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1 Introduction

String dualities reveal intriguing relations among perturbatively different theories. While

T-duality establishes the physical equivalence of theories defined on dual backgrounds with

very different geometries, S-duality relates the strong and weak coupling limits of dual

theories, and finally U-duality has been conjectured to be a symmetry of the full string

theory.



Much progress has been achieved in the construction of duality covariant models aiming
at an effective description of the low-energy states of the string, their interactions and
properties. The stringy nature of the dualities alters the standard notions of geometry,
and in some of the approaches duality invariance is achieved through an enlargement of
the coordinate space. The idea of implementing T-duality as a manifest symmetry was first
considered by M. Duff [1, 2] and A. Tseytlin [3, 4] and further developed by W. Siegel [5, 6].
More recently, it received renewed attention after the works by C. Hull, B. Zwiebach and
O. Hohm [7-10], where the theory defined on the doubled space was named Double Field
Theory (DFT) (see also [11-16]). The equivalence between the formulations in [5, 6] and [7—
10] was established in [17]. Closely related is the framework of Generalized Geometry [18,
19]. More general U-duality covariant frameworks have been constructed in [20-30] and [31-
36], and the relation between some of these theories and DFT was explained in [37]. Reviews
of these achievements can be found in [38-40].

DFT is usually supplemented ad hoc with a differential constraint on fields and gauge
parameters, named strong constraint or section condition. It effectively un-doubles the dou-
ble coordinate dependence, and implies that locally DFT is a reformulation of supergravity.
Given the coordinates of the double space XM, M = 1,...,2D, and the corresponding
derivatives 0y = 0/0X™M | the constraint states that

PN NS N _ (? 5w>’ a1
0'; 0
where n™¥ is the O(D, D) invariant metric, 7,7 = 1,..., D and the dots stand for arbitrary
(products of) fields and gauge parameters. Generalized diffeomorphisms in the double-
space then reduce to standard diffeomorphisms and two-form gauge transformations.

The first step towards a relaxation of the strong constraint was implemented in the
Ramond-Ramond sector [41]. For the Neveu-Schwarz sector, it was shown in [42-44] that
closure of the algebra of generalized diffeomorphisms and gauge invariance of the action
of DFT give rise to a set of constraints that are not in one to one correspondence with
the strong constraint. Although they imply that DF'T is a restricted theory, solutions that
violate the strong constraint and are thus truly doubled are allowed.

Scherk-Schwarz (SS) compactifications [45] provide a scenario where fields and gauge
parameters are restricted: given a background defined by a duality twist, the fields and
gauge parameters must accommodate to it, and can no longer be generic. The perturbations
around the background then correspond to the dynamical degrees of freedom of the effective
action, which is a gauged supergravity. When the restricted fields are inserted into the
consistency constraints of DFT, the duality twist generates gaugings (including the so-
called non-geometric gaugings [46—48|) that arrange in the form of the quadratic constraints
of gauged supergravities [42—44|. Then, under a SS reduction, the constraints of DF'T are in
one to one correspondence with the constraints of gauged supergravity. U-duality invariant
scenarios exhibit the same behavior [30, 49, 50]. The quadratic constraints were completely
solved in some particular gauged supergravities in [51], where it was shown that the duality
orbits of non-geometric fluxes are only generated through truly doubled duality twists.



From a phenomenological point of view, these duality orbits (which necessarily violate the
strong constraint) are the most interesting ones since they favour moduli stabilization and
dS vacua, evading the many no-go theorems for geometric fluxes [52-57]. Then, from a
four-dimensional perspective, the effect of the strong constraint is to eliminate the orbits
that give rise to vacua with desirable phenomenological features.

The purpose of this paper is to explore to what extent one can deal with the gauge
consistency constraints in DFT without imposing the strong constraint, and survey exten-
sions of DF'T with strong constraint-violating terms. To achieve this goal, we closely follow
the formulation in [5, 6, 17

e The fields of the theory, namely the generalized dilaton d(X) and bein €4 (X), which
turns flat indices A, B, ... into curved ones M, N, ..., are arranged in “dynamical”
fluxes defined as:

Fapc = 3QaBcy » (1.2)
Fa=0Pps+2Dad, (1.3)

where
Qapc = Dalp™éon, (1.4)

and we have introduced a planar derivative Dy = E4M0y;. The fluxes Fagc and
F4 are thus field-dependent and non-constant. The different components of Fapc
correspond to the standard geometric (Hgzpe and 7,,¢) and non-geometric (Q,%¢ and
R°) fluxes, and give rise to the corresponding gaugings upon compactification. This
is similar to the constructions of [58-62], where ten-dimensional actions with their
associated differential geometries were built in terms of field dependent quantities
related to the non-geometric fluxes.

e Some consistency constraints take the form of generalized quadratic constraints, and
involve the following Bianchi identities (BI) for the dynamical fluxes

3
DiaFpep) — Z]:[ABE}—CD]E = ZABCD ,
DCJTCAB + QD[A]'—B] — .FC.FCAB = Zap,

(1.5)

where

3
Zapep = *ZQE[ABQECD] :

ZAp = (aMﬁMS[AN)EB]N — 2QCABZ)Cd-

(1.6)

Upon SS compactifications, the constraints lead to the quadratic constraints for the
constant electric bosonic gaugings of half-maximal gauged supergravity. Both these
expressions vanish under the strong constraint (1.1), but more generally the full set
of constraints admits truly double configurations. Let us emphasize that the strong
constraint can be imposed on all the results of this paper, which would then reduce
to known results in the literature.



Besides (1.5) there are additional BI associated to the quadratic constraints of the
maximal theory, which arise upon completing the NS-NS action with the Ramond-
Ramond (RR) sector

1 1 1
DAF, — ifA]-“A + E]—“ABC}"ABC = —2DAd D d + 20M 0ppd + ZQABCQ Ao =2
YG = Zrr, (1.7)

where G contains the information on RR forms, and Y is a generalized Dirac operator.
All Z ... vanish under the strong constraint.

e The action takes the form of the scalar potential of the bosonic electric sector of half-
maximal gauged supergravity [63] when the fluxes are identified with the constant
electric gaugings and the flat metric is identified with the moduli scalar matrix:

1 1
S = dee_Qd(— EfADCchDSAB — E]:ACE]:BDFSABSCDSEF + ]:A]:BSAB
1
— o FC Fape - ]—“AJ-“A) , (1.8)

where Sap is the generalized metric in planar indices, and it is written purely in
terms of the dynamical fluxes. Up to boundary terms, the first line in this action
equals that of DFT [7-10] plus an additional term that violates the strong constraint.
The second line, on the other hand, identically vanishes under the strong constraint.
So, when the strong constraint is imposed, this action can be cast in the form of
the generalized metric formulation of DFT [7-10]. These results refer to the NS-
NS sector, but we also include Ramond-Ramond fields and heterotic vectors in the
analysis.

The action (1.8) includes many strong constraint-violating terms, some of which were
added by hand in [42-44], and of course were absent in the original formulations of DFT.
These terms are covariant under the global and local symmetries, up to the quadratic con-
straints, and are needed to make contact with half-maximal gauged supergravities contain-
ing duality orbits of non-geometric fluxes in four-dimensions upon a SS compactification.
Here, we construct this action systematically as in [5, 6] closely following the guidelines
of [64, 65] (and also [17, 66-68]): we first introduce connections to covariantize the deriva-
tives under the gauge symmetries of the theory and then impose a set of conditions on
them, such as vanishing generalized torsion and compatibility with the dynamical degrees
of freedom and the O(D, D) metric. Although only some projections of the connection
are determined, a notion of generalized Riemann tensor can be introduced which, upon
traces and projections, leads to a fully determined generalized Ricci tensor (whose flatness
determines the equations of motion) and a generalized Ricci scalar (that defines the ac-
tion (1.8)). This procedure is followed here without assuming the strong constraint (this
was also done in the U-duality case in [30], and also in a different geometric construction of
DFT [69]). We find that the strong constraint-violating terms appearing in the generalized
Ricci scalar are those introduced in [42-44] plus others that are needed to guarantee gauge



invariance (the latter play no role when a SS compactification is performed) up to the
consistency constraints.

Let us emphasize that in this paper we don’t assume a SS form of fields and gauge
parameters: we simply list the consistency constraints of the theory that appear through
the computations, and show that in particular they admit truly doubled solutions of the
SS form. Other compactification scenarios might provide new solutions to the constraints.

Interestingly, the expressions (1.5) appear all along the many computations in the
paper. They arise when analyzing closure of the gauge transformations, covariance of the
generalized fluxes (which in turn implies gauge invariance of the action), invariance of the
action under double Lorentz transformations, covariance of the generalized Riemann and
Ricci tensors, and they also show up in the BI for the generalized Riemann tensor.

It is also interesting to note that when the strong constraint is imposed on the
fields, (1.5) become the BI of [46-48, 70, 71] for constant fluxes, and those of [72] for
non-constant fluxes. They span T-duality orbits of BI, containing J; Hjj = 0 as a partic-
ular representative. These identities are known to be sourced by localized branes (see for
example [73, 74]), like the NS5-brane. More generally, we have here duality orbits of BI for
non-geometric fluxes that can be related to more exotic T-fold-like objects with non-trivial
monodromies, such as the 52 brane [75-77], or other Q and R-branes [78], etc. We also
have duality orbits of generalized BI for branes in other dimensions and D-branes [79, 80],
all related to the consistency constraints of DFT.

We stress that the formalism implemented here to analyze possible relaxations of the
strong constraint was introduced in the pioneer work by W. Siegel [5, 6] many years ago,
and was recently extensively discussed in [17] by O. Hohm and S. Kwak. This includes the
fluxes, action, BI, and other issues considered in this paper.

The paper is organized as follows. In section 2 we introduce the dynamical fluxes and,
in terms of them, the action, equations of motion and gauge consistency constraints. In
section 3 the novel notions of stringy differential geometry are adapted to hold beyond
the strong constraint. The inclusion of Ramond-Ramond fields and heterotic vectors is
discussed in section 4. In section 5 we analyze the generalized BI, we present a first order
formulation of DF'T and discuss duality orbits of generalized BI for different types of branes.
Finally we conclude and summarize in section 6.

2 Double Field Theory and generalized fluxes

Double Field Theory is a manifestly T-duality invariant field theory in which the fields
depend on a double set of coordinates dual to momentum and winding. Its simplest version
contains only NS-NS fields, namely the metric g;;, the antisymmetric Kalb-Ramond two-
form B;; and the dilaton ¢. Extensions that include heterotic vector fields [81], Yang-Mills
symmetries [82], R-R forms [83-86] and fermions in a supersymmetric fashion [87-89]
were also considered. The connection with O(D, D) covariant world-sheet theories was
established in [90-95].



In its simplest version, the theory has a global symmetry group G = O(D, D) with

metric ‘
0 0 ..
NN = si 0] M,N=1,...,2D, ,7=1,...,D. (2.1)
1
Curved indices M, N, ... are raised an lowered with this metric. Every object appearing in

a duality invariant theory must belong to some representation of the duality group G. In
particular, the space-time coordinates 2% have to be supplemented with G-dual coordinates
#; to form generalized coordinates X = (Z;, ), lying in the fundamental representation
of G. It is in this sense that the theory is doubled. It also enjoys a gauge invariance
generated by a pair of parameters (éz, ¢%), that can be packed in the G-vector £M. Gauge
invariance and closure of the gauge algebra lead to a set of differential constraints that
restrict the theory. In particular, these constraints are satisfied when a stronger condition
named strong constraint is enforced:

oM. =0, (2.2)

where the dots denote (products of) fields and gauge parameters. The effect of (2.2) is to
locally restrict the coordinate dependence of the fields and gauge parameters so that they
live on a null D-dimensional subspace of the double space. In other words, when the strong
constraint is imposed, the theory is not truly doubled but only lives on a D-dimensional
slice of the doubled space. However, by explicitly breaking the gauge symmetry, for instance
when compactifying, it is possible to relax the strong constraint. All through this paper
we will keep terms that would vanish by this constraint.
In DFT, the dilaton ¢ is contained in the G-scalar

d=0 - 3log s, (2.3)

which is manifestly T-duality invariant. The D-dimensional metric g;; and two-form B;;
are contained in a symmetric generalized metric H sy, living in the coset G/H where H =
O(1,D —1) x O(1,D — 1) is the maximal (pseudo-)compact subgroup of G, corresponding
to a local symmetry of the theory. Therefore H ;v satisfies the constraint

Hupn 9 Hon = nun - (2.4)
A possible parameterization is the following
ij _JdkB,.
Harn = (Bigkj 9ij —ng'kglzlel) ' (2:5)
Given these objects, an invariant action under the gauge and global transformations
can be found, namely [7-10]
S = JdXe‘ZdR(’H, d), (2.6)

with

R = AH"Noyond — onOnHMY + 40 HMY ond — AHMN 0ppd Ond
1 1 (2.7)
— ifHMNaM’HKL OxkHNL + 3 HMNaMHKL ONHKL + AscR,



where AgcR stands for terms that vanish under (2.2) and were not included in [7-10].
This action reduces to the standard supergravity action for the NS-NS sector when H ;N
is parameterized as in (2.5) and the strong constraint (2.2) is enforced in a frame in which
o' = 0.

In the frame formulation of DFT, one takes the H-invariant metric as

5% 0

Sap = , a,b=1,...,D, Sap = diag(— + -+ +). (2.8)
0 Ssap

When compared with standard supergravity, one of the O(1,D — 1) factors reproduces

the local Lorentz symmetry. The generalized metric can then be written in terms of a

generalized bein €4 as

Hun = EnSapEly . (2.9)

A possible parameterization, leading to (2.5), is

i k .
£4 = (eg c B’f) (2.10)

€7

where e%; is a D-dimensional bein of the metric g;; = eaisabebj.
The indices in H are always raised and lowered with the flat counterpart of the G-
metric
a
nap = EaMEpN N = ( Ob 0 b) . (2.11)
ds” 0
The last equality is verified by the parameterization (2.10), but for a generic doubled bein
this gauge choice is a constraint forcing £4M to be an element of G itself. The additional
degrees of freedom contained in the bein compared to those in Hj;n are then un-physical
due to the new local symmetry H. Throughout this paper, we will generally not make
use of any particular parameterization but rather consider the bein as a constrained field
satisfying (2.11).
Under global G transformations, the generalized coordinates and fields transform as

XM x™M = My XN EaM(X) - EAN (X g M, d(X) — d(X"), (2.12)

where g € G satisfies nyy = g’ angNQ. As mentioned above, when introducing beins,
the theory enjoys a new Lorentz-like local symmetry H = O(1, D—1)xO(1, D—1) acting on
E4) from the left. We note however that the constraint (2.11), and all differential identities
that follow from it, are invariant under local G transformations (denoted G, ~ G) acting
on the bein from the left

EAM(X) - haB(X)EsM(X), (2.13)

where h € G satisfies nap = hACT]CDhBD . The action and dynamical equations are
however only invariant under the subgroup H < G, i.e. under transformations satisfying
in addition Sap = hACSCDhBD.



2.1 Flux formulation

We would now like to rewrite DFT in terms of G-singlets only, along the lines of [5, 6]. For
this purpose we define the flat derivative Dy = £4 0y, and the Weitzenbéck connection

Qapc = Dal o = —Qacn, (2.14)

where the antisymmetry follows from (2.11). Comparing compactifications of DFT with
N = D = 4 gauged supergravity, it was remarked in [42-44] that the objects:

Fapc = 3QaBcy (2.15)
Fa=0Ppa+2Dad, (2.16)

play an important role. In particular, after compactification they give rise to the electric
gauging parameters fapc and &4, or fluzes, entering the embedding tensor. Moreover,
the different components of these dynamical fluxes correspond to covariant derivatives of
scalars, curvature of the gauge fields, and other covariant combinations that appear in the
effective action.

The dynamics of the NS-NS sector of DFT is described by an action that can be written
in a compact form (up to total derivatives) in terms of a scalar function of the generalized
bein and dilaton as

S = JdX e MR(E,d), (2.17)

where

1 1
R = SAB(QDA.FB - .FA.FB) + .FABchEF[4SADﬂBE?70F - 12SADSBESCF]

1
—2DAF  + FAF, — E-FABCJTABC : (2.18)

Here, the bein appears only through D4, Fapc and F4. When the parameterization (2.10)
is chosen, and the strong constraint is imposed in the global frame in which the dual coor-
dinate dependence vanishes, this action reduces to the usual NS-NS action of supergravity.
Other parameterizations and global frames are better to describe the dynamics of non-
geometry [58-62].

The second line in (2.18) identically vanishes under the strong constraint. Up to
boundary terms, the first line can be taken to the form of the standard action of DFT (2.7),
modulo a single strong constraint-violating term that was introduced in [42-44]. It was
also mentioned in [42-44] that a term proportional to FABYF,pc should be added to
the action (2.6) to recover the scalar potential of half-maximal gauged supergravity in
four dimensions. The second line in (2.18) corresponds to the H (and Gy, since it does
not depend on the planar generalized metric) invariant extension of this term, up to the
consistency constraints. When non-vanishing, its effect for compactifications is to add a
piece to the dilaton potential, which is indispensable to reproduce duality orbits of non-
geometric fluxes.

Comparing (2.18) with (2.7) we see that the missing strong constraint-like terms read

1
AscR = 5(Sap - naB) O EApoMEB o @ + 40y rdoMd — 40p,0Md . (2.19)



The first line in (2.18) is also invariant under a Zy symmetry reproducing the B — —B
symmetry of supergravity. This symmetry acts at the same time on the left and on the
right of the bein by an O(2D) transformation

- (H —11) . E—TIEL. (2.20)

Since ZnZ = —n, only terms involving an even number of contractions with 7 are invariant,
and so is the first line in (2.18). The second line in (2.18) instead breaks the Zg symmetry. It
was shown in [42-44], based on the results of [96-98], that its presence forbids an embedding
of the effective action of DFT into N/ = 8 supergravity in four dimensions. In order to
truncate N/ = 8 — 4 in four-dimensions, a Zs symmetry is imposed, and only the invariant
terms are kept. It is therefore to be expected that such a symmetry is related to the
one mentioned here. Actually, let us mention that the quadratic constraints of gauged
supergravities are automatically solved by the strong constraint (2.2). The second line
in (2.18) can be recast as

1 1 1
Z = DA.FA—i}"A.FAJrEFABC}"ABC = —2DAdDAd+25M5‘Md+ZQABCQ apc (2.21)

and written in this way, it is easy to see that it vanishes under the strong constraint. In

terms of Z, (2.19) can then be written as
1
AscR = §SABaMgApaM5BQnPQ —2Z. (2.22)

Given its relation to the quadratic constraints of maximal supergravity [42-44], Z = 0
must not be imposed as a constraint here, unless we intend to embed DFT in some U-
duality invariant theory. In this paper we will keep this term, which in fact allows for the
possibility of obtaining duality orbits of non-geometric fluxes upon compactifications [51].
Interestingly, when analyzing the RR sector of the theory, Z will appear as part of the

consistency constraints.

2.2 Gauge symmetries and constraints

Under an infinitesimal G -transformation parameterized by As2, with Aup = —Apga, the

bein transforms as
6EAM = A BeRM. (2.23)

Referring to definitions (2.14)—(2.16), we then obtain the variations

6AQapc = Dalpc + AaPQppe + APQapc + AcPQasp (2.24)
SaFapc = 3(Drahpe) + AMa” Fperp) (2.25)
ONFa = 'DBABA-FAABJEB. (2.26)

For H-transformations, the parameters also satisfy Ay, = A , 5, where we introduced
the notation

Asp=S4\cs. (2.27)



Then, up to boundary terms we find
oAS = JdXe‘QdAAC (A8 — 8§48 Zpe (2.28)
where
Zap = D Foup + 2DaFp) — F Foap = (M 0uEa™ ) ey — 2Q° apDed . (2.29)

Notice that this vanishes under the strong constraint (2.2), but more generally H-invariance
only requires the following minimal constraint

(014 = S(a“)Zp1c = 0. (2.30)

Here the S contribution comes from the first line in (2.18) and the 1 term from the second
line. Notice that invariance of the full action requires this projection of Z4p to vanish,
but if Z4p is requested to vanish entirely as a constraint, then the action splits in two
sectors (the first and second line in (2.18)) both being invariant under all the symmetries
independently (up to Z4p = 0). This allows some freedom to fix the relative coefficient
between both sectors, but we believe that this coefficient would be fixed as in (2.18) due
to supersymmetry, since it is the one required to match half-maximal supergravity in four
dimensions [42—44, 51].

On the other hand, generalized diffeomorphisms are generated by infinitesimal param-
eters EM = £,4M )\ in the fundamental representation of G that take the form

1 1 1
Sed = EMoprd — §aM§M = §>\AJ-‘A — §DA)\A,

(2.31)
5eE% = P apEMy + (0ue” — 0P en)EMp = Epnr (2DIBAA + FABNC)
This further implies
SeFape = NPDpFape + 4ZapcpA” +3DpA AP pey (2.32)

0eFa = \PODpFa + Zap\P + FBDpAs — DPDpia + QY 4pDcAP,  (2.33)

where 3 5

Zapep = DiaFpep) — Z]:[ABE]:CD]E = _ZQE[ABQECD] : (2.34)
and Z4p was defined in (2.29). Again, the failure of F4pc and F4 to transform as scalars
implies that DFT is a restricted theory and can only be consistently defined for a subset of
fields and gauge parameters that ensure gauge invariance and closure. The quantity (2.34)

also vanishes if (2.2) is imposed, but demanding that Fapc and F4 transform as scalars
only requires a relaxed version of the strong constraint

4ZABCD/\D + 3DD)\[AQDBc] =0,
Zap\P + FBDpAs — DPDpAa + QY 4uDcAP = 0. (2.35)

We will now show that both, invariance of the action under H-transformations (2.30) and
generalized diffeomorphisms (2.35) follow from closure constraints.

,10,



Consider a gauge transformation for a generic tensorial density VY of weight w(V)
5eVM = ¢PopV M + (Mep — 0peM)VE + w(V)opeP VY, (2.36)

the equations (2.31) are then recovered for w(e™2?) = 1 and w(€) = 0. These transforma-
tions define the so-called C-bracket

1
61,618 = 5 (0e62 — 060)™ = 2fongy) — EfoY &yp
= EaM ([, )@ + Fre™APXS). (2.37)

Generically, the commutator of two transformations of an arbitrary vector VM is not a
transformation, but differs as

[5517552]VM = 5[51,&2]CVM - FM(glv &2, V) ) (2'38)
where
FM(61,6.V) = §10"6100p V™ + 20p6nqd 6 VO + w(&)iord eV ™ (239)

carries the same index structure as V. This indicates that the gauge transformation of a
tensor is not automatically a tensor, and that the vanishing of its failure (denoted as A¢)
must be imposed as a constraint

Ag 0, VM =0, (2.40)

The vanishing of FM in (2.38) then follows from (2.40). We will refer to (2.40) as the
closure constraints. Notice that in particular they imply!

Ag Fap® = E9 A 0e,E8M =0,
Ag Fa = —e*Ag 0g,e72 =0, (2.41)

and then they guarantee that the dynamical fluxes transform as scalars under general-
ized diffeomorphisms, guaranteing in turn the gauge invariance of the action, i.e. closure
implies (2.35). Also, notice that due to closure

Zapcep = Ag,Fpep =0, Zap = Ng, Fp =0, (2.42)

and then H-invariance of the action (2.30) is also guaranteed by closure.

Summarizing, closure requires the imposition of constraints (2.40) that guarantee gauge
invariance of the action, i.e. closure implies (2.30) and (2.35). There are further constraints
arising from their gauge transformed. Since they are known to admit solutions beyond the
strong constraint [42—-44], let us now briefly review the solutions of [42-44] (which contain
the strongly constrained case as a particular example). In the next section we will deal
with geometry, and new constraints will arise, which are also satisfied by these solutions.

IThe fact that the bein is not infinitesimal is not a problem here: when used as a gauge parameter one
can always assume that it is multiplied by some infinitesimal constant that factorizes out, preserving the
results (2.41)—(2.42).

— 11 —



2.2.1 Scherk-Schwarz solutions

All the constraints above are solved by restricting the fields as

~

EM(X) = EAL () UM (YY), d=d(z) + AY), (2.43)

and the gauge parameters as

~

M(X) = M(@)Eal (2)UM(Y). (2.44)

Here we have used the following notation for the coordinate dependence X = (Z,y;z,vy),
Y = (9,y). So, while the Y coordinates are double and play the roll of internal coordinates
in a SS compactification, the x coordinates correspond to the un-doubled external space-
time directions (the hats indicate dependence on z only). For more details we refer to [42—
44]. This ansatz satisfies all the constraints, when U(Y"), which is an element of O(D, D)
called duality twist matrix, is constrained to satisfy

o (UM —5:M)org=0
° frik = 3Q[IJK] = const. , Qrix = UMoyUNUkn
° f[ = QJJ] + 2U[M(9M)\ =0

e the quadratic constraints of half-maximal supergravity [63]
frpra T wry = 0. (2.45)

Moreover, the first, third and fourth conditions can be further relaxed through the in-
troduction of a warp factor [42—44] in order to account for gaugings in the fundamental
representation of O(D, D), but here we introduce this ansatz for simplicity. It was shown
in [51] that all the possible solutions to (2.45) can be reached by means of proper selec-
tions of duality twist matrices. Some solutions (the duality orbits of non-geometric fluxes)
require truly double twist matrices, i.e. depending on both y and ¢ in such a way that
the strong constraint is violated, and no T-duality can be performed to get rid of the dual
coordinate dependence.

Of course, there might be other solutions to these constraints, perhaps associated to
other kind of compactifications. Let us emphasize that this ansatz contains the usual
decompactified strong constrained case. In fact, taking U = 1, A = 0 and the coordinates
z' taking values i = 1,..., D, one obtains the usual situation analyzed in the literature.
From the point of view of this ansatz, this is just a particular limit in which all the compact
directions are decompactified.

For these configurations all the consistency constraints are satisfied. In fact, it can be
checked that

ZABCD =0, ZAB =0, (2.46)

and also relations of the form

ouANOMAB =0, oMMt =0,  QPupDpA° =0, (2.47)
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hold as well. Notice also that now the set of generalized diffeomorphisms has been reduced
to a residual subgroup broken by the background. The SS ansatz can be thought of as a
fixed background U, with perturbations E around it, such that when this is plugged in the
action and equations of motion one obtains an effective action for the perturbations. All
these issues are discussed in [42-44], where the compactification to four-dimensions was
shown to reproduce the electric sector of half-maximal gauged supergravity.

Under a SS reduction, the dynamical fluxes become

Fapc = Fape + frixEa'Eg’ EcX, Fapc = 3§[ABC] ; (2.48)
Fa = QBBA + QE’AIGI(Z, (2.49)

where
Qupc = Ea'01Ep’Ecy, (2.50)

so they are purely x-dependent, and all the truly double dependence has accommodated into
the constant gaugings. This is in fact a generic feature of SS compactifications: covariant
tensors with planar indices only depend on external coordinates.

We now continue without assuming this particular form of the fields and gauge pa-
rameters, but we will show that this ansatz also solves the forthcoming constraints in

section 3.

2.3 Equations of motion

The equations of motion of the DFT action (2.6) (without the terms we denoted AgcR)
were derived and analyzed in [7-10] and [99]. Here we obtain the equations of motion of
the action (2.17).

The variations of the objects appearing in the flux formulation of DFT with respect
to £4M and to d are given by

6¢Qapc = Dalpe + AaPQppe + APQapc + Ac” Qs , (2.51)
SeFapc = 3(Dalpe) + A" Frepp) » (2.52)
5sFa = DPApa+ AA" T, (2.53)
0qgFA = 2DAdd, (2.54)
and these in turn translate into variations of the action (2.17) given by
6eS = J dXe 2 GABA LR, (2.55)
648 = J dXe2God, (2.56)
where
Aap = 6EAMEpy = —Apa, (2.57)
must be antisymmetric to enforce the constraint £4MEpyr = nap. The equations of motion
are then
glaBl — ¢, (2.58)
G=0, (2.59)
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where

GUPI — 2(sPWA _ yPIYDBIF, 4 (Fp — Dp)FPAPL 1 FOPIAF LBl (2.60)
— 2AB | 9GDIADBIF o (Fp — Dp)FPIABl  FCDIAE, B]
G = —2R. (2.61)

Here, we have introduced the notation

FABC _ ABCDEF p JFABC _ FABC | pABC (2.62)
where
GABCDEF _ % GAD,BE,CF %UAD SBE,CF | %HADWBE GOF _ % GAD GBE gCF
_yADyBE,CF
_ §ABCDEF _, ADBE CF (2.63)

The operator S defines an involutive map 52 =1, so —5/2 is a projector.
In the next section, these equations of motion will be re-obtained from a generalized
notion of Ricci flatness.

3 Geometry, connections and curvature

It was shown in [5, 6, 17, 64, 65]-[68] that the action and equations of motion of DFT can
be obtained from traces and projections of a generalized Riemann tensor. The construction
goes beyond Riemannian geometry because it is based on the generalized rather than the
standard Lie derivative. Then, the notions of connections, torsion and curvature have to be
generalized and many interesting features arise in this framework. For example, it turns out
that the vanishing torsion and compatibility conditions do not completely determine the
connections and curvatures but only fix some of their projections. The strong constraint
was always assumed in these constructions. In this section we re-examine these generalized
objects without imposing the strong constraint, but only the relaxed constraints discussed

in the previous section, plus new ones arising here. Our route will closely follow that
of [64, 65].

3.1 Generalized connections

We begin by defining a covariant derivative acting on tensors with curved and/or planar
indices as

VarVa® = oy Vaf + TayunBvah — wpa vk, (3.1)

where I'jys v is a Christoffel connection, and wys4? a spin connection. The forthcoming list
of conditions were imposed in [5, 6, 17, 64, 65]-[68] to restrict these connections, following
a similar procedure to the usual one in Riemannian geometry. The list is ordered in such
a way that each item assumes the previous ones.
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e Compatibility with the generalized frame. Covariant constancy of 4V
VuéaN =0, (3.2)
relates the Christoffel, spin and Weitzenbock connections
Cary = =QuinN + E4LE N wara®. (3.3)

Since the Weitzenbock connection is fully determined by the generalized frame, this
condition simply relates the Christoffel and spin connections.

e Compatibility with the O(D, D) invariant metric. Given the covariant con-
stancy of the generalized frame, covariant constancy of the metric n™ % can be equally
cast as

V"’ =0 <« vyntf =0, (3.4)

which in turn imply
F'vnp=-Tupn <= wmaAB = —wWMBA- (3.5)

e Compatibility with the generalized metric. Covariant constancy of the gener-
alized metric
VyvHNg =0 <= VuyuSag=0, (3.6)

implies that
OMHNK — FMNPHPK — FMKP'HNP =0 <= Wwyu5="Wypi- (3.7)

Here we used the check notation for indices contracted with the planar generalized
metric (2.27).

e Covariance under generalized diffeomorphisms. The spin connection is re-
quested to transform covariantly under generalized diffeomorphisms

Sewap® = € 0pwap”. (3.8)
Through bein compatibility we then have
AT ynp = —AeQunp = 2000 nEp) — 00én NP, (3.9)
where we define A as the failure of an expression to transform covariantly.

e Covariance under double Lorentz transformations. Under local H transfor-
mations, we demand that V; V4 transforms as a Lorentz vector. This implies that

SAlun® =0, (3.10)

and
5AwMAB = aMAAB + chBAAC — wMACACB. (3.11)
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e Vanishing generalized torsion. The standard definition of torsion turns out to
be non-covariant under generalized diffeomorphisms. Then, one has to resort to a
generalized definition [68]

(68 = 6 ) VM = TopMeV P, (3.12)

where VM is a vector and ¢V is the generalized gauge transformation with 0y, replaced
by Vr. This definition yields

Tor™ = 2T op™ —TM pq. (3.13)
Combined with compatibility with the O(D, D) metric, one finds that
Tunk =30unk] <= Tasc = 3wiapc) — FABC (3.14)
and then setting the torsion to zero, we obtain
vk =0 <= Fapc = 3wapc] - (3.15)

Note that this condition is consistent with the transformation properties of Fapc
under generalized diffeomorphisms provided the gauge consistency constraints hold.
The antisymmetrization of the spin connection (which is requested to be covariant)
coincides with the dynamical fluxes, which were also requested to be covariant. It
then follows from the constraints that the generalized torsion is covariant as well.

e Compatibility with the generalized dilaton. Demanding partial integration in

the presence of the dilaton measure e~ 2%

f e WV, UM = — f e 2UMY W, (3.16)
one finds

Tpyt = —20yd — wPpa=Fa. (3.17)

Again we find consistency in requiring that the spin connection is covariant, because
its trace is related to the dynamical fluxes which are covariant as well.

It was shown in [64, 65]-[68] that these constraints only determine some projections of
the connections, leaving undetermined pieces which cannot be identified with the physical
degrees of freedom. Still, some projections of a generalized Riemann tensor reproduce the
action and equations of motion. In some cases [66, 67] some further projections on the
connection are requested to vanish in order to eliminate the undetermined part. However,
in this case the derivative is only covariant under particular projections, and then, full co-
variance is lost. More recently, in [69] the connection was chosen to equal the Weitzenbock
connection, and then the spin connection vanishes. The advantage of the construction
in [69] is that the connection is simple and determined. The torsion (3.14) is non-vanishing
and equals the antisymmetric part of the Weitzenbock connection, so it coincides with the
dynamical fluxes discussed here. Although the generalized connection is flat, the dynamics
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is encoded in the torsion, and the action is constructed by demanding H-invariance. In-
terestingly, the strong constraint can be relaxed in this formulation as well. Here, we will
follow the route of [64, 65]-[68], obtaining the action and equations of motion from traces
of the generalized Riemann tensor. We will show that this provides a systematic way of
obtaining the full action (2.17), and equations of motion (2.58).

Imposing the additional constraint that the spin connection is linear in fluxes, a unique
solution to (3.5), (3.7), (3.15), (3.17) can be found

1

wApe = Tp

(Fiencya + ]:DSD[BSC]A)
, X ) (3.18)

1
t3 (fABO +Fape — 57 Ao — 5 ABc
However, a covariant derivative built from this particular connection does not satisfy (3.11)
under H-transformations, only some projections do, and then this connection is semi-
covariant. In what follows we will not make use of (3.18), but instead we will work only
with the previous conditions on the connections.
Notice that due to the above requirements, the derivative of the spin connection is
required to transform as a tensor under generalized diffeomorphisms

Ag&MwABC = 6P£M&prBC =0. (3.19)

Moreover, due to (3.9) we have an additional constraint from covariance of the covariant
derivative

AV Vy = A¢[ouVn —TunpVF] =0, (3.20)

which can be recast in the form
apraPVN + aprQPNQVQ =0. (3.21)

We now have new constraints, for the vectors, gauge parameters and connections, like (3.19)
and (3.21), that arise by demanding that this geometric construction is consistent with a
relaxation of the strong constraint. Notice that these constraints are not requested for
consistency of the theory. Moreover, only some projections of them are physical, because
of the undetermined components of the connection. In any case, as strong as they look,
they are all satisfied once again by the SS solutions of section 2.2.1. In fact, as we explained
in that section, in the SS scenario the covariant objects in planar indices only depend on
the external coordinates, and then it is easy to see that (3.19) is satisfied in a SS reduction
where the gauge parameters take the form (2.44). This is consistent with the fact that
projections of the spin connections give generalized fluxes, which also only depend on the
external coordinates in this case. As for (3.21), notice that the strong constraint terms
of the form Q¢ MNS2QRrs cancel, so it is also satisfied by the SS ansatz. Then, these new
constraints are also solved by truly double SS reductions, but more generally might be
solved by other truly double configurations.
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3.2 Generalized curvature

The usual Riemann tensor in planar indices (i.e., rotated with the bein)

Rapc” = 2(Drawpic” — Qap"wec” — wiac®wipie”) (3.22)

is not a scalar under generalized diffeomorphisms (even if the strong constraint were im-
posed) because the Weitzenbdck connection is not covariant. However, following the steps
of [5, 6, 17, 68]-[64, 65] one can extend this definition in order to covariantize it.? Consider
for example the following modified curvature

Rapcp = Rapep — QF apwrep (3.23)
= 2D swpiep — Fap"weep — 2wiaic”wipED -

An extra term is included in order to promote the Weitzenbock connection to a generalized
flux, which is covariant. This expression is now a scalar under generalized diffeomorphisms.
With the addition of the new term in (3.23), the G, covariance has now been compromised.
In order to restore it we further extend the definition as [5, 6]

Rapcp = Rapep + Repap +wP apween , (3.24)

which is also a scalar under generalized diffeomorphisms. Of course, we are expecting that
(1, or H invariance is achieved only up to strong constraint violating terms, because so is
the action (2.28). A quick computation shows that

ArARapcp = DeApaQPcp + DeApcQF ap, (3.25)

so if one pretends a fully covariant Riemann tensor, this must be set to zero. In particular,
under a SS reduction A 4p would depend on external coordinates only, and this constraint
would be automatically satisfied.

Rotating all indices with the generalized bein, and using (3.3), the generalized Riemann
tensor in curved indices can be cast in the form

RunkL = Runkr — QounQ%rkr (3.26)
where

Runir = Runkr + Rxrun + TounT%kr,

Q

(3.27)
Rynkr = 20U nkr + 20l v -

Here, ﬁM Nk is the generalized Riemann tensor found in [64, 65]. We see that the differ-
ence between (3.26) and (3.27) is a strong constraint-violating term which does not vanish
with our assumptions. This extra factor was also considered in [30], where the first geo-
metric construction with a relaxed strong constraint was built in the U-duality case. The

2Imposing the vanishing of its failure to transform covariantly as a new constraint, is not an option. We
are assuming that all the constraints of DFT are solved by the strong constraint, so that there is always a
limit that makes contact with supergravity.
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generalized Riemann tensor (3.26) enjoys the same symmetry properties of the usual one,
namely Rynir = R(mn|[KL)-

Following the path of [64, 65] we now want to consider traces and projections of the
generalized Riemann tensor to get a generalized Ricci tensor and scalar. For instance,
imposing (3.15) and (3.17), we obtain

RapP = -4z, (3.28)

where Z was defined in (2.21). This vanishes under the strong constraint, but here it gives
rise to some of the strong constraint-violating terms in the action. On the other hand,
contractions with S (or H) give the same answer

Ryt =—42. (3.29)

Thus, we are led to consider traces of the generalized Riemann tensor with mixed S4¢ and
nBP contractions. After imposing conditions (3.5), (3.7), (3.15), (3.17), all the undeter-
mined parts of the connection drop out from (3.24) and one gets

AB
Ryig"" = 2R —4Z. (3.30)
In order to combine these results we introduce the projectors

1 1
Py = 5(5MN — HMN) or Py =EsMEP NP = 5(5'43 - SAB), ( )
3.31
Py = %<5MN +HaY) or PaP =eMeP PN = %(MB +547).

Using the results (3.28), (3.29) and (3.30) we see that the unique combination giving the
full generalized Ricci scalar in terms of projectors is

1
R = ZJﬂ‘CPBDRABCD, (3.32)
where R was defined in (2.18).?
Also, the completely antisymmetric part of R apcp only involves the antisymmet-
ric parts of the connection. Imposing (3.15) and (3.17) again, we obtain from (3.24) an
algebraic BI for the generalized Riemann tensor

4 4

RiaBcp) = gD[A]:BCD] — Fap" Fepip = gZABCD- (3.35)

Identities like this, and many others are extensively discussed in [64, 65].

30ther combinations give

PMEPNER Nk = PMEPNER Nk = 0, (3.33)

PMEPNER NkL = —AR — 16Z . (3.34)

Note the difference between acting with PP and PP on Rasnxr when the strong constraint is relaxed.
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3.3 Generalized Ricci flatness
The full action (2.17) can be written as

1
S = 1 de e 2 PMEPNIR kL, (3.36)

and its variation with respect to the bein £ gives
1
oS = Z JdX e 2d (2(55PMK)PNLRMNKL + PMKPNL55RMNKL) . (337)

The projectors satisfy P? = P, P2 = P, P+ P = 1 and PP = 0, and we require that the
shifted ones P’ = P + 6¢P (or P’) also obey these relations. This implies that

o PME — pM ps.pRLpE | pM | 5. pLEpRK, (3.38)
Also, by definition we have
Se PRL — —%(%ARSABEBL + E4Tt81BseRhy (3.39)
and inserting this information in the first term of (3.38) we find
206e PMEYPNER vk = —4A 40 PPOCPPAPEF R pppp (3.40)

where we used (2.57). Recalling (3.26), the second term of (3.37) is

JdX e PMKPNL55RMNKL = de e PMKPNLfsg(']%MNKL - QQMNQQKL) .

(3.41)
The infinitesimal variation of 7A2MNKL with respect to £ can be computed by first
varying with respect to I' [64, 65]

SeRMNKL = 2V n0eT Nyrer + 2V k0T ryarw - (3.42)

Inserting this variation into (3.41), the projectors pass through the covariant derivative
(since Vg = VH = 0) and we get a total derivative, due to the dilaton compatibility
condition. The second term of (3.41) gives

f dX e 24 pPMEPNL§(QonnQ9k) = —2 J dX e 2 A cPAP PO Zpp . (3.43)
Putting all this together, we finally get

1 _
0eS = 1 de e 2 Ay PBOPAP (—4PPYRgppr — 225p) = de e 24 A 4o glACT

(3.44)
Then the equations of motion are

_ 1
GlAC] _ pBIApCID <PEFRBEDF i QZBD> =0, (3.45)

which match those found in (2.58).
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It might seem surprising at first sight that this form of generalized Ricci flatness is
governed by an antisymmetric tensor. We recall however that there is a remarkable property
of the projections with P and P

PyfPySKrg =0 = Py Py°Krs =0 = PoM PPy Kps = 0
il 0 ol (3.46)
PoM PPy Krs = 0 < P"Py)°Krs =0 < Py"Py®Kprg =0

Namely, the symmetric and antisymmetric pieces contain the same information. Then, it is
possible to define a symmetric generalized Ricci tensor, whose flatness gives the equations
of motion as well

_ 1
RAC = pBUApCID <PEFRBEDF + 233D> 0. (3.47)

4 Type II and heterotic DFT

4.1 Type Il

In addition to the NS-NS sector, type II supergravity has a set of p-form gauge fields,
C1 and Cj for type ITA or Cy, Cy and Cy for IIB, belonging to the R-R sector. The
inclusion of R-R fields was extensively addressed in [68, 83-86]. Here we only intend to
relate the constraints in this sector with the results of the previous sections. In the so-called
democratic formulation, the set of gauge field strengths G, is completed by magnetic duals
G10—p and packed in a sum of differential forms, or polyform,

10,9 10,9 1 ‘ ‘
G= Y Gp= >, G sdz" An... nda™, (4.1)
p=0,1 p=0,1 7"

where p is odd for IIB or even for IIA. To recover the correct number of degrees of freedom,
a self-duality condition is imposed by hand on the total field strength

G = »0G, (4.2)

where * is the Hodge star and o is an involution reversing the order of the differentials dz?,
or equivalently flipping the sign for p = 2,3 mod 4. The total field strength G descends
from a gauge potential polyform C = Cy 1 + Ca 3 + ... which contains all the electric and
magnetic potentials [100, 101]

G = (d+ HA)C 4+ me B,

(d+HAG =0, (4.3)

where m = G is Roman’s mass parameter. Notice that the twisted exterior derivative
d + H A is nilpotent due to the BI of the NS-NS three-form dH = 0. The field strengths
H and G are invariant under the following gauge transformations

5B = d\,

4.4
6C = (d+ HA)A+mA e B, 44
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respectively, where X is an arbitrary one-form and A = Ag; + Ag3 + ... is an arbitrary
polyform.

The total field strength G transforms as an O(10,10) spinor under T-duality. Since
D-dimensional polyforms live in a spinorial representation of G = O(D, D), it is natural
to consider the R-R fields as O(D, D) spinors in DFT, as achieved in [83-86]. When the
theory is formulated in terms of the G-singlets F4pc and F4, a possible formulation is to
take R-R fields in a representation of G, = O(D, D) while keeping them invariant under
G. Roman’s mass m will be set to zero in what follows, we refer the reader to [41] for a
DFT treatment with a non-vanishing value.

For the signature (D, D), there always exist real gamma matrices T'4 = (I'*, T,) giving
a representation of the G = O(D, D) Clifford algebra {T'4, T8} = 745, Since the matrices
(I'*,T'y) span a fermonic oscillator algebra {I'*,T%} = §, any polyform such as G can be
mapped to an O(D, D) spinor G as

G=> i i en ey %190 (4.5)
= 24 Ginvip Car™ - Cay , .
P
where |0) is a Clifford vacuum annihilated by I'; and where the dilaton factor has been
added for convenience. For O(D, D) spinors it is possible to find a matrix that mimics the
effect of the operator o when acting on a spinor written as in (4.5). For D = 1 + 9 this

operator reads
T, = (T —To)(T +Ty)... (T +Ty), (4.6)

and squares to the identity. We refer the reader to appendix A for the definition and
properties of this operator for generic dimension. The self-duality condition (4.2) can then
be implemented on the spinor G by

G=V,gG. (4.7)

We also note that the (anti-)chirality condition on the spinor G is simply translated by
(odd) even forms in the expansion (4.5), so that the spinorial field strength is chiral for
IIB and anti-chiral for ITA. Being a spinor, the field strength G transforms under G, as

6G = %AABFABQ. (4.8)

It is then possible to build a derivative operator V 4, in a way that VG transforms co-
variantly under G,

When (3.5) is satisfied, the covariant derivative can be extended to act in any repre-
sentation of G, with generators 4% and Lorentz algebra [ZAB NP = 4plAllC S PIIB]
In order to have only explicit Lorentz indices, a covariant derivative and connection with
flat indices can be defined

1
VAT = EAMV YT = <DA — QwABCEBC>T, (4.9)

where T' generically transforms as dp7T = %A 4YABT and it is a scalar under generalized
diffeomorphisms. For VAT to transform as a scalar under generalized diffeomorphisms
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parameterized, wapc shall transform as a scalar and the following constraint

MNoyT =0 < (DN —QABCN\)DLT =0, (4.10)
must be satisfied. Introducing Lorentz generators for O(D, D) spinors $48 = 45 the
Dirac operator reads

1 1 1
v, =14 (DA = QwABcFBC> =T4ADy - 5FA wBpa — §FABC wiapc),  (411)

such that it only involves the antisymmetric and trace parts of the connection, i.e. those
determined by (3.15) and (3.17) in terms of the fluxes.

For our present purposes it is sufficient to consider the associated Dirac operator
YV = 'V 4, for which only the generalized torsion condition and self-adjoint property
matter. When these conditions hold, this operator reads

V=D Fi-Fs

1 1
=T4Dy, — §FA]:A — EFABC}"ABC.

(4.12)

A simple computation shows that this operator precisely reproduces d+ H A on components
when (2.10) is assumed. More generally, using the BI (1.5), this operator is nilpotent up
to terms that vanish when the strong constraint holds

v = oMoy — %QABCFBCDA —DAdDy — %z - iZABFAB - éZABCDI‘ABCD. (4.13)
It is interesting to notice the appearance of Z here. We mentioned before that a constraint
involving this combination of fluxes would arise in the maximal supergravity completion
of the theory, so it was to be expected that it would arise in a type II formulation of the
theory. With a nilpotent operator that generalizes d + H A in our hands, we can easily
rewrite (4.3) in terms of the spinor G

g:WCa

6 = 0 (4.14)

where the spinor C plays the role of gauge potential. The field strength is then invariant
under gauge transformations

5,C = Y, (4.15)
parameterized by y, provided the strong constraint dependent condition

is satisfied, where W2 is given by (4.13). Let us note that in a SS type compactifications,
with Zapcp = Z4p = 0 and with y depending on external coordinates only, this condition
further restrains the quantity Z to be vanishing, in accordance with the known constraints
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for the embedding of N' = 4 in N/ = 8 supergravity [96-98]. The variation of the field
strength under NS-NS generalized diffeomorphisms reads

1 ns ns
0¢G = £ omG + TV oM ey 0nG — DA — AP (4.17)

where A}% are the deviations from scalar behavior for F4 and Fapc as read in (2.32)
and (2.33). Therefore, for the field strength to transform as a scalar, the vanishing of the
last three terms in (4.17) must be imposed as a constraint.

A pseudo-action for the R-R sector can then compactly be written as

S = —% deeng\Lg, (4.18)

where G = GT C and where C is the charge conjugation matrix. Writing G = YC and
varying the potential C in this action yields the equations of motion

VU,G=0, (4.19)

which are equivalent to the BI when the self-duality holds. Varying the bein in this action,
with G = YC, and using the self-duality condition, one obtains the following modification
to the bein equations of motion when RR fields are present

1_
gRR[AB] = —ZQFABQ. (4.20)

This pseudo-action does not contribute to the dilaton equation of motion.
It would be interesting to see if a SS compactification of the R-R sector reproduces the
RR gaugings of gauged supergravity.

4.2 Heterotic

The inclusion of n heterotic vectors A;* with @ = 1,....,n in a duality covariant way
was done in [81] after [5, 6, 102] (see also [103]). One possibility is to enlarge the global
symmetry group to G = O(D, D + n) with metric

0 65 0
nun=1{6& 0 0 |, MN=1,....2D+n. (4.21)
0 0 dup

The bein can then be extended to include the vector fields as

eq' €a” (Bri — 3AKTAy;) ea® Agp
Eu=10 e 0 , (4.22)
0 A%, 5%

and then all the covariant expressions in this paper just apply for these generalized quan-
tities. We just mention this for completeness to highlight the fact that including vectors
in this setup is straightforward, and for simplicity in this paper we will not include vectors
in the analysis. Interested readers can see how the vectors give rise to Maxwell fluxes
in [42-44] and to their corresponding BI in [70, 71].
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5 Bianchi identities

In the previous sections we have identified three quantities (2.29), (2.34) and (2.21) that
vanish under the strong constraint (2.2):
3

ZABCD = _ZQE[ABQECD]a (51)
Zap = (M omEY)Epy — 22 4pDed, (5.2)

1
Z = —2DAdDad + 20M oppd + 1QABCQABC . (5.3)

They appeared when analyzing the symmetries, constraints and equations of motion. In-
terestingly, these quantities can be written purely in terms of fluxes and their derivatives.
They lead to the following duality orbits of generalized BI for all the dual fluxes

DiaFBep) — zf[ABEJrCD]E = ZABCD (5.4)
DFoap + 2DaFp) — F Foap = Zan, (5.5)
DAF, — %]:AJ:A + %}—ABC}—ABC =Z. (5.6)
When R-R fields are present, we find the additional identity
VG = Zrr, (5.7)
with
ZrR = (aMaM — %QABCFBCDA — DDy — %z — iZABFAB — éZABCDFABCD>C.

(5.8)

5.1 Relation to standard fluxes

The fluxes Fapc encode the standard T-dual fluxes. This can be seen by splitting the
indices as

Fave = Hape -Fabc = Tbca7 Jrabc = Qcab7 J—_-abc = Rabc. (59)

Notice that being defined with planar indices these fluxes are T-duality invariant, but after
a rotation with the generalized bein, they obey the usual T-duality chain

) T; . ) .
Hyp < b < Q% i Rk (5.10)
where T-dualities are defined by
(TN ar = 6N — ™00y — SN P80 p + NPy + NS - (5.11)

Splitting in components equation (5.1) we find

3 e
D[aHbcd] - 7He[ab7_cd] = Zabed 5

2
3D[aTbc]d - DdHabc + 37—[abe7—c]ed - 3Q[ad6Hbc]e = abcd7
2D[aQb]Cd + 2D[CTabd] - TabeQeCd - abeReCd + 4Q[ae[c7—b]ed] = Zade> (512)
3D[anbC] - DdRabc + 3Qe[adec]e - STde[aRbc]e _ Zabcd’
3
D[aRbcd] - 5Re[abcgecd] _ Zabcd'
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From equation (5.2) we get

DcHabc + DcTabc + 2D[a]:b] - JrCHabc - FcTabc = Zab
DCTCab + DcQabc + Dafb _ Dbfa _ chcab _ chabc _ Zab, (513)
DCRabc + DCQCab + ZD[aJT;b] o fcRabc - ICQcab _ 2’7ab7

and equation (5.3) reads in components

1 1
DF, + Do F* — FF, + gHabcR“bc + iTachcab =Z. (5.14)
We can now use the following extended parameterization
k B
& & k
Erv=1 . @ : 5.15
M <€aj53k ey, + e 8V By (5.15)

where a bi-vector % was introduced to get the most general bein. With this parameteri-
zation the fluxes match those computed in [42-44], namely

Fave = 3[ViaBre — Baa VB |

FapS = QF[ab]c + VB + ZFmC[aBb]m + B Finab »

Fob = orla 4 5.8% 1 B.,,0"B% + 2F, 260" — F,... 87087

Fabe _ 3[5[gmvm5@] + @[aﬁbd + an@nﬁ[abﬁdm + 5[@%5@%@9]3”1”] + pemgbngel

(5.16)
and
fa = _@CBac + FCdaBdc - I‘cac + 2Bacﬁcd + 2vad’
Fa — _Fcac . @dﬁachd _ FdaeﬂeCBcd . 5ac@dBcd + 2@ad + QBaCBce@ed
+26%Ved — Ve + Teg 5%,
where we have used the following relations and definitions
ea'e”j = 0%, ea'e’s = 0y, Bay = €q'ey’ Bij B = e"ie”;BY,
Oa = eaia’iv éa = eaiéia
VaBie = 0aBhe = Tap'Bie = Tac"Bra,  V*Bye = 0" By + T Bye + T By,
vaﬁbc _ aaﬂbc + FadeBdc + Fadc,ﬁbd, @aﬁbc _ éaﬁbc o Fabdﬁdc _ Facdlgbd’
and
T = eaiﬁiebjecj , re, = eaiéiebjecj. (5.17)

After imposing the strong constraint and selecting the frame ¢ = 0, the fluxes (5.16)
agree with those obtained in [72, 104], namely

Have =3[0 Boe] + fiar" Beja] = 3V [aBue »

Far" = fab” — HaomB™,

Q™ = 0cB™ + 2fem!* B + Hemn 875",

R = 381970, 8 4 f0n 98 BN — Hyp8 50 5P,

(5.18)
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where fop¢ = 2I'4°. Applying the same restrictions on (5.12), the resulting equations
exactly match the BI derived in [72] (recall that the right hand sides of (5.12) vanish when
the strong constraint is imposed).

The fluxes (5.18) were shown to be the coefficients of the following Roytenberg algebra:

[ea; eb] = —Fabcec + Habceca
[ea, eb] — Q.. — Fuclet, (5.19)
[ea’ 6b] _ Qcabec + Rabcec ’

obtained as a Courant algebroid on basis sections {e4, e’} € TM @ T*M in [72, 104, 105].
And they also determine the Jacobiators

1
Jac(eq, ep, €c) = ipHabc ;

1
Jac(eq, ep, ) = §D.7:abc,

1
Jac(eq, €”, ) = iDQabc,

1
Jac(e?, e, e) = ipRabC, (5.20)

with D = d¥ + dg , d” and dg being the H-twisted de Rham and Poisson differentials
respectively, which hold up to the BI (see [72] for details).

Here we notice that DFT provides a natural framework containing these structures
covariantly. Indeed, a covariant expression encoding the algebra (5.19) follows from the
C-bracket of generalized beins:

[SAM75BN]§DC) = Fapc€Cp, (5.21)

and the cyclic sum of double C-brackets gives:

(@)

. 1
[[5AM, SBN](C),ch]Q + cyclic = —4ZABCE8EQ + §DE}—ABC€EQ , (5.22)

precisely the covariant generalization of (5.20).

5.2 Towards a first order formulation of DFT

In the usual description of supergravity, magnetic sources appear as defects in the BI of
the field strengths of the theory. For instance, for an NS5-brane one has

dH = Txss 61, (5.23)

where d4 is a delta function four-form based on the brane’s worldvolume, with legs in
the directions transverse to the worldvolume. In this picture the three-form cannot be
defined globally from the two-form gauge field. Adding a Lagrange multiplier six-form, the
sourceless BI follows as an equation of motion from

S=J<—;*HAH—BgAdH), (5.24)
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where the three-form is now treated as independent of Bs and one has two first-order
equations of motion. Adding to this action a Wess-Zumino coupling on the NS5-brane
worldvolume

Swz = Tnss f

TTWe (BG) = TNS5 J54 A Bg N (525)
We

one precisely recovers the BI for the three-form in presence of an NS5-brane, as the equation
of motion of Bg. One can then integrate H out and express the dynamics in terms of Bg
solely.

Since dH = 0 is contained in our BI and since dH # 0 when an NS5-brane is present,
the generalized BI cannot hold as such when sources are present. This in turn suggests that
the generalized diffeomorphisms themselves should be corrected, but this lies beyond the
scope of this paper. We propose that a flux configuration in the presence of some extended

objects satisfies

3

DiaFpep] — ZF[ABEFCD]E = JaBcD, (5.26)

D Foap + 2D(aFp — F Foas = Jas, (5.27)
DAF, - %]—"A]-"A + %F‘BCFABC =J, (5.28)
VG = Jrr» (5.29)

where J. represent currents for these (postulated) extended objects and where, for in-
stance, Jrpr represents a D-brane current. For simplicity, we assume through this section
that the strong constraint terms Z  are vanishing. We however want to stress that, since
the quantities Z _ enter the BI on the same footing as the currents 7., it seems that one
has a-priori the option to describe an extended object either by a source term J. # 0 or by
a strong constraint-violating solution with Z_ # 0. For non-vanishing currents, the fluxes
cannot be given any longer in terms of the bein and dilaton. We can however introduce
deviation terms and write them as

Fapc = fapc(€E) +Oapc, (5.30)
Fa = fal€,d)+ 064, (5.31)
G = YC + Okrn, (5.32)

where fapc = 3Qapc) and fa = 2Dy + 0P 4. Plugging these general expressions in the
sourced BI yields

3
V{A@BCD] - EG[ABE@CD]E = JaBCD ; (5.33)
2V{A@B] + (DY — f9)Ocap +0“Ocap = Jap, (5.34)
1 1
(D4 — fhOe4 — ieAeA + 52 fABC + 0480 40 = T, (5.35)

4This is due to the linear nature of this action. When non-linearities are present, for instance like
the Chern-Simmons term of eleven-dimensional supergravity, one can in general not get rid of the electric
potential.
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where the connection in the pseudo-covariant derivative
Vf;@B =DaOp —wap’Oc, (5.36)

satisfies the following conditions

1
W[ABlC = ifABCa (5.37)
wBpa = fa. (5.38)

Let us note that the vanishing of the currents does not imply in principle the vanishing of
the deviation terms, but instead yields complex non-linear differential equations.

We would now like to see if a first-order formulation of DFT is available in order to
formulate couplings to magnetic objects from a dynamical perspective. A first-order for-
mulation of the theory was first presented in [5, 6], with the spin connection treated as an
independent variable determined by its equation of motion. Following the previous reason-
ing employed for coupling the NS5-brane to the three-form, we introduce an antisymmetric
Lagrange multiplier 4-tensor BABCD imposing the first BI as its equation of motion, and
consider the fluxes as independent variables. The modified action reads

S = f dxe {wﬁﬂ ~FAFa+ éfABCJ-“ABo -2J
3 (5.39)
+ BABCD (DA]:BCD - Z-FABE}—CDE — jABCD)] + Sie(€,4d),

where we used the check notation (2.27) to indicate that indices are contracted with the
planar generalized metric, and we defined (see (2.63))

FABC _ GABCDEFE (5.40)

The fluxes Fapc and F4 are now treated as independent variables, the bein then enters
the action only through derivatives D4 and possibly the additional local action Sj,.. Note
also that (5.28) has been used to rewrite the flux terms that vanish in the standard case
when the strong constraint holds. Varying with respect to the various fields yields

0F4 : Fa=fa, (5.41)
§Fapc:  FAPO = 3<(DD— fp)BPABC —;]-"DEABDEBC> : (5.42)
3
§BABCD DiaFpcp) — ZJT[ABE]:CD]E = JaBcD (5.43)
5EAM . 2DMF,SPIC L BOPEADBIF, = glAP), (5.44)
X X 1. 16
od : 2DA]-“A—.7-"AJ-“A+6]-"ABC}"ABC = 27 = Sioc+5 ?; : (5.45)

where the BI (5.43) has already been used to simplify the dilaton equation of motion (5.45).
The equation of motion for F4 (5.41) automatically sets it to the standard value fq =
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2D ad — QB g 4. Let us note that it is not clear that this action gives the correct equations
of motion for dynamical fluxes in the presence of sources, but must only be considered as
a first step toward such a description. Imposing by hand the relation Fapc = fapc, the
source Japcp has to vanish due to (5.43) and (5.42) can be rewritten as

FABC = 3v],BPABC, (5.46)
Taking another divergence of this equation, we obtain
VLFOAB = 3V v, BOPAE = BOPEADBIFo (5.47)

where we dropped strong constraint-violating terms in the last equality. Combining
with (5.44), one then recovers the standard equations for DFT

2D FSPIC 4 v FOAB = glAPl, (5.48)

]

and the assumption Fapc = fapc, the dilaton equation of motion is then also recovered
from (5.45)

up to the local source term Ql[o’iB and up to strong constraint-vanishing terms. Using (5.41)

16S10¢
2 6d
again up to source and strong constraint-vanishing terms. It would be interesting to pursue

R =27 — Sioe + (5.49)

this study with, for instance, other Lagrange multipliers to take into account all possible
sources.

5.3 Including sources

Since T-duality exchanges Dirichlet and Neuman boundary conditions in the open string
sector, it connects D-branes of different dimensionalities, and the full T-duality orbits of
D-branes have been nicely encoded in the double space in [79, 80]. Here instead, we will
focus on NS-NS branes lying in the orbit of the NS5-brane and KK5-monopole, along the
lines of [75-77] and [78]. It is known that these two configurations are related by T-duality,
and that they are not sufficient to span the full duality orbit.

The study of exotic brane orbits is closely related to that of non-geometric fluxes.
To picture the idea, one can start with a two-form flux background H;;, and T-dualize
it to a twisted torus, characterized by a geometric flux Tijk. Additional T-dualities lead
to the more exotic non-geometric fluxes @Q;/* and R¥Y* through the chain (5.10). The
backgrounds generating these fluxes have very different topologies, characterized by the
T-duality elements needed to glue coordinate patches after undergoing monodromies. In
the H-flux background, the patches are connected through gauge transformations of the
two-form, and in the 7-background the transition functions are diffeomorphisms. More
generally, the Q)-background makes use of the T-duality group, and is therefore called a
T-fold [11-16].

The NSb-brane carries a non-constant H-flux and the KK5-monopole has a non-
constant 7-flux, so they correspond to H- and 7-flux backgrounds respectively. The next
object in the T-duality chain, the Q-brane [78], will carry a non-constant Q-flux and will
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therefore be a T-fold. The R-brane would be the last object in the chain. The aim of this
subsection is to study some properties of these dual objects. In the presence of sources
the BI locally breakdown on the world-volume, so we will use the duality orbits of BI to
speculate about brane orbits.

Before we begin, let us introduce two “frames” in which geometric and non-geometric
backgrounds are best described. For a recent detailed analysis we refer to [106].

Geometric versus non-geometric frames. We have been completely general in pa-
rameterizing the generalized bein as an O(D, D) element

k B,
gAM=< Ca Ca” Bk ) (5.50)

eajﬁjk: eak + eaiﬁiijk

in terms of a D-dimensional bein e,?, a two-form B;j and an antisymmetric bi-vector BY.
For this parameterization the generalized metric takes the form

9" = B g (g™ = B gmn 8"") Brj — B gim;j

Fan = Bi(B™ g8 — gh) + g™ 99 T Bi(g — B g™ By; |- (5:51)

Given that the generalized bein belongs to the coset G/H, defined in this way it is over-
parameterized. Only D? degrees of freedom are physical, while the remaining D(D — 1)
can be removed through a gauge choice. For example, for the geometric configurations
defined in terms of a B-field and a metric, it is better to remove the S-dependence through
a H transformation. On the other hand, there are non-geometric configurations for which
it is better to remove the B-field, and describe the background in terms of 5. We will
therefore refer in what follows to two different gauge choices or frames. Also, given that
the configurations we will consider will be locally geometric, the strong constraint will be
automatically satisfied in this section, and we will choose the =0 T-duality frame, in
which the fluxes reduce to (5.18).

Geometric frame. The geometric frame corresponds to the gauge choice 5% = 0 and
the generalized metric reads

g 9" By
Hyun = ) . 5.52
<_Bikgk] 9ij — Birg"' By; (5.52)

This is the frame usually considered for geometric descriptions of supergravity backgrounds
described in terms of a B-field and a metric. The corresponding three-form H;j; and the
geometric flux Tz‘jk in curved and planar indices read

Hape = 3[a[aBbc] + f[adec]d] )
Fa® = fafs Q=0 R*=0, (5.53)
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and

Hij, = eaiebjeck?"labc = 30[iBjk] ,
Tijk = eaiebjeck]:abc = QF[ij]k, Fijk = 5ieakeaj ,
Q" =0, Rk — 0, (5.54)

respectively. The dilaton flux can be written as
fi = 6ai,7'-a = 28@ + Tijj. (5.55)

The only non-trivial BI from the previous section then read (see appendix B)

it = Tijra » (5.56)
_3Rl[ijk] - v[iTjk]l + T[ijmTk]ml = Jiji, (5.57)
2R + 4000 = Vi + 20,65 = T (5.58)

where the J are only non-trivial on the world-volume of sources, as we will see later. Notice
that J;; sources a dilaton-like BI df; = 0.

Non-geometric frame. On the other hand, one can also define a non-geometric frame
taking B;; = 0 with generalized metric

gij - ﬁimgmnﬁnj _ﬁimgmj
Hyun = X . 5.59
( Gim ™ 9ij (5:59)

This frame was also considered in the context of DFT, and a differential geometry was
considered for this frame in [58-62]. The fluxes in planar indices read

Habc = O, —FabC = fabca
Qcab = acﬁab + 2fcm[aﬁmb] )
Rabc = 3[ﬁ[amam,8bc] + fmn[a/@bmﬁdn] ) (560)
while in curved indices they take the form
Hij, =0, " = 205",
OF = eBieyie Qe = v, 87F + 27l gL
Rk = ¢ tepie iR = 3pliy, 37K] (5.61)
5.3.1 NS5-brane

Let us briefly review here how the source term arises in the world-volume of an NS5-brane.
We begin by stating the solution in spherical coordinates [107] on the transverse space, in
the geometric frame

ds® = f(r)(dr?® + r?d6? + r? sin® 0dp® + dy?), Hijp = eijiloyIn f(r), (5.62)
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where we are using the convention €.,y = e. We have omitted the world-volume coor-
dinates since they play no role in the analysis. The brane is localized at r = 0, and the
direction 9 is just a circle over which the brane is smeared, so we take the warp factor as
independent of this direction

fr)=1+ (5.63)

m
r
Since Hg = #4d1n f(r), we have

x4 dH3 = *4d %4 dIn f(r) = Aln f(r) = éai (eg"0;In f(r)) =0, at r>0. (5.64)

However, when this quantity is integrated on a ball V,, of arbitrary radius » = a one obtains®

f dH3 = —81°m. (5.66)

a

Therefore, we are forced to conclude that
g dHz = —87*md(r) = Ty (5.67)
and so the BI fails to hold on the world-volume of the brane. From the flux
Hppyp = —7*fsin 00, In f(r), [Hopplr>0 = msind, (5.68)
we can define a two-form field in the geometric frame
By =m +cosOr’fo, Inf, [Byoylr=0 = m(1 —cosd). (5.69)

In order to make contact with a co-dimension two NS5 brane, we proceed as in [75-77]
compactifying in a base direction and then smearing it. Due to the compactification, it
is better to implement a cylindrical coordinate system (r, 0, — p, ¥, z). The warp factor

now takes the form
O/

f—ologh,
P
where p corresponds to a cut-off scale. Beyond this scale, the solutions fail to be trustable
because co-dimension two objects cannot stand alone, but should rather form bound states
through suitable superpositions. The parameter p is then related to the distance between
the NS5 brane and some other source, as explained in [75-77].
The solution now reads

ds® = f(p)(dp® + p*dV® + dz" + dp®),  Hyje = g’ o/ In f(p), (5.71)
5We proceed as follows
deg = QTFJ *dH3dV = 27 (Z—de = 2m.(4ma®) (— EQ) = —81°m (5.65)
" Sa ar a

where in the first step we integrated on di¢ and in the second one we used Gauss’ theorem. The result is
independent of a, so #4dHs must be proportional to §(r).
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and taking e,9.y = € = f?p we find
Hy.p =0, B.y = o1 at p>0. (5.72)
In the new coordinate system we have
Tpgzp = —81300(p) . (5.73)

Under a ¥-monodromy ¥ — 1 + 27, the B-field jumps B, — B, + 270, and plugging
this in the generalized metric in the geometric frame we find

1, B(¥ =2
HO + 21) = QL H(9) s,  Ons = <04 ( ) ”)> . (5.74)
4

This is why H, the curvature for the B-field, receives a flux contribution. The matrix {dng
is an O(2,2) element, and can be interpreted as a charge.

5.3.2 KKb5-monopole

T-dualizing the previous solution in the direction 1), we arrive at the co-dimension two
KKb5-monopole configuration, reading

Ry,
7= 27TR,

ds? = f(dp® + p*dV® + dz?) + fH(dy — BUY dz)?, (5.75)
As explained in [73, 74], this object now sources the metric BI: jpgz¢. In the context of
compactifications, this sourcing translates into a relaxation of some quadratic constraints
in half-maximal supergravities [73, 74], breaking N' = 4 — 2. The charge of this object
is also an element of O(2,2), but now instead of corresponding to a B-transformation, it
corresponds to a transformation of the form

9 =2m)" ! 0 _
9+ 27) = QL H()Q Ok — [ € = T Ons Ty -
H(O + 2m) = Qi H(9) QK KK ( 0 6(1927‘(')T> » SINsTy

(5.76)
Since now the vielbein e jumps as e,¥ — e.¥ + 270 under a monodromy ¥ — 1 + 27, the
7 flux (its “curvature”) is turned on.

5.3.3 5% brane

Codimension-two branes have recently received renewed attention, in the context of exotic
branes [75-77]. There, starting with the KK5 solution (5.75), a further T-duality is per-
formed in the z-direction. The resulting object is a @-background named 5%, which in the
geometric frame reads

ds* = f(dp* + p*d¥?) + fK1(d2* + dy*), By = —09K !, (5.77)

with R
K=f2+0%?,  o=-1"2 (5.78)

2ma!
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However, as argued before, given that this is a non-geometric background, the non-
geometric frame seems more convenient to express this solution

ds? = f(dp* + p*dv®) + fH(d2? + dv®), BV =ad. (5.79)

Now, plugging this solution into the generalized metric (5.59), we see that under a
monodromy ¢ — 9 + 27, the fields mix through a g-transformation

14 0

p— T =
MO +2m) = QppH(9)Qs, Qg = (B(ﬁ =2m) 14

) =T, 'Ok T, , (5.80)
where the f field is shifted as 8*¥ — ¥ + 2mwo. Therefore, the “curvature” of this field,
namely the Q-flux, is non-vanishing as expected for a ()-brane

Qv =o0. (5.81)

It is then natural to assume that now it is the dQ) = 0 BI jpﬁw which is sourced on the
worldvolume of the 53 brane.

5.4 Duality orbits of (exotic) branes

Following the logic in [46-48], one could now proceed further, and T-dualize in some non-
isometric direction. Now the solution will depend on a dual coordinate, and its geometric
interpretation breaks down even locally, from a D-dimensional perspective. In DFT, this
is not a problem, given that the notion of T-duality is generalized and allows for such
kind of transformations. Given that the equations of motion are T-duality invariant, the
configuration obtained in this way will automatically solve them.

Such a configuration will however correspond to a particular representative of the orbit
containing the branes that we explored in this section. In this sense, by construction, it
can be T-dualized to a geometric object. Even more interesting is to determine if there
exist truly non-geometric bound states of branes, belonging to truly non-geometric orbits.
These cannot be T-dualized to a frame in which the configuration becomes geometric.
A possibility is to consider bound states combining the presence of geometric and non-
geometric branes, such that under T-dualities their roles get exchanged, but non-geometry
is conserved. A first step in this direction was nicely achieved in [78], were intersections of
Q and R-branes were analyzed.

Non-geometric duality orbits were addressed for fluxes in [51]. There, it was shown
that genuine non-geometric orbits exist for fluxes, in which all types of gaugings H, 7, Q
and R are turned on simultaneously, and there is no T-duality frame in which any of them
vanish. For such configurations the strong constraint must necessarily be relaxed, and it
would be nice to explore whether this situation is reproduced by branes as well.

One can also consider the other duality orbits of BI and their associated sources Jap
and J. To see what kind of objects they might be related to, it is instructive to analyze
those for Japcp. The two-form Bs couples to the string Fi, and is dual to Bg which is
sourced by the NS5. Then, the NS5 sources magnetically the Bl for H = dB>. Similarly,
the dilaton ¢ is dual to an 8-form, sourced by a seven-brane. It is then to be expected that
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seven-branes source the [J;; Bl associated to the dilaton. Finally, the counting suggests
that J corresponds to the source of a nine-brane. Since this Bl is associated to a truncation
N =8 — 4 in the contexts of gauged supergravities, it is possible that such a truncation
is produced by this source.

The sources in string theory are related by U-dualities. For example, the D-branes are
related by T-dualities

Dy Dy o Dy — ... (5.82)

and these objects source the BI (5.29). In IIB, the Dy is S-dual to the NS7 which in turn
is connected to other objects through T-dualities (we refer to [75-77] for explanations on
the notation)

NS7 <> 65 <> -+ <> 1§ <> 0] (5.83)

This could be related to the BI (5.27). In fact, following the logic NS5 — Bg < By — Jij,
we can think of a similar relation for the NS7: NS7 — Ag <> Ag — J;;. The 1g is connected

through S-duality with a 1§, which is T-dual to a 0511’6) in IIB, and has the nice property of

being T-dual to a 031’6) in ITA. This “duality invariance” might relate it to the BI (5.28).
We stress that this is mere speculation, that must be explored further. We believe that
this formulation of DFT with a relaxed strong constraint can give rise to the possibility of

describing bound states of exotic branes that can’t be described in supergravity.

6 Conclusions and open problems

We considered a flux formulation of DFT in which the fluxes are dynamical and field de-
pendent. In this formulation, the gauge consistency constraints of the theory take the form
of generalized quadratic constraints for the fluxes, that are known to admit solutions that
violate the strong constraint [42—44]. Building on previous constructions for a geometric
formulation of DFT [5, 6, 64—68], we computed connections and curvatures on the double
space, under the assumption that covariance is achieved up to the generalized quadratic
constraints, rather than the strong constraint. Interestingly, this procedure gives rise to all
the strong constraint-violating terms in the action, which are gauge invariant and appear
systematically. This completes the original formulation of the theory [7-10], incorporating
the missing terms that allow to make contact with half-maximal gauged supergravities [42—
44] containing duality orbits of non-geometric fluxes [51].

The consistency constraints are shown to be related to generalized BI that break down
on the world-volume of (exotic) branes [75-77]. We have speculated on the sources for
the duality orbits of the BI, but this analysis deserves further investigation. For example,
in [108-112] the universal T-duality representations for branes in different dimensions were
classified, and it would be interesting to explore if these objects can be related to the BI
discussed here. More generally, the quadratic constraints arising in U-duality invariant
constructions [30, 49] should be sourced by U-duality orbits of branes. It would also be
interesting to incorporate source terms in the action in a T-duality invariant way, such that
the source terms appear naturally in the consistency constraints of the theory (in the form
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of tadpole cancelation conditions). This seems to require an extension of the generalized
diffeomorphisms.

There is by now plenty of evidence that the strong constraint or section condition can be
relaxed in duality covariant frameworks [30, 42-44, 49, 51, 69]. Transcending supergravity,
this opens the door to seek for new truly double solutions to the equations of motion, or
their associated supersymmetric killing-spinor equations. The T-duality invariance of the
theory allows to build new T-fold-like solutions, like those of [78], but more generally a
relaxed strong constraint would allow to find solutions that lack a local interpretation from
a supergravity point of view, in any global frame. By now, the only known solutions to
the minimal constraints are of the SS type (this includes the strong constraint case in the
decompactification limit) but we believe that other kind of compactifications will lead to
new possibilities.

This truly double construction is interesting on its own and useful to describe non-
geometry. However, it is still not clear whether a relaxation of the strong constraint in
DFT describes a trustable limit of string theory. We plan to come back on these points in
the future.
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A O(D, D) spinors

Let {T4} = {T'%,T,} be a set of gamma matrices giving a representation of the Clifford
algebra
{418} =97, (A1)

defined here with a non-standard normalization, where 747 is the off-diagonal O(D, D)
metric. With this particular signature, the gamma matrices can always be chosen to be
real, with the property

Tt =1,. (A.2)

The charge conjugation matrix is then

C=(Tg—T%...(Ip_y —TPh,

—n —n+1 (A3)

)

where T'(") is an antisymmetrized product of n gamma matrices. For this signature, one
can always impose a Majorana condition on spinors, which is a reality condition on spinors
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for real gamma matrices. Moreover, since the dimensionality is even, a chirality condition
can be imposed with the product of all gamma matrices

I* = (1—2r7)...(1 —2r°~'rp_y), (A.4)

where an ordering sign has been included. These matrices give a representation of a
fermionic oscillators algebra, {T'y, T} = 62 and {['y, Ty} = {I'*, "’} = 0. A Clifford vacuum
|0), normalized to (0|0) = 1 and annihilated by I'y, can then be defined. A (anti)chiral
spinor is then obtained by acting on this vacuum with an (odd) even number of raising
operators

o) = ST TH0), (A.5)

thus giving a map between a polyform w = Zk w(x) and a spinor |w). Using the charge
conjugation matrix, an O(D, D) invariant bilinear can be constructed. Up to a sign, it
corresponds to the Mukai paring of two polyforms (the D-form in the product x A o w)®
and reads in components

k)!

where [x)T = (x|. In order to define H = O(1, D —1) x O(1, D — 1) invariant products, one
needs to define the Spin(D, D) representative of the metric Syp, viewed as an O(D, D)

—1 i ai...a
<X|C|w> = Z ]{:'((D—)E b Dxa1~--akwaD~~~ak+1 ’ (AG)
A :

element, by

Uy =T FIOT T ... (Tp_y + P71,
s D(DEY) (A7)
=97l = ()72 L.

These matrices satisfy the following (anti-)commutation relation with a gamma matrix

U4 = 3(—)PSsAPT R0, (A.8)

and are indeed spin representatives of F(—)” S48 respectively, hence commuting with H-

restricted spin transformations. Acting on the spinor |w) with ¥ yields in components

A(D—k+1):--AD

ea @ a a
U |w) = Z = ‘;j,% o Wapaip oy T . TUO0(0) =[x ow),  (A9)

where, in our conventions, the Hodge star is defined as

Vgl

71{:‘(19 = k)|€i1---ip dz’t A o A da'DF @iD—kt1iD (A.10)

* (,U(k) =
and is pseudo-involutive **w,) = (=1)t*(P=PP_for ¢ time-like directions. The H-invariant
bilinear formed with W, then reads in components

aibi  gapby

S
<X’C\Ij+’w> = Z Txalmakwblmbk . (A]‘]‘)
A :

¢ is an operator reversing the order of the differentials dz® in a form.
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To make contact with the language of Generalized Complex Geometry, is possible to intro-
duce curved gamma matrices I'™. Note that, since the constrained bein €4 is an element
of O(D, D), it is possible to choose at the same time T'M and I'* as constant matrices
related by

SeTM g =14eg,M, (A.12)

where Sg is the Spin(D, D) representative of the bein. The derivative of this object is
given by
1
DySs = —§QABngFBC, (A.13)

as found by asking compatibility with (A.12).

B General relativity and anholonomy

Let d, = e,'0; be a frame and e = e%;dz’ its dual, where e,/ = 517. Their respective
structure equations read

1
[da, dp] = Tap  de de® = —§Tbca e A e, (B.1)

where the anholonomy coefficients read 7,,¢ = QF[ab]C, with T',,¢ = (daebi)ecj as defined
in (5.17). These coefficients measure the failure of the frame to be locally a coordinate
basis, i.e. e* = dy®. Taking the exterior derivative of the second structure equation yields

d[a Tbc]d + T[abeTC]ed =0. (B.Q)
Contracting the upper index with one lower index also yields
deTap” + 2d[a7_b]cc - 7_abc'rcdd =0. (B.3)

A covariant derivative V = d 4 w is introduced, the connection one-form acting on Lorentz
indices as wf® = wgfb and wf, = —w’ fy. In the e® basis it reads Vqf? = eqf? + wlecfC.
The torsion two-form is defined as

T¢ = Ve® = de® + w% A e’ = <w“bc — Tbcc> el A €. (B.4)

The antisymmetric part of the spin connection is then fully determined in term of the
torsion and anholonomy coefficients w . = %(Tabc + T,¢). Asking for consistency with
partial integration

JdeeU“laQ'”a"ValTaZman =— JdD:UeTaQH_anVaanlaQ“'a”, (B.5)

where e = det e%;, further constrains one trace of the spin connection w,, = —74,°. The

curvature two-form is defined as

1
v2fa _ Rabfb _ (dwab + wac A ch)fb _ §Rabcd PN ed fb~ (BG)
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Taking the covariant derivative of (B.4), one obtains
1
VT = iRa[de] PN N (B.7)

such that vanishing torsion implies the cyclic Bianchi identity for the Riemann tensor. In
the zero-torsion case, the antisymmetric part R%p.q only depends on the antisymmetric
part of the spin connection W’ = %Tabc and vanishes due to identity (B.2)

Rd[abc] = d[a 7_bc]d + 7_[abe’]—c]ed =0. (BS)

The Ricci tensor in the e* basis reads

Rab = Rcacb . (Bg)
Using the relation Wy = —Tap?, its antisymmetric part vanishes due to identity (B.3)
1
R[ab] = Q(dcTabC — dpTae” + daTpe” — TcddTabC) =0. (BlO)

Introducing the Lorentz metric su,, a metric compatibility condition can be imposed on
the connection by asking the metric to be covariantly constant Vsg, = —2w(4) = 0. For
vanishing torsion, this condition is solved by

1
Wb = §Tabc + 7%ab) » (B.11)

where indices on the l.h.s. are raised and lowered with the Lorentz metric s,,. For this
choice of connection the Ricci tensor reads

1 1 1
Ry = d(aTb)cc + dCTC(ab) 1 Tac ddeC + 5 Tac dre (bd) T 5 The dre (ad) (B.12)
1 1 1
—Tac T () — iTcade(bc) - Zchdeca - ZTcdaTdcba (B.13)

and the Ricci scalar can be computed

1 1
R = Sab Rab = 2d, 7—abb - Tabszzcc - §Tabc7_acb - ZTabcTabc' (B14)
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