ∇AT to transform as a scalar under generalized diffeomorphisms
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parameterized, ωABC shall transform as a scalar and the following constraint

BMξN BMT “ 0 ô pDAλB ´ ΩABCλCqDAT “ 0 , (4.10)

must be satisfied. Introducing Lorentz generators for OpD,Dq spinors ΣAB “ ΓAB, the

Dirac operator reads

ΓA∇A “ ΓA
ˆ
DA ´ 1

2
ωABCΓ

BC

˙
“ ΓADA ´ 1

2
ΓA ωBBA ´ 1

2
ΓABC ωrABCs , (4.11)

such that it only involves the antisymmetric and trace parts of the connection, i.e. those

determined by (3.15) and (3.17) in terms of the fluxes.

For our present purposes it is sufficient to consider the associated Dirac operator

{∇ “ ΓA∇A, for which only the generalized torsion condition and self-adjoint property

matter. When these conditions hold, this operator reads

{∇ “ {D ´ 1

2
{F1 ´ {F3

“ ΓADA ´ 1

2
ΓAFA ´ 1

6
ΓABCFABC .

(4.12)

A simple computation shows that this operator precisely reproduces d`H^ on components

when (2.10) is assumed. More generally, using the BI (1.5), this operator is nilpotent up

to terms that vanish when the strong constraint holds

{∇2 “ BMBM ´ 1

2
ΩABCΓ

BCDA ´ DAdDA ´ 1

4
Z ´ 1

4
ZABΓ

AB ´ 1

6
ZABCDΓ

ABCD. (4.13)

It is interesting to notice the appearance of Z here. We mentioned before that a constraint

involving this combination of fluxes would arise in the maximal supergravity completion

of the theory, so it was to be expected that it would arise in a type II formulation of the

theory. With a nilpotent operator that generalizes d ` H^ in our hands, we can easily

rewrite (4.3) in terms of the spinor G

G “ {∇C ,

{∇G “ 0 ,
(4.14)

where the spinor C plays the role of gauge potential. The field strength is then invariant

under gauge transformations

δχC “ {∇χ , (4.15)

parameterized by χ, provided the strong constraint dependent condition

{∇2
χ “ 0 , (4.16)

is satisfied, where {∇2
is given by (4.13). Let us note that in a SS type compactifications,

with ZABCD “ ZAB “ 0 and with χ depending on external coordinates only, this condition

further restrains the quantity Z to be vanishing, in accordance with the known constraints

– 23 –



J
H
E
P
0
6
(
2
0
1
3
)
1
0
1

for the embedding of N “ 4 in N “ 8 supergravity [96–98]. The variation of the field

strength under NS-NS generalized diffeomorphisms reads

δξG “ ξM BMG ` ΓNBMξN BMG ´ 1

2
{∆ns

1 ´ {∆ns

3 , (4.17)

where ∆ns
1,3 are the deviations from scalar behavior for FA and FABC as read in (2.32)

and (2.33). Therefore, for the field strength to transform as a scalar, the vanishing of the

last three terms in (4.17) must be imposed as a constraint.

A pseudo-action for the R-R sector can then compactly be written as

S “ ´1

4

ż
dXe´2d GΨ`G , (4.18)

where G “ GT C and where C is the charge conjugation matrix. Writing G “ {∇C and

varying the potential C in this action yields the equations of motion

{∇Ψ`G “ 0 , (4.19)

which are equivalent to the BI when the self-duality holds. Varying the bein in this action,

with G “ {∇C, and using the self-duality condition, one obtains the following modification

to the bein equations of motion when RR fields are present

GRRrABs “ ´1

4
GΓABG . (4.20)

This pseudo-action does not contribute to the dilaton equation of motion.

It would be interesting to see if a SS compactification of the R-R sector reproduces the

RR gaugings of gauged supergravity.

4.2 Heterotic

The inclusion of n heterotic vectors Ai
α with α “ 1, . . . , n in a duality covariant way

was done in [81] after [5, 6, 102] (see also [103]). One possibility is to enlarge the global

symmetry group to G “ OpD,D ` nq with metric

ηMN “

¨
˚̋

0 δij 0

δi
j 0 0

0 0 δαβ

˛
‹‚, M,N “ 1, . . . , 2D ` n . (4.21)

The bein can then be extended to include the vector fields as

EAM “

¨
˚̋
ea
i ea

k
`
Bki ´ 1

2
Ak

γAγi
˘
ea
kAkβ

0 eai 0

0 Aαi δαβ

˛
‹‚, (4.22)

and then all the covariant expressions in this paper just apply for these generalized quan-

tities. We just mention this for completeness to highlight the fact that including vectors

in this setup is straightforward, and for simplicity in this paper we will not include vectors

in the analysis. Interested readers can see how the vectors give rise to Maxwell fluxes

in [42–44] and to their corresponding BI in [70, 71].
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5 Bianchi identities

In the previous sections we have identified three quantities (2.29), (2.34) and (2.21) that

vanish under the strong constraint (2.2):

ZABCD “ ´3

4
ΩErABΩ

E
CDs , (5.1)

ZAB “
`
BMBMErA

N
˘
EBsN ´ 2ΩCABDCd , (5.2)

Z “ ´2DAdDAd` 2BMBMd` 1

4
ΩABCΩABC . (5.3)

They appeared when analyzing the symmetries, constraints and equations of motion. In-

terestingly, these quantities can be written purely in terms of fluxes and their derivatives.

They lead to the following duality orbits of generalized BI for all the dual fluxes

DrAFBCDs ´ 3

4
FrAB

EFCDsE “ ZABCD , (5.4)

DCFCAB ` 2DrAFBs ´ FCFCAB “ ZAB , (5.5)

DAFA ´ 1

2
FAFA ` 1

12
FABCFABC “ Z . (5.6)

When R-R fields are present, we find the additional identity

{∇G “ ZRR , (5.7)

with

ZRR “
ˆ

BMBM ´ 1

2
ΩABCΓ

BCDA ´ DAdDA ´ 1

4
Z ´ 1

4
ZABΓ

AB ´ 1

6
ZABCDΓ

ABCD

˙
C .

(5.8)

5.1 Relation to standard fluxes

The fluxes FABC encode the standard T-dual fluxes. This can be seen by splitting the

indices as

Fabc “ Habc , Fa
bc “ τbc

a, Fab
c “ Qc

ab, Fabc “ Rabc. (5.9)

Notice that being defined with planar indices these fluxes are T-duality invariant, but after

a rotation with the generalized bein, they obey the usual T-duality chain

Hijk
TkÐÑ τij

k TjÐÑ Qi
jk TiÐÑ Rijk (5.10)

where T-dualities are defined by

pTlqNM “ δNM ´ δN,lδM,l ´ δN,l`DδM,l`D ` δN,l`DδM,l ` δN,lδM,l`D . (5.11)

Splitting in components equation (5.1) we find

DraHbcds ´ 3

2
Herabτcds

e “ Zabcd ,

3Draτbcs
d ´ DdHabc ` 3τrab

eτcse
d ´ 3Qra

deHbcse “ Zabc
d,

2DraQbs
cd ` 2Drcτab

ds ´ τab
eQe

cd ´HabeR
ecd ` 4Qra

ercτbse
ds “ Zab

cd, (5.12)

3DraQd
bcs ´ DdR

abc ` 3Qe
rabQd

cse ´ 3τde
raRbcse “ Zabc

d ,

DraRbcds ´ 3

2
RerabQe

cds “ Zabcd.
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From equation (5.2) we get

DcHabc ` Dcτab
c ` 2DraFbs ´ FcHabc ´ Fcτab

c “ Zab ,

Dcτca
b ` DcQa

bc ` DaF
b ´ DbFa ´ Fcτca

b ´ FcQa
bc “ Za

b, (5.13)

DcR
abc ` DcQc

ab ` 2DraFbs ´ FcR
abc ´ FcQc

ab “ Zab,

and equation (5.3) reads in components

DaFa ` DaF
a ´ FaFa ` 1

6
HabcR

abc ` 1

2
τab

cQc
ab “ Z . (5.14)

We can now use the following extended parameterization

EAM “
˜

ea
k ea

jBjk

eajβ
jk eak ` eaiβ

ijBjk

¸
, (5.15)

where a bi-vector βij was introduced to get the most general bein. With this parameteri-

zation the fluxes match those computed in [42–44], namely

Fabc “ 3
“
∇raBbcs ´Bdra∇̃

dBbcs
‰
,

Fab
c “ 2Γrabs

c ` ∇̃cBab ` 2ΓmcraBbsm ` βcmFmab ,

Fc
ab “ 2Γrabs

c ` Bcβab `BcmB̃mβab ` 2Fmc
raβbsm ´ Fmncβ

maβnb,

Fabc “ 3
“
βram∇mβ

bcs ` ∇̃raβbcs `Bmn∇̃
nβrabβcsm ` βramβbn∇̃csBmn

‰
` βamβbnβclFmnl ,

(5.16)

and

Fa “ ´∇̃cBac ` ΓcdaBdc ´ Γca
c ` 2Bac∇̃

cd` 2∇ad ,

Fa “ ´Γcac ´ ∇̃dβacBcd ´ Γdaeβ
ecBcd ´ βac∇̃dBcd ` 2∇̃ad` 2βacBce∇̃

ed

`2βac∇cd´ ∇cβ
ac ` Γcd

aβdc ,

where we have used the following relations and definitions

ea
ieaj “ δij , ea

iebi “ δba , Bab “ ea
ieb

jBij , βab “ eaie
b
jβ

ij ,

Ba “ ea
iBi , B̃a “ eaiB̃i,

∇aBbc “ BaBbc ´ Γab
dBdc ´ Γac

dBbd , ∇̃aBbc “ B̃aBbc ` ΓadbBdc ` ΓadcBbd ,

∇aβ
bc “ Baβbc ` Γad

bβdc ` Γad
cβbd, ∇̃aβbc “ B̃aβbc ´ Γabdβ

dc ´ Γacdβ
bd,

and

Γab
c “ ea

iBiebjecj , Γabc “ eaiB̃iebjecj . (5.17)

After imposing the strong constraint and selecting the frame B̃i “ 0, the fluxes (5.16)

agree with those obtained in [72, 104], namely

Habc “ 3
“
BraBbcs ` frab

dBcsd
‰

” 3∇raBbcs ,

Fab
c “ fab

c ´ Habmβ
mc,

Qc
ab “ Bcβab ` 2fcm

raβmbs ` Hcmnβ
maβnb,

Rabc “ 3
“
βramBmβbcs ` fmn

raβbmβcsn
‰

´ Hmnpβ
maβnbβpc,

(5.18)
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where fab
c “ 2Γrabs

c. Applying the same restrictions on (5.12), the resulting equations

exactly match the BI derived in [72] (recall that the right hand sides of (5.12) vanish when

the strong constraint is imposed).

The fluxes (5.18) were shown to be the coefficients of the following Roytenberg algebra:

“
ea, eb

‰
“ Fab

cec ` Habce
c,

“
ea, e

b
‰

“ Qa
bcec ´ Fac

bec,
“
ea, eb

‰
“ Qc

abec ` Rabcec ,

(5.19)

obtained as a Courant algebroid on basis sections tea, ebu P TM ‘ T ˚M in [72, 104, 105].

And they also determine the Jacobiators

Jacpea, eb, ecq “ 1

2
DHabc ,

Jacpea, eb, ecq “ 1

2
DFab

c,

Jacpea, eb, ecq “ 1

2
DQa

bc,

Jacpea, eb, ecq “ 1

2
DRabc, (5.20)

with D “ dH ` dHβ , d
H and dHβ being the H-twisted de Rham and Poisson differentials

respectively, which hold up to the BI (see [72] for details).

Here we notice that DFT provides a natural framework containing these structures

covariantly. Indeed, a covariant expression encoding the algebra (5.19) follows from the

C-bracket of generalized beins:

“
EA

M , EB
N
‰pCq

P
“ FABCE

C
P , (5.21)

and the cyclic sum of double C-brackets gives:

”“
EA

M , EB
N
‰pCq

, EC
P
ıpCq

Q
` cyclic “ ´4ZABCEE

E
Q ` 1

2
DEFABCE

E
Q , (5.22)

precisely the covariant generalization of (5.20).

5.2 Towards a first order formulation of DFT

In the usual description of supergravity, magnetic sources appear as defects in the BI of

the field strengths of the theory. For instance, for an NS5-brane one has

dH “ TNS5 δ4 , (5.23)

where δ4 is a delta function four-form based on the brane’s worldvolume, with legs in

the directions transverse to the worldvolume. In this picture the three-form cannot be

defined globally from the two-form gauge field. Adding a Lagrange multiplier six-form, the

sourceless BI follows as an equation of motion from

S “
ż ˆ

´ 1

2
‹H ^H ´B6 ^ dH

˙
, (5.24)
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where the three-form is now treated as independent of B2 and one has two first-order

equations of motion. Adding to this action a Wess-Zumino coupling on the NS5-brane

worldvolume

SWZ “ TNS5

ż

W6

πW6
pB6q “ TNS5

ż
δ4 ^B6 , (5.25)

one precisely recovers the BI for the three-form in presence of an NS5-brane, as the equation

of motion of B6. One can then integrate H out and express the dynamics in terms of B6

solely.4

Since dH “ 0 is contained in our BI and since dH ‰ 0 when an NS5-brane is present,

the generalized BI cannot hold as such when sources are present. This in turn suggests that

the generalized diffeomorphisms themselves should be corrected, but this lies beyond the

scope of this paper. We propose that a flux configuration in the presence of some extended

objects satisfies

DrAFBCDs ´ 3

4
FrAB

EFCDsE “ JABCD , (5.26)

DCFCAB ` 2DrAFBs ´ FCFCAB “ JAB , (5.27)

DAFA ´ 1

2
FAFA ` 1

12
FABCFABC “ J , (5.28)

{∇G “ JRR , (5.29)

where J... represent currents for these (postulated) extended objects and where, for in-

stance, JRR represents a D-brane current. For simplicity, we assume through this section

that the strong constraint terms Z... are vanishing. We however want to stress that, since

the quantities Z... enter the BI on the same footing as the currents J..., it seems that one

has a-priori the option to describe an extended object either by a source term J... ‰ 0 or by

a strong constraint-violating solution with Z... ‰ 0. For non-vanishing currents, the fluxes

cannot be given any longer in terms of the bein and dilaton. We can however introduce

deviation terms and write them as

FABC “ fABCpEq ` ΘABC , (5.30)

FA “ fApE , dq ` ΘA , (5.31)

G “ {∇C ` ΘRR , (5.32)

where fABC “ 3ΩrABCs and fA “ 2DA ` ΩBBA. Plugging these general expressions in the

sourced BI yields

∇
f

rAΘBCDs ´ 3

4
ΘrAB

EΘCDsE “ JABCD , (5.33)

2∇f

rAΘBs ` pDC ´ fCqΘCAB ` ΘCΘCAB “ JAB , (5.34)

pDA ´ fAqΘA ´ 1

2
ΘAΘA ` 1

12
p2fABC ` ΘABCqΘABC “ J , (5.35)

4This is due to the linear nature of this action. When non-linearities are present, for instance like

the Chern-Simmons term of eleven-dimensional supergravity, one can in general not get rid of the electric

potential.
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where the connection in the pseudo-covariant derivative

∇
f
AΘB “ DAΘB ´ ωAB

CΘC , (5.36)

satisfies the following conditions

ωrABsC “ 1

2
fABC , (5.37)

ωBBA “ fA . (5.38)

Let us note that the vanishing of the currents does not imply in principle the vanishing of

the deviation terms, but instead yields complex non-linear differential equations.

We would now like to see if a first-order formulation of DFT is available in order to

formulate couplings to magnetic objects from a dynamical perspective. A first-order for-

mulation of the theory was first presented in [5, 6], with the spin connection treated as an

independent variable determined by its equation of motion. Following the previous reason-

ing employed for coupling the NS5-brane to the three-form, we introduce an antisymmetric

Lagrange multiplier 4-tensor BABCD imposing the first BI as its equation of motion, and

consider the fluxes as independent variables. The modified action reads

S1 “
ż
dXe´2d

„
2D

qAFA ´ F
qAFA ` 1

6
F̆ABCFABC ´ 2J

`BABCD

ˆ
DAFBCD ´ 3

4
FAB

EFCDE ´ JABCD

̇
` SlocpE , dq ,

(5.39)

where we used the check notation (2.27) to indicate that indices are contracted with the

planar generalized metric, and we defined (see (2.63))

F̆ABC “ S̆ABCDEFFDEF . (5.40)

The fluxes FABC and FA are now treated as independent variables, the bein then enters

the action only through derivatives DA and possibly the additional local action Sloc. Note

also that (5.28) has been used to rewrite the flux terms that vanish in the standard case

when the strong constraint holds. Varying with respect to the various fields yields

δFA : FA “ fA , (5.41)

δFABC : F̆ABC “ 3

ˆ
pDD´fDqBDABC´ 3

2
FDE

ABDEBC

˙
, (5.42)

δBABCD : DrAFBCDs ´ 3

4
FrAB

EFCDsE “ JABCD , (5.43)

δEA
M : 2DrAFCS

BsC`BCDErADBsFCDE “ G
rABs
loc

, (5.44)

δd : 2D
qAFA´F

qAFA` 1

6
F̆ABCFABC “ 2J ´Sloc` 1

2

δSloc

δd
, (5.45)

where the BI (5.43) has already been used to simplify the dilaton equation of motion (5.45).

The equation of motion for FA (5.41) automatically sets it to the standard value fA “
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2DAd´ ΩBBA. Let us note that it is not clear that this action gives the correct equations

of motion for dynamical fluxes in the presence of sources, but must only be considered as

a first step toward such a description. Imposing by hand the relation FABC “ fABC , the

source JABCD has to vanish due to (5.43) and (5.42) can be rewritten as

F̆ABC “ 3∇f
DB

DABC . (5.46)

Taking another divergence of this equation, we obtain

∇
f
CF̆

CAB “ ´3∇f
C∇

f
DB

CDAB “ BCDErADBsFCDE , (5.47)

where we dropped strong constraint-violating terms in the last equality. Combining

with (5.44), one then recovers the standard equations for DFT

2DrAFCS
BsC ` ∇

f
CF̆

CAB “ G
rABs
loc

, (5.48)

up to the local source term G
rABs
loc

and up to strong constraint-vanishing terms. Using (5.41)

and the assumption FABC “ fABC , the dilaton equation of motion is then also recovered

from (5.45)

R “ 2J ´ Sloc ` 1

2

δSloc

δd
, (5.49)

again up to source and strong constraint-vanishing terms. It would be interesting to pursue

this study with, for instance, other Lagrange multipliers to take into account all possible

sources.

5.3 Including sources

Since T-duality exchanges Dirichlet and Neuman boundary conditions in the open string

sector, it connects D-branes of different dimensionalities, and the full T-duality orbits of

D-branes have been nicely encoded in the double space in [79, 80]. Here instead, we will

focus on NS-NS branes lying in the orbit of the NS5-brane and KK5-monopole, along the

lines of [75–77] and [78]. It is known that these two configurations are related by T-duality,

and that they are not sufficient to span the full duality orbit.

The study of exotic brane orbits is closely related to that of non-geometric fluxes.

To picture the idea, one can start with a two-form flux background Hijk and T-dualize

it to a twisted torus, characterized by a geometric flux τij
k. Additional T-dualities lead

to the more exotic non-geometric fluxes Qi
jk and Rijk through the chain (5.10). The

backgrounds generating these fluxes have very different topologies, characterized by the

T-duality elements needed to glue coordinate patches after undergoing monodromies. In

the H-flux background, the patches are connected through gauge transformations of the

two-form, and in the τ -background the transition functions are diffeomorphisms. More

generally, the Q-background makes use of the T-duality group, and is therefore called a

T-fold [11–16].

The NS5-brane carries a non-constant H-flux and the KK5-monopole has a non-

constant τ -flux, so they correspond to H- and τ -flux backgrounds respectively. The next

object in the T-duality chain, the Q-brane [78], will carry a non-constant Q-flux and will
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therefore be a T-fold. The R-brane would be the last object in the chain. The aim of this

subsection is to study some properties of these dual objects. In the presence of sources

the BI locally breakdown on the world-volume, so we will use the duality orbits of BI to

speculate about brane orbits.

Before we begin, let us introduce two “frames” in which geometric and non-geometric

backgrounds are best described. For a recent detailed analysis we refer to [106].

Geometric versus non-geometric frames. We have been completely general in pa-

rameterizing the generalized bein as an OpD,Dq element

EAM “
˜

ea
k ea

jBjk

eajβ
jk eak ` eaiβ

ijBjk

¸
, (5.50)

in terms of a D-dimensional bein ea
i, a two-form Bij and an antisymmetric bi-vector βij .

For this parameterization the generalized metric takes the form

HMN “

¨
˚̊
˝

gij ´ βimgmnβ
nj pgik ´ βimgmnβ

nkqBkj ´ βimgmj

Bikpβkmgmnβnj ´ gkjq ` gimβ
mj gij ´Bikpgkl ´ βkmgmnβ

nlqBlj
`gimβmnBnj `Bimβ

mngnj

˛
‹‹‚. (5.51)

Given that the generalized bein belongs to the coset G{H, defined in this way it is over-

parameterized. Only D2 degrees of freedom are physical, while the remaining DpD ´ 1q
can be removed through a gauge choice. For example, for the geometric configurations

defined in terms of a B-field and a metric, it is better to remove the β-dependence through

a H transformation. On the other hand, there are non-geometric configurations for which

it is better to remove the B-field, and describe the background in terms of β. We will

therefore refer in what follows to two different gauge choices or frames. Also, given that

the configurations we will consider will be locally geometric, the strong constraint will be

automatically satisfied in this section, and we will choose the B̃i “ 0 T-duality frame, in

which the fluxes reduce to (5.18).

Geometric frame. The geometric frame corresponds to the gauge choice βij “ 0 and

the generalized metric reads

HMN “
˜

gij gikBkj

´Bikgkj gij ´Bikg
klBlj

¸
. (5.52)

This is the frame usually considered for geometric descriptions of supergravity backgrounds

described in terms of a B-field and a metric. The corresponding three-form Hijk and the

geometric flux τij
k in curved and planar indices read

Habc “ 3
“
BraBbcs ` frab

dBcsd
‰
,

Fab
c “ fab

c, Qc
ab “ 0 , Rabc “ 0 , (5.53)
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and

Hijk “ eaie
b
je
c
kHabc “ 3BriBjks ,

τij
k “ eaie

b
jec

kFab
c “ 2Γrijs

k, Γij
k “ Bieakeaj ,

Qi
jk “ 0 , Rijk “ 0 , (5.54)

respectively. The dilaton flux can be written as

fi “ eaiFa “ 2Biφ` τij
j . (5.55)

The only non-trivial BI from the previous section then read (see appendix B)

BriHjkls “ Jijkl , (5.56)

´3Rlrijks “ ∇riτjks
l ` τrij

mτksm
l “ Jijk

l, (5.57)

2Rrijs ` 4BriBjsφ “ ∇kτij
k ` 2Brifjs “ Jij , (5.58)

where the J are only non-trivial on the world-volume of sources, as we will see later. Notice

that Jij sources a dilaton-like BI dfi “ 0.

Non-geometric frame. On the other hand, one can also define a non-geometric frame

taking Bij “ 0 with generalized metric

HMN “
˜
gij ´ βimgmnβ

nj ´βimgmj
gimβ

mj gij

¸
. (5.59)

This frame was also considered in the context of DFT, and a differential geometry was

considered for this frame in [58–62]. The fluxes in planar indices read

Habc “ 0 , Fab
c “ fab

c,

Qc
ab “ Bcβab ` 2fcm

raβmbs ,

Rabc “ 3
“
βramBmβbcs ` fmn

raβbmβcsn
‰
, (5.60)

while in curved indices they take the form

Hijk “ 0 , τij
k “ 2Γrijs

k,

Qi
jk “ eaieb

jec
kQa

bc “ ∇iβ
jk ` 2τli

rjβksl ,

Rijk “ ea
ieb

jec
kRabc “ 3βril∇lβ

jks. (5.61)

5.3.1 NS5-brane

Let us briefly review here how the source term arises in the world-volume of an NS5-brane.

We begin by stating the solution in spherical coordinates [107] on the transverse space, in

the geometric frame

ds2 “ fprqpdr2 ` r2dθ2 ` r2 sin2 θdϕ2 ` dψ2q , Hijk “ εijk
lBl ln fprq , (5.62)
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where we are using the convention εrθϕψ “ e. We have omitted the world-volume coor-

dinates since they play no role in the analysis. The brane is localized at r “ 0, and the

direction ψ is just a circle over which the brane is smeared, so we take the warp factor as

independent of this direction

fprq “ 1 ` m

r
. (5.63)

Since H3 “ ˚4d ln fprq, we have

‹4 dH3 “ ‹4d ‹4 d ln fprq “ ∆ ln fprq “ 1

e
Bi
`
egijBj ln fprq

˘
“ 0 , at r ą 0 . (5.64)

However, when this quantity is integrated on a ball Va of arbitrary radius r “ a one obtains5

ż

Va

dH3 “ ´8π2m. (5.66)

Therefore, we are forced to conclude that

‹4 dH3 “ ´8π2mδprq “ Jrθϕψ , (5.67)

and so the BI fails to hold on the world-volume of the brane. From the flux

Hθϕψ “ ´r2f sin θBr ln fprq , rHθϕψsrą0 “ m sin θ , (5.68)

we can define a two-form field in the geometric frame

Bϕψ “ m` cos θr2fBr ln f , rBϕψsrą0 “ mp1 ´ cos θq . (5.69)

In order to make contact with a co-dimension two NS5 brane, we proceed as in [75–77]

compactifying in a base direction and then smearing it. Due to the compactification, it

is better to implement a cylindrical coordinate system (r, θ, ϕ Ñ ρ, ϑ, z). The warp factor

now takes the form

f Ñ σ log
µ

ρ
, σ “ α1

2πRzRψ
, (5.70)

where µ corresponds to a cut-off scale. Beyond this scale, the solutions fail to be trustable

because co-dimension two objects cannot stand alone, but should rather form bound states

through suitable superpositions. The parameter µ is then related to the distance between

the NS5 brane and some other source, as explained in [75–77].

The solution now reads

ds2 “ fpρqpdρ2 ` ρ2dϑ2 ` dz2 ` dψ2q , Hijk “ εijk
lBl ln fpρq , (5.71)

5We proceed as follows

ż
dH3 “ 2π

ż

Va

‹dH3dV “ 2π

ż

Sa

Bf

Br
dS “ 2π.p4πa2q

ˆ
´
m

a2

˙
“ ´8π2

m (5.65)

where in the first step we integrated on dψ and in the second one we used Gauss’ theorem. The result is

independent of a, so ˚4dH3 must be proportional to δprq.
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and taking ερϑzψ “ e “ f2ρ we find

Hϑzψ “ σ , Bzψ “ σϑ at ρ ą 0 . (5.72)

In the new coordinate system we have

Jρϑzψ “ ´8π3σδpρq . (5.73)

Under a ϑ-monodromy ϑ Ñ ϑ`2π, the B-field jumps Bzψ Ñ Bzψ `2πσ, and plugging

this in the generalized metric in the geometric frame we find

Hpϑ` 2πq “ ΩTNSHpϑqΩNS , ΩNS “
˜
14 Bpϑ “ 2πq
0 14

¸
. (5.74)

This is why H, the curvature for the B-field, receives a flux contribution. The matrix ΩNS

is an Op2, 2q element, and can be interpreted as a charge.

5.3.2 KK5-monopole

T-dualizing the previous solution in the direction ψ, we arrive at the co-dimension two

KK5-monopole configuration, reading

ds2 “ fpdρ2 ` ρ2dϑ2 ` dz2q ` f´1pdψ ´B
pNSq
zψ dzq2, σ “ Rψ

2πRz
. (5.75)

As explained in [73, 74], this object now sources the metric BI: Jρϑz
ψ. In the context of

compactifications, this sourcing translates into a relaxation of some quadratic constraints

in half-maximal supergravities [73, 74], breaking N “ 4 Ñ 2. The charge of this object

is also an element of Op2, 2q, but now instead of corresponding to a B-transformation, it

corresponds to a transformation of the form

Hpϑ` 2πq “ ΩTKKHpϑqΩKK , ΩKK “
˜
epϑ “ 2πq´1 0

0 epϑ “ 2πqT

¸
“ T´1

ψ ΩNSTψ .

(5.76)

Since now the vielbein e jumps as ez
ψ Ñ ez

ψ ` 2πσ under a monodromy ϑ Ñ ϑ ` 2π, the

τ flux (its “curvature”) is turned on.

5.3.3 522 brane

Codimension-two branes have recently received renewed attention, in the context of exotic

branes [75–77]. There, starting with the KK5 solution (5.75), a further T-duality is per-

formed in the z-direction. The resulting object is a Q-background named 522, which in the

geometric frame reads

ds2 “ fpdρ2 ` ρ2dϑ2q ` fK´1pdz2 ` dψ2q , Bzψ “ ´σϑK´1, (5.77)

with

K “ f2 ` σ2ϑ2, σ “ RψRz

2πα1
. (5.78)
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However, as argued before, given that this is a non-geometric background, the non-

geometric frame seems more convenient to express this solution

ds2 “ fpdρ2 ` ρ2dϑ2q ` f´1pdz2 ` dψ2q , βzψ “ σϑ . (5.79)

Now, plugging this solution into the generalized metric (5.59), we see that under a

monodromy ϑ Ñ ϑ` 2π, the fields mix through a β-transformation

Hpϑ` 2πq “ ΩT
52
2

HpϑqΩ52
2
, Ω52

2
“
˜

14 0

βpϑ “ 2πq 14

¸
“ T´1

z ΩKKTz , (5.80)

where the β field is shifted as βzψ Ñ βzψ ` 2πσ. Therefore, the “curvature” of this field,

namely the Q-flux, is non-vanishing as expected for a Q-brane

Qϑ
zψ “ σ . (5.81)

It is then natural to assume that now it is the dQ “ 0 BI Jρϑ
zψ which is sourced on the

worldvolume of the 522 brane.

5.4 Duality orbits of (exotic) branes

Following the logic in [46–48], one could now proceed further, and T-dualize in some non-

isometric direction. Now the solution will depend on a dual coordinate, and its geometric

interpretation breaks down even locally, from a D-dimensional perspective. In DFT, this

is not a problem, given that the notion of T-duality is generalized and allows for such

kind of transformations. Given that the equations of motion are T-duality invariant, the

configuration obtained in this way will automatically solve them.

Such a configuration will however correspond to a particular representative of the orbit

containing the branes that we explored in this section. In this sense, by construction, it

can be T-dualized to a geometric object. Even more interesting is to determine if there

exist truly non-geometric bound states of branes, belonging to truly non-geometric orbits.

These cannot be T-dualized to a frame in which the configuration becomes geometric.

A possibility is to consider bound states combining the presence of geometric and non-

geometric branes, such that under T-dualities their roles get exchanged, but non-geometry

is conserved. A first step in this direction was nicely achieved in [78], were intersections of

Q and R-branes were analyzed.

Non-geometric duality orbits were addressed for fluxes in [51]. There, it was shown

that genuine non-geometric orbits exist for fluxes, in which all types of gaugings H, τ , Q

and R are turned on simultaneously, and there is no T-duality frame in which any of them

vanish. For such configurations the strong constraint must necessarily be relaxed, and it

would be nice to explore whether this situation is reproduced by branes as well.

One can also consider the other duality orbits of BI and their associated sources JAB
and J . To see what kind of objects they might be related to, it is instructive to analyze

those for JABCD. The two-form B2 couples to the string F1, and is dual to B6 which is

sourced by the NS5. Then, the NS5 sources magnetically the BI for H “ dB2. Similarly,

the dilaton φ is dual to an 8-form, sourced by a seven-brane. It is then to be expected that
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seven-branes source the Jij BI associated to the dilaton. Finally, the counting suggests

that J corresponds to the source of a nine-brane. Since this BI is associated to a truncation

N “ 8 Ñ 4 in the contexts of gauged supergravities, it is possible that such a truncation

is produced by this source.

The sources in string theory are related by U-dualities. For example, the D-branes are

related by T-dualities

D0 Ø D1 Ø D2 Ø . . . (5.82)

and these objects source the BI (5.29). In IIB, the D7 is S-dual to the NS7 which in turn

is connected to other objects through T-dualities (we refer to [75–77] for explanations on

the notation)

NS7 Ø 613 Ø ¨ ¨ ¨ Ø 163 Ø 073 (5.83)

This could be related to the BI (5.27). In fact, following the logic NS5 Ñ B6 Ø B2 Ñ Jijkl,

we can think of a similar relation for the NS7: NS7 Ñ A8 Ø A0 Ñ Jij . The 1
6
3 is connected

through S-duality with a 164, which is T-dual to a 0
p1,6q
4

in IIB, and has the nice property of

being T-dual to a 0
p1,6q
4

in IIA. This “duality invariance” might relate it to the BI (5.28).

We stress that this is mere speculation, that must be explored further. We believe that

this formulation of DFT with a relaxed strong constraint can give rise to the possibility of

describing bound states of exotic branes that can’t be described in supergravity.

6 Conclusions and open problems

We considered a flux formulation of DFT in which the fluxes are dynamical and field de-

pendent. In this formulation, the gauge consistency constraints of the theory take the form

of generalized quadratic constraints for the fluxes, that are known to admit solutions that

violate the strong constraint [42–44]. Building on previous constructions for a geometric

formulation of DFT [5, 6, 64–68], we computed connections and curvatures on the double

space, under the assumption that covariance is achieved up to the generalized quadratic

constraints, rather than the strong constraint. Interestingly, this procedure gives rise to all

the strong constraint-violating terms in the action, which are gauge invariant and appear

systematically. This completes the original formulation of the theory [7–10], incorporating

the missing terms that allow to make contact with half-maximal gauged supergravities [42–

44] containing duality orbits of non-geometric fluxes [51].

The consistency constraints are shown to be related to generalized BI that break down

on the world-volume of (exotic) branes [75–77]. We have speculated on the sources for

the duality orbits of the BI, but this analysis deserves further investigation. For example,

in [108–112] the universal T-duality representations for branes in different dimensions were

classified, and it would be interesting to explore if these objects can be related to the BI

discussed here. More generally, the quadratic constraints arising in U-duality invariant

constructions [30, 49] should be sourced by U-duality orbits of branes. It would also be

interesting to incorporate source terms in the action in a T-duality invariant way, such that

the source terms appear naturally in the consistency constraints of the theory (in the form
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of tadpole cancelation conditions). This seems to require an extension of the generalized

diffeomorphisms.

There is by now plenty of evidence that the strong constraint or section condition can be

relaxed in duality covariant frameworks [30, 42–44, 49, 51, 69]. Transcending supergravity,

this opens the door to seek for new truly double solutions to the equations of motion, or

their associated supersymmetric killing-spinor equations. The T-duality invariance of the

theory allows to build new T-fold-like solutions, like those of [78], but more generally a

relaxed strong constraint would allow to find solutions that lack a local interpretation from

a supergravity point of view, in any global frame. By now, the only known solutions to

the minimal constraints are of the SS type (this includes the strong constraint case in the

decompactification limit) but we believe that other kind of compactifications will lead to

new possibilities.

This truly double construction is interesting on its own and useful to describe non-

geometry. However, it is still not clear whether a relaxation of the strong constraint in

DFT describes a trustable limit of string theory. We plan to come back on these points in

the future.
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A OpD,Dq spinors

Let tΓAu “ tΓa,Γau be a set of gamma matrices giving a representation of the Clifford

algebra  
ΓA,ΓB

(
“ ηAB, (A.1)

defined here with a non-standard normalization, where ηAB is the off-diagonal OpD,Dq
metric. With this particular signature, the gamma matrices can always be chosen to be

real, with the property

pΓaqT “ Γa . (A.2)

The charge conjugation matrix is then

C “ pΓ0 ´ Γ0q . . . pΓD´1 ´ ΓD´1q ,
`
CΓpnq

˘T “ p´1q
pD´nqpD´n`1q

2 CΓpnq,
(A.3)

where Γpnq is an antisymmetrized product of n gamma matrices. For this signature, one

can always impose a Majorana condition on spinors, which is a reality condition on spinors
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for real gamma matrices. Moreover, since the dimensionality is even, a chirality condition

can be imposed with the product of all gamma matrices

Γ˚ “ p1 ´ 2Γ0Γ0q . . . p1 ´ 2ΓD´1ΓD´1q , (A.4)

where an ordering sign has been included. These matrices give a representation of a

fermionic oscillators algebra, tΓa,Γbu “ δba and tΓa,Γbu “ tΓa,Γbu “ 0. A Clifford vacuum

|0y, normalized to x0|0y “ 1 and annihilated by Γa, can then be defined. A (anti)chiral

spinor is then obtained by acting on this vacuum with an (odd) even number of raising

operators

|ωy “
ÿ

k

ωa1...ak
k!

Γa1 . . .Γak |0y , (A.5)

thus giving a map between a polyform ω “ ř
k ωpkq and a spinor |ωy. Using the charge

conjugation matrix, an OpD,Dq invariant bilinear can be constructed. Up to a sign, it

corresponds to the Mukai paring of two polyforms (the D-form in the product χ ^ σ ω)6

and reads in components

xχ|C|ωy “
ÿ

k

p´1qk
k!pD ´ kq!ǫ

a1...aDχa1...akωaD...ak`1
, (A.6)

where |χyT “ xχ|. In order to define H “ Op1, D´1qˆOp1, D´1q invariant products, one
needs to define the SpinpD,Dq representative of the metric SAB, viewed as an OpD,Dq
element, by

Ψ˘ “ pΓ0 ¯ Γ0qpΓ1 ˘ Γ1q . . . pΓD´1 ` ˘ΓD´1q ,

ΨT
˘ “ Ψ´1

˘ “ ´p´q
DpD¯1q

2 Ψ˘ .
(A.7)

These matrices satisfy the following (anti-)commutation relation with a gamma matrix

Ψ˘Γ
A “ ¯p´qDSABΓBΨ˘ , (A.8)

and are indeed spin representatives of ¯p´qDSAB respectively, hence commuting with H-

restricted spin transformations. Acting on the spinor |ωy with Ψ` yields in components

Ψ`|ωy “
ÿ

k

ǫa1...apD´kq

apD´k`1q...aD

k!pD ´ kq! ωaD...apD´k`1q
Γa1 . . .ΓapD´kq |0y “ | ‹ σ ωy , (A.9)

where, in our conventions, the Hodge star is defined as

‹ ωpkq “
a

|g|
k!pD ´ kq!ǫi1...iD dx

i1 ^ ¨ ¨ ¨ ^ dxiD´k ωiD´k`1...iD , (A.10)

and is pseudo-involutive ‹2ωppq “ p´1qt`pD´pqp, for t time-like directions. The H-invariant

bilinear formed with Ψ` then reads in components

xχ|CΨ`|ωy “
ÿ

k

sa1b1 . . . sakbk

k!
χa1...akωb1...bk . (A.11)

6σ is an operator reversing the order of the differentials dxi in a form.
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To make contact with the language of Generalized Complex Geometry, is possible to intro-

duce curved gamma matrices ΓM . Note that, since the constrained bein EA
M is an element

of OpD,Dq, it is possible to choose at the same time ΓM and ΓA as constant matrices

related by

SE Γ
M S´1

E “ ΓA EA
M , (A.12)

where SE is the SpinpD,Dq representative of the bein. The derivative of this object is

given by

DASE “ ´1

2
ΩABCSEΓ

BC , (A.13)

as found by asking compatibility with (A.12).

B General relativity and anholonomy

Let da “ ea
iBi be a frame and ea “ eaidx

i its dual, where eaiea
j “ δ

j
i . Their respective

structure equations read

rda, dbs “ τab
c dc , dea “ ´1

2
τbc

a eb ^ ec, (B.1)

where the anholonomy coefficients read τab
c “ 2Γrabs

c, with Γab
c “ pdaebiqecj as defined

in (5.17). These coefficients measure the failure of the frame to be locally a coordinate

basis, i.e. ea “ dya. Taking the exterior derivative of the second structure equation yields

dra τbcs
d ` τrab

eτcse
d “ 0 . (B.2)

Contracting the upper index with one lower index also yields

dcτab
c ` 2draτbsc

c ´ τab
cτcd

d “ 0 . (B.3)

A covariant derivative ∇ “ d`ω is introduced, the connection one-form acting on Lorentz

indices as ωfa “ ωab f
b and ωfa “ ´ωbafb. In the ea basis it reads ∇af

b “ eaf
b ` ωbacf

c.

The torsion two-form is defined as

T a “ ∇ea “ dea ` ωab ^ eb “
ˆ
ωabc ´ 1

2
τbc

c

˙
eb ^ ec. (B.4)

The antisymmetric part of the spin connection is then fully determined in term of the

torsion and anholonomy coefficients ωcrabs “ 1

2
pτabc ` Tab

cq. Asking for consistency with

partial integration

ż
dDx eUa1a2...an∇a1Ta2...an “ ´

ż
dDx e Ta2...an∇a1U

a1a2...an , (B.5)

where e “ det eai, further constrains one trace of the spin connection ωbba “ ´τabb. The

curvature two-form is defined as

∇2fa “ Rabf
b “ pdωab ` ωac ^ ωcbqf b “ 1

2
Rabcd e

c ^ ed f b. (B.6)
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Taking the covariant derivative of (B.4), one obtains

∇T a “ 1

2
Rarbcds e

b ^ ec ^ ed, (B.7)

such that vanishing torsion implies the cyclic Bianchi identity for the Riemann tensor. In

the zero-torsion case, the antisymmetric part Rarbcds only depends on the antisymmetric

part of the spin connection ωcrabs “ 1

2
τab

c and vanishes due to identity (B.2)

Rdrabcs “ dra τbcs
d ` τrab

eτcse
d “ 0 . (B.8)

The Ricci tensor in the ea basis reads

Rab “ Rcacb . (B.9)

Using the relation ωbba “ ´τabb, its antisymmetric part vanishes due to identity (B.3)

Rrabs “ 1

2
pdcτabc ´ dbτac

c ` daτbc
c ´ τcd

dτab
cq “ 0 . (B.10)

Introducing the Lorentz metric sab, a metric compatibility condition can be imposed on

the connection by asking the metric to be covariantly constant ∇sab “ ´2ωpabq “ 0. For

vanishing torsion, this condition is solved by

ωcab “ 1

2
τab

c ` τ cpabq , (B.11)

where indices on the l.h.s. are raised and lowered with the Lorentz metric sab. For this

choice of connection the Ricci tensor reads

Rab “ dpaτbqc
c ` dcτ

c
pabq ´ 1

4
τac

dτbd
c ` 1

2
τac

dτ c pbdq ` 1

2
τbc

dτ c padq (B.12)

´τdc cτd pabq ´ 1

2
τ c adτ

d
pbcq ´ 1

4
τ c bdτ

d
ca ´ 1

4
τ c daτ

d
cb , (B.13)

and the Ricci scalar can be computed

R “ sabRab “ 2da τ
ab
b ´ τabbτac

c ´ 1

2
τab

cτac
b ´ 1

4
τabcτab

c. (B.14)
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