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HOLOMORPHIC FAMILIES OF NON-EQUIVALENT

EMBEDDINGS AND OF HOLOMORPHIC GROUP

ACTIONS ON AFFINE SPACE

FRANK KUTZSCHEBAUCH AND SAM LODIN

Abstract. We construct holomorphic families of proper holomor-
phic embeddings of Ck into C

n (0 < k < n−1), so that for any two
different parameters in the family no holomorphic automorphism
of Cn can map the image of the corresponding two embeddings
onto each other. As an application to the study of the group of
holomorphic automorphisms of Cn we derive the existence of fam-
ilies of holomorphic C∗-actions on Cn (n ≥ 5) so that different
actions in the family are not conjugate. This result is surprising
in view of the long standing Holomorphic Linearization Problem,
which in particular asked whether there would be more than one
conjugacy class of C∗ actions on Cn (with prescribed linear part
at a fixed point).

1. Introduction and statement of the main results.

It is a famous theorem of Remmert that any Stein manifold of di-
mension n admits a proper holomorphic embedding into affine N -space
CN of sufficiently high dimension N [37]. Concerning this dimension,
Eliashberg, Gromov [11] and Schürmann [40] proved that any Stein
manifold of dimension n > 1 can be embedded into C[3n/2]+1. A key in-
gredient in these results is the homotopy principle for holomorphic sec-
tions of elliptic submersions over Stein manifolds [26], [18], [15]. These
dimensions are the smallest possible due to an example of Forster [12].
The optimal dimension for embeddings of Stein spaces can be found in
Schürmann’s paper [40].
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In this paper we do not investigate the question whether a given Stein
space can be embedded into CN for a given dimension N , but rather
we investigate in how many ways this can be done in situations where
at least one embedding exists. More precisely, we study the number
of equivalence classes of proper holomorphic embeddings Φ: X →֒ Cn

with respect to the following equivalence relation:

Definition 1.1. Two embeddings Φ,Ψ: X →֒ C
n are equivalent if there

exist automorphisms ϕ ∈ Aut(Cn) and ψ ∈ Aut(X) such that ϕ ◦ Φ =
Ψ ◦ ψ.

In the algebraic case the question about the number of classes of
equivalent embeddings Ck →֒ Cn is well known and has been studied
for a long time. The most famous result, due to Abhyankar and Moh [3],
states that every polynomial embedding of C into C2 is equivalent to the
standard embedding. The same is in general true for high codimension,
Kaliman [31] proved that if X is an affine algebraic variety and n ≥
max {1 + 2 dimX, dimTX} then all polynomial embeddings of X into
Cn are equivalent (by means of algebraic automorphisms). In the same
paper Kaliman also proved that any polynomial embedding of C into
C3 is holomorphically equivalent to the standard embedding. It is still
an open question if this holds algebraically.

In the holomorphic case the situation is different. Rosay and Rudin
[39] were the first to construct non-standard embeddings of C into Cn,
n > 2, thus showing that the number of equivalence classes is at least
two. Forstnerič, Globevnik and Rosay [16] showed that the result of
Rosay and Rudin also holds for n = 2. More generally, Forstnerič [14]
showed that the number of equivalence classes of embeddings Ck into
Cn is at least two for any 0 < k < n. Later, Derksen and the first
author [9] proved that there are uncountably many non-equivalent em-
beddings of C into C

n for n > 1. Their result heavily uses the fact
that the holomorphic automorphism group of C is a Lie group, i.e.,
it is very small in comparison to the automorphism group of complex
Euclidean spaces in dimensions greater than 1. Combining the ideas
of that paper with the cancellation property for Eisenman hyperbolic
spaces Borell and the first author then proved (see [6]) that the number
of equivalence classes of proper holomorphic embeddings of Ck into Cn

is uncountable for any 0 < k < n. The last two above mentioned results
are proven by using the Cantor diagonal process and it remained still
an unsolved challenging problem whether non-equivalent embeddings
could occur in continuous or even holomorphic families.

Our first main result gives an affirmative answer.
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Theorem 1.1. Let X be a complex space, which can be embedded into
Cn and such that the group of holomorphic automorphisms Authol(X)
is a Lie group. Then there exist, for k = n − 1 − dimX, a family of
holomorphic embeddings of X into Cn parametrized by Ck, such that for
different parameters w1 6= w2 ∈ Ck the embeddings ϕw1

, ϕw2
: X →֒ Cn

are non-equivalent.

Remark 1. Observe that for k = 0, dimX = n − 1 the conclusion of
the theorem is empty. In this situation it is still known that there
are uncountably many equivalence classes of embeddings by the above
mentioned results from [6].

We would like to emphasize that there is another (weaker) definition
of equivalence — called Aut(Cn)-equivalence — which is used by several
authors, e.g., Buzzard, Forstnerič, Globevnik and Varolin. In these
papers uncountability of certain equivalence classes of embeddings in
this weaker sense is proved. Our main result is much stronger than
these results. In our definition, two embeddings Φ,Ψ: X →֒ Cn are
equivalent if their images coincide modulo Aut(Cn), i.e., if there is
an automorphism ϕ ∈ Aut(Cn) such that the images of ϕ ◦ Φ and Ψ
coincide. In such a situation, the map Ψ−1 ◦ϕ◦Φ is well defined and it
is an automorphism of X. The weaker notion mentioned above demand
that ϕ ◦ Φ and Ψ are equal as maps, i.e., it demands that Ψ−1 ◦ ϕ ◦ Φ
is the identity on X. Our application to group actions would not work
for the weaker definition.

Using the cancellation property for Eisenman hyperbolic spaces we
can cross our situation with some affine space and we are able to con-
clude

Theorem 1.2. (see Corollary 4.1) There exist, for k = n − l − 1,
a family of holomorphic embeddings of C

l into C
n parametrized by

Ck, such that for different parameters w1 6= w2 ∈ Ck the embeddings
ψw1

, ψw2
: Cl →֒ Cn are non-equivalent.

We also give an application of Theorem 1.1 to actions of compact (or
equivalently complex reductive, see [34]) groups on Cn. It was a long
standing problem whether all holomorphic actions of such groups on
affine space are linear after a change of variables (see for example the
overview article [28]). The first counterexamples to that (Holomorphic
Linearization) problem were constructed by Derksen and the first au-
thor in [8]. In the present paper we show that the method from there is
holomorphic in a parameter and therefore applied to our parametrized
situation leads to
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Theorem 1.3. For any n ≥ 5 there is a holomorphic family of C∗-
actions on Cn parametrized by Cn−4

C
n−4 × C

∗ × C
n → C

n (w, θ, z) 7→ θw(z)

so that for different parameters w1 6= w2 ∈ Cn−4 there is no equivariant
isomorphism between the actions θw1

and θw2
.

The linearization problem for holomorphic C∗-actions on Cn is thus
solved to the positive for n = 2 by Suzuki [41] and still open for n = 3.
For n = 4 there are uncountably many actions (non-linearizable ones
among them) [9] and for n ≥ 5 our result implies that there are families.
Moreover there are families including a linear action as a single member
of the family as our last main result shows

Theorem 1.4. For any n ≥ 5 there is a holomorphic family of C∗-
actions on Cn parametrized by C

C× C
∗ × C

n → C
n (w, θ, z) 7→ θw(z)

so that for different parameters w1 6= w2 ∈ C there is no equivariant
isomorphism between the actions θw1

and θw2
. Moreover the action θ0

is linear.

The paper is organized as follows. In section 2 we give all technical
preparations for our (quite complicated) construction. The proofs will
be given in the appendix. Section 3 contains the proof of Theorem
1.1. The next section 4 contains an addition to Theorem 1.1 which
allows to deduce Theorem 1.2. Section 5 contains the application to
group actions in particular the proofs of Theorems 1.3 and 1.4. Some
concluding remarks are contained in section 6.

The results of the present paper have been partially announced in
[35]. At that time the technical details had been extremely complicated
and lengthy. Over the last years they have become much shorter and
much more elegant so that the authors finally decided to publish the
present complete version.

Part of the work was done during a stay of the first author at the
Mittag-Leffler-Institute during the special program in Complex Analy-
sis of Several Variables 2008. We would like to thank the Institute for
hospitality and excellent working conditions.

2. Technical preparations

In this section we state the main lemmas needed to prove the main
theorem. The proofs of theese lemmas can be found in section 7.

For the benefit of the reader we give a list of notations mostly adhered
to in this paper.
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By an automorphism of Cn depending on a parameter w ∈ Ck we
mean an element of Autkhol(C

n) := {ψ ∈ Authol(C
k+n) : ψ(w, z) =

(w, ψ1(w, z))}, and approximations are understood to be uniform on
compacts.

We will throughout the paper call a holomorphic map η : Ck → Cn

a parametrized point η(w) in Cn.

• Bi is the open unit ball of Ci. The closed ball is denoted Bi.
• X a complex space of dimension dimX.
• ϕ0 = ι : X →֒ Cn, where ι is the inclusion map.
• φ0 : Ck × X → Ck × Cn is given by (w, x) 7→ (w, ϕ0(x)) for
w ∈ Ck.

• αn ∈ Autkhol(C
n).

• An = αn ◦ αn−1 ◦ . . . ◦ α1.
• φn = An ◦ φ0 = αn ◦ αn−1 ◦ . . . ◦ α1 ◦ φ0 : C

k ×X → Ck × Cn.
• π2 the projection of Ck × Cn onto Cn.
• φ = limn→∞An ◦ φ0(w, x).
• ϕn = π2(An ◦ φ0) = π2(φn).
• ϕ = π2(A ◦ φ0) (or ϕw if w is a fixed parameter value).
• P2 : C

k ×X → X is given by P2(w, x) = x.
• ξi(w) ∈ Cn interpolation points (osculation points) which vary

with respect to w ∈ C
k.

• ηi the points of X corresponding to the points ξi(w) (preimage
points of ξi(w)).

• µ induction variable. For every µ we define ǫµ, Rµ > 0 and finite

subsets ∪
k(µ)
j=1 {a

µ
j } of ∂(µ+1)Bn and ∪

k(µ)
j=1 {x

µ
j } of X respectively.

2.1. Growth restrictions for holomorphic maps. In the construc-
tion of our families of non-equivalent embeddings we will use techniques
of growth restrictions on entire maps from C

n to C
n.

These growth restrictions are governed by the following lemma, Lem-
ma 4.3 in [38] which we present with a simple additional conclusion,
namely that one can avoid the nowhere dense set Q. The additional
conclusion is obvious from the proof.

Lemma 2.1. Given real numbers 0 < a1 < a2, 0 < r1 < r2 and c > 0,
let Γ be the class of holomorphic mappings

f = (f1, . . . , fk) : a2Bn → r2Bk

such that

|f(0)| ≤
1

2
r1
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and

‖
∂(f1, . . . , fk)

∂(z1, . . . , zk)
‖ ≥ c

at some point of a1B̄n.
Let Q ⊂ ∂(r1Bk) be a set such that ∂(r1Bk) \Q is dense in ∂(r1Bk).

Then there is a finite set E = E(a1, a2, r1, r2, c) ⊂ ∂(r1Bk) \Q with the
property that, if f ∈ Γ and f(a1Bn) intersects ∂(r1Bk) then f(a2Bn)
intersects E.

The following technical detail is well known, we include for complete-
ness, it is Lemma 5.4. in [14]. It will be used frequently in the proof
of Theorem 1.1.

Lemma 2.2. Let K be a polynomially convex set in Cn and let X
be a closed analytic subvariety of Cn. Moreover let X0 be a compact
holomorphically convex subset of X, such that K ∩X0 is contained in
the (relative) interior of X0.

Then the set K ∪X0 is polynomially convex.

We need to construct parametrized points with a certain property.

Proposition 2.1. Given natural numbers k > 0 and n ≥ 2 there is
a number m ∈ N such there are m, pairwise different, parametrized
points ξ1, ξ2, . . . , ξm : Ck → C

n parametrized by a parameter w ∈ C
k

with the following property:
For w1 6= w2 there is no affine automorphism α ∈ Aff(Cn) which

maps the set of points {ξ1(w1), ξ2(w1), . . . , ξm(w1)} onto the set of points
{ξ1(w2), ξ2(w2), . . . , ξm(w2)}.

It is not difficult to see that the holomorphic (even the algebraic)
automorphism group of Cn (n ≥ 2) acts transitively on finite sub-
sets of Cn with fixed cardinality, i.e. one can move k distinct points
z1, z2, . . . , zk ∈ Cn by an automorphism into some standard position,
for example to the points (1, 0, . . . , 0),(2, 0, . . . , 0),. . .,(k, 0, . . . , 0), (usu-
ally if the dimension is clear we will write (k, 0)). For this apply a
generic linear change of coordinates so that afterwards all coordinates
of the points z1, z2, . . . , zk become different and then apply appropriate
shears. The question whether the holomorphic automorphism group of
Cn acts transitively on countable discrete subsets of Cn was answered
to the negative by Rosay and Rudin in [38]. They called the countable
discrete subsets in the Authol(C

n)-orbit the "standard" countable dis-
crete subset e1N = {(1, 0), (2, 0), . . . , (k, 0), . . .} tame sets and proved
the existence of non tame sets.

For our construction of families of embeddings we have to move
finitely many points holomorphically depending on a parameter to some
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prescribed position by an automorphism which also depends holomor-
phically on the parameter.

Definition 2.1. Let N be a natural number and ζ1, ζ2, . . . , ζN : Ck →
Cn be holomorphic maps such that for each fixed parameter w ∈ Ck

the N points ζ1(w), ζ2(w), . . . , ζN(w) in C
n are different. We call them

simultaneously standardizable, if there exists an automorphism ψ ∈
Autkhol(C

n) holomorphically depending on the parameter w with

ψ(w, ζi(w)) = (w, (i, 0)) for all i = 1, 2, . . . , N and for all w ∈ C
k.

At the moment we are not able to decide under which condition on
the parameter space any collection of parametrized points is simulta-
neously standardizable. We have the following partial result which is
sufficient for our purposes.

Proposition 2.2. Let ζ1, ζ2, . . . , ζN : Ck → Cn, n ≥ 2, be holomorphic
maps such that the points ζ1(w), ζ2(w), . . . , ζN(w) in Cn are different
for each w ∈ Ck and suppose k < n− 1. Then the parametrized points
ζ1, ζ2, . . . , ζN are simultaneously standardizable.

2.2. Interpolation lemma. The following lemma is a key ingredient
in the proof of our main theorem. It can be used to prove interpola-
tion results for parametrized embeddings as this is well-known in the
non parametrized version. For the non-parametrized case we refer to
the papers [21], [33], [17], [14]. Another approach to interpolation is
used in [36]. We do not prove parametrized interpolation theorems for
countable sets in this paper, we just use the lemma as a tool in the
proof of our main Theorem 1.1.

Therefore before we formulate the lemma we need to introduce some
notation:

Let φ : Ck × X →֒ Ck × Cn be a (parametrized) embedding of a
complex space X into Cn, i.e., an embedding of the form φ(w, x) =

(w, φ̃(w, x)).
XR is a holomorphically convex compact subset of X.
∆ is a ball (of any radius) in Ck. B is a ball (of any radius) in Cn.
We assume that φ−1

w (B) ⊂ XR for all w ∈ ∆, which implies that
K = (∆×B)∪ φ(∆×XR) is a polynomially convex subset of Ck ×Cn

(Lemma 2.2 above).
Furthermore we assume the dimension condition

(1) dimX + k < n.

Lemma 2.3. Let b1(w), b2(w), . . . , bN (w) be N parametrized points
contained in K = (∆ × B) ∪ φ(∆ × XR). Assume that (w, p(w))
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and (w, q(w)) are parametrized points in Ck × Cn \ K and let s be
some positive integer. Then for each ǫ > 0 there exists an auto-
morphism α ∈ Autkhol(C

n) such that |α(w, z) − (w, z)| ≤ ǫ for every
(w, z) ∈ K, α(w, bi(w)) = (w, bi(w)) of order s for every w ∈ Ck and
α(w, p(w)) = (w, q(w)) for every w ∈ Ck.

2.3. Osculation lemma. The conclusion of the growth restrictions
will be that only affine automorphisms could map the images of dif-
ferent embeddings from the family onto each other. To exclude these
affine automorphisms we will have a finite number of points "marked"
in each embedding of our family. The marking is in such a way that by
affine automorphisms the sets of marked points have to be mapped onto
each other. The marking will be achieved by letting the embeddings
osculate of higher order exactly at these points.

Definition 2.2. Let l ≥ 2 be a natural number. We say that a sub-
manifold M of Cn osculates of order l at x ∈M if M has contact order
l with the tangent space TxM ⊂ Cn in x ∈M .

In local coordinates osculating can be interpreted as follows:
Let ζ : U(⊂ Cm) → M be a holomorphic coordinate system for

the m dimensional manifold M at x, ζ(0) = x. Then M osculates
of order l at x if and only if ∂

∂wα |w=0ζ ∈ TxM for every multiindex
α = (α1, α2, . . . , αm) with 2 ≤ |α| ≤ l.

The property to osculate is preserved by affine coordinate changes
on Cn, i.e. if ψ : Cn → Cn is an affine automorphism of Cn then the
submanifold M ⊂ Cn osculates of order l at x ∈ M if and only if the
submanifold ψ(M) osculates of order l at ψ(x) ∈ ψ(M).

Remark 2. (1) The property not to osculate of order l at any point is
generic for l ≥ 2 if not dimM = 1 and n = 2. In the later case it is
generic for l ≥ 3.

(2) In the proof of Theorem 1.1 the role of M will be played by the
smooth part X \ Sing(X) of the space we want to embed.

By a manifoldMCk in Cn parametrized by w ∈ Ck we mean the image
(in Ck×Cn) of a proper holomorphic embedding Φ : Ck×M → Ck×Cn

which is of form (w,m) 7→ (w, φ(w,m)). By M(w) we denote the image
Φ({w} ×M) ⊂ Cn.

Lemma 2.4. Let MCk be a manifold in Cn parametrized by w ∈ Ck

and assume that m = dimM < n. Let ξ1(w), . . . , ξt(w) be simul-
taneously standardizable parametrized points such that ξi(w) ∈ M(w)
for i = 1, . . . , t. Then for l ≥ 2 ∈ N there exists an automorphism
κ ∈ Autkhol(C

n) such that κ(M(w)) osculates of order l in ξi(w) for
i = 1, . . . , t and all w ∈ Ck.
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2.4. Non-osculation lemma. To keep the osculation of order l in
ξi(w) and make sure that the embedding do not osculates of order l at
other points, we use the following lemma.

Lemma 2.5. Let MCk be a manifold in Cn parametrized by w ∈ Ck

and denote m = dimM . Also let

a) KM be a compact subset of Ck ×MCk .
b) K be a compact subset of Ck × Cn.
c) a1, a2, . . . , ar be finitely many points in KM .
d) b1(w), b2(w), . . . , bq(w) be finitely many parametrized points in Ck×

M(w) \KM , (these are the points where we want to keep the oscu-
lation order l).

e) l ≥ 2 be a natural number. If m = 1 and n = 2 let l ≥ 3.
f) ǫ > 0 be a real number.

Then there exists an automorphism ψ ∈ Autkhol(C
n) such that

1. ψ(ai) = ai for every i = 1, 2, . . . , r.
2. ψw(z) = z+O(|z− bi(w)|

l+1) as z → bi for every i = 1, 2, . . . , q and
every w ∈ Ck.

3. |ψw(z)− z|+ |ψ−1
w (z)− z| < ǫ for every (w, z) ∈ K

4. There is no point x ∈ KM such that ψ(M(w)) osculates of order l
in ψ(x).

3. Proof of main theorem.

To be precise let us define the notion used in the formulation of
Theorem 1.1

Definition 3.1. Let X, Y be complex spaces, Z a complex (resp. topo-
logical) space. A holomorphic (resp. continuous) map

Φ : Z ×X → Y

is called a holomorphic (resp. continuous) family of holomorphic em-
beddings of X into Y parametrized by (a parameter) in Z if for each
point z in the parameter space Z the map Φz : X → Y, x 7→ Φ(z, x)
is a proper holomorphic embedding.

In the proof we are working with families of embeddings of some
complex space X into Cn parametrized by Ck which come from the
following construction.

Remark 3. If a holomorphic map

φ : Ck ×X → C
k × C

n

of the form
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(2) φ(w, x) = (w, φ̃(w, x)), w ∈ C
k, x ∈ X

is a proper holomorphic embedding of Ck×X into Ck×Cn then the
map

φ̃ : Ck ×X → C
n

(where φ̃ is defined by (2)) is a family of holomorphic embeddings of
X into Cn parametrized by Ck. Note that the contrary does not hold,
i.e., if

φ̃ : Ck ×X → C
n

is a family of holomorphic embeddings of X into Cn parametrized by
Ck, the corresponding map

φ : Ck ×X → C
k × C

n

defined by
φ(w, x) = (w, φ̃(w, x)), w ∈ C

k, x ∈ X

may fail to be an embedding (see the example below).
Also note the following fact which we will use in our construction :

If α ∈ Authol(C
k × Cn) is of the form α(w, z) = (w, α̃(w, z)), i.e. α ∈

Autkhol(C
n), then α ◦ φ is again an embedding of the form (2), hence

its "second coordinate" π2 ◦ (α ◦ φ) : C
k × X → C

n is a family of
holomorphic embeddings (where π2 : Ck × Cn → Cn is defined by
(w, v) 7→ v, w ∈ Ck, v ∈ Cn).

Example 1. If
φ̃ : Ck ×X → C

n

is a holomorphic family of holomorphic embeddings of X into Cn

parametrized by Ck then it is straightforward to prove that the map

φ : Ck ×X → C
k × C

n

defined by
φ(w, x) = (w, φ̃(w, x)), w ∈ C

k, x ∈ X

is holomorphic, injective and immersive. On the other hand properness
may fail, as the following example shows: We are going to define a

holomorphic family of embeddings of C into C2 parametrized by C.
Define f : C × C → C2 by f(y, x) = (x + y · x2, y · x). For each
fixed point y in the parameter space C we are given a proper, injective,
immersive, holomorphic map from C into C

2 (for y 6= 0 the second
coordinate by itself gives already such an embedding, and for y = 0 the
first coordinate is such an imbedding).

On the other hand the map C × C → C × C2 defined by (y, x) 7→
(y, x+y ·x2, y ·x) is not proper. Indeed the sequence (xn, yn) defined by
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xn = n and yn = 1−n
n2 leaves any compact subset of the definition space

but is mapped onto the sequence (1−n
n2 , 1,

1−n
n
) which converges to the

point (0, 1,−1) in the target space (which is not in the image, in fact the
image is not closed it is the hypersurface {(a, b, c) ∈ C3 : a·b = c(c+1)}
except the line {c = −1, a = 0}).

We would like to emphasize that we will prove a slightly stronger
statement than just holomorphic families of embeddings. Our families
are always such that the map Φ : Ck × X → Ck × Cn is a proper
holomorphic embedding which we will denote by using the symbol →֒,
i.e. Φ : Ck ×X →֒ Ck × Cn for our families. This subtle point plays a
role in the last section, since if Φ(Ck×X) is not a closed submanifold in
Ck ×Cn the construction of pseudo-affine modification does not work.

Remark 4. In the proof of Theorem 1.1 we use the property that the
group of holomorphic automorphisms of X can be exhausted by a se-
quence of compact subsets (in c.-o. topology). A Lie group (with
possibly countably many components) can be exhausted by a sequence
of compact subsets. On the other hand, if a locally compact topolog-
ical group acts effectively on a manifold it is a Lie group [7]. Since
the group of holomorphic automorphisms of a Stein space X acts effec-
tively on the smooth part X̃ = X \ Sing(X), this implies that Aut(X)
is a Lie group if and only if it can be exhausted by compacts.

Proof. (of Theorem 1.1)
By assumption the complex space X embeds into Cn, say ϕ0 : X →֒

Cn. We start with the trivial family of embeddings of X into Cn,
φ0 : C

k ×X → Ck × Cn given by (w, x) 7→ (w, ϕ0(x)).
We will construct automorphisms αn ∈ Autkhol(C

n) recursively. Let
An = αn ◦ αn−1 ◦ . . . ◦ α1. We further arrange αn ∈ Autkhol(C

n) induc-
tively such that

A(w, z) = lim
n→∞

An(w, z) = (w, lim
n→∞

Ãn(w, z))

exist uniformly on compacts for some open neighborhood Ω ⊂ Ck×Cn

containing Ck ×X and such that the mapping A : Ω → Ck ×Cn given
by (w, z) 7→ (w, Ãn(w, z)) defines a biholomorphic mapping on Ck×Cn.
The existence of the limit follows from Proposition 4.1 and 4.2 in [14].

Now let φn = αn ◦ αn−1 ◦ . . . ◦ α1 ◦ φ0 : Ck × X → Ck × Cn. Also
define π2 as the projection of Ck × Cn to Cn.

The family of holomorphic embeddings will then be given by the
second coordinate of A ◦ φ0 = limn→∞ φn, i.e. ϕ = π2(A ◦ φ0).
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It follows that φ = limn→∞An ◦φ0 = A ◦ φ0 is a proper holomorphic
embedding of Ck ×X into Ck ×Cn, which gives that ϕ = π2(A ◦φ0) is
a family of holomorphic embeddings of X into C

n parametrized by C
k.

In order to make the embeddings φw different for different parame-
ters, we will choose them such that no affine automorphism, can map
the image of one of these embeddings onto another. At the same time
we make sure, using growth conditions, that the only way to map the
image of one embedding onto another is by an affine mapping. This
ensures that the embeddings will be non-equivalent for different pa-
rameters w.

So the construction in short is:

a) Choose sufficiently many points ξ1(w), . . . , ξm(w) in correct posi-
tions such that no affine automorphism can map the points {ξi(w1)}
into the points {ξi(w2)} for w1 6= w2. These points will be chosen
differently for each parameter (however holomorphically depending
on the parameter).

b) Embed the space X through these points.
c) In order to single out these points we make sure that our embeddings

osculate at these points of a certain order l, and osculates of order
less than l at all other points.

d) Divide the rest of C
n into concentric shells with increasing radii.

In each shell we choose inductively points through which we later
will embed the space X. These points and their preimages in X are
inductively chosen in such a way that we get some growth conditions
on the embedding.

e) Embed X inductively through all the points with careful chosen
preimage points. In each step of the inductive process X will be
embedded through the (finitely many) points contained in one shell,
keeping the points from previous shells contained in the image of X.

f) We then show, using the growth conditions introduced in d), that
for two embeddings to be equivalent for different parameters they
have to differ by an affine automorphism.

g) The condition in a) shows that there is no such affine automorphism.
Consequently the embeddings are different for all parameters.

The first automorphism α1 will take care of that for different pa-
rameters w1 6= w2 ∈ Ck there is no affine automorphism β ∈ Aff(Cn)
mapping the image of ϕw1

(X) onto the image of ϕw2
(X). For this first

use Proposition 2.1 to get m points ξ1, . . . ξm : Ck → Cn parametrized
by an parameter. Then choose m points, η1, . . . , ηm in the smooth part
X̃ of X or more exactly of φ0(X) ⊂ C

n. After that use Lemma 2.3 to
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find an automorphism γ ∈ Autkhol(C
n) such that γ(w, ηi) = (w, ξi(w))

for every w ∈ Ck.
Fix a natural number l ≥ 2 such that not osculating of order l, at

any point, is a generic property for a submanifold of dimX in Cn (see
Remark 2). Using Lemma 2.4 and Lemma 2.5 we get an automorphism
δ ∈ Autkhol(C

n) with δ(w, ξi(w)) = (w, ξi(w)) for every w ∈ Ck that
prescribes the higher derivatives of δ in the Cn-direction such that for
all w ∈ Ck the subvariety δ(γ(w, ϕ0(X))) of Cn will be tangent of order
l at the points ξi(w).

The automorphism α1 ∈ Autkhol(C
n) is now given by α1 = δ ◦ γ. We

also note that with α1 we have the osculation order in the points we
want, so in the future we only have to make sure we do not destroy the
osculation order in ξi(w) but destroy it everywhere else.

We now choose an exhaustion of the space T = Aut(X) with compact
sets Ti such that

T = ∪∞
i=1Ti and Ti ⊂

◦

T i+1.

Further let ρ : X → R≥0 be a continuous exhaustion function of X,
so Xr := ρ−1([0, r]) is a compact subset of X for every r ≥ 0. (Xr =
{x ∈ X : ρ(x) < r} ⊂⊂ X for every r, for example ρ(x) = ‖ι(x)‖2 will
work.)

Denote the unit ball in Cn by Bn = {z ∈ Cn : ‖z‖ < 1} and
Bk = {w ∈ Ck : ‖w‖ < 1}. Choose a sequence of relatively open
neighborhoods Ui, i = 1, 2, 3, . . . of the set η = ∪mi=1{ηi} in X with

∩∞
i=1Ui = η and U i+1 ⊂

◦

U i.
Remember that the points ηi in X are the preimages of the points

in Cn at which the varieties ϕ(w,X) have osculation of order l, i.e. the
points ξi(w), for every w ∈ Ck.

Now we inductively, for µ = 1, 2, 3, . . ., define real numbers ǫµ, Rµ >

0, finite subsets ∪
k(µ)
j=1 {a

µ
j } of ∂(µ+1)Bn and finite subsets ∪

k(µ)
j=1 {x

µ
j } of

X with the same cardinality k(µ), and automorphisms αµ ∈ Autkhol(C
n)

of Cn parametrized by w ∈ Ck. When choosing the subsets ∪
k(µ)
j=1 {a

µ
j }

and ∪
k(µ)
j=1 {x

µ
j } it is important to remember that since we are going to

embed the point xµj of X through aµj , we have to choose the points aµj
such that ∪

k(µ)
j=1 {a

µ
j } ∩ π2(φµ(C

k ×X)) = ∅. This is possible by Lemma

2.1 due to the dimension of X, since π2(φµ(C
k ×X))∩ ∂(µ+ 1)Bn has

measure zero in ∂(µ + 1)Bn.
Start by letting ǫ1 = 1, R1 = 1, k(1) = m and α1 be as constructed

earlier. For µ ≥ 2 we construct these entities such that the following
properties are satisfied:
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1µ. 0 < ǫµ <
ǫµ−1

3

2µ. If F : Bn → (µ + 2)Bn \ ∪
k(µ)
j=1 {a

µ
j } is a holomorphic mapping with

‖F (0)‖ ≤ µ+1
2

and |JF (0)| ≥ 1 then F ((1− ǫµ
2
)Bn) ⊂ (µ+ 1)Bn.

3µ. φµ(w, x
µ
j ) = αµ ◦ φµ−1(w, x

µ
j ) = (w, aµj ) and ρ(xµj ) > max{ρ(t(x)) :

t ∈ Tµ, x ∈ P2(φ
−1
µ−1(µBk×µBn))} where P2 : C

k×X → X is given
by P2(w, x) = x.

4µ. ‖αµ ◦ φµ−1(w, x)− φµ−1(w, x)‖ = ‖φµ(w, x)− φµ−1(w, x)‖ ≤ ǫµ for

every x ∈ XRµ−1
and for every w ∈ (µ− 1)Bk.

5µ. ‖αµ(w, z)− (w, z)‖ ≤ ǫµ for (w, z) ∈ µBk × µB

Remark 5. Motivated by 4µ and 5µ we define the compact set

Kµ = (µBk × µBn) ∪ φµ−1((µ− 1)Bk ×XRµ−1
).

6µ. αµ ◦ φµ−1(w, x
l
j) = (w, alj) for every w ∈ Ck and for every l < µ,

j = 1, 2, . . . , k(l).
7µ. αµ(w, z) = (w, z) +O(|z − ξi(w)|

l+1) as z → ξi(w).

8µ. For fix w ∈ µBk the submanifold π2(φµ(w, X̃)) of Cn do not osculate

of order l in any point π2(φµ(w, x)) with x ∈ (XRµ−1
∩X̃)\Uµ. Here

X̃ is the union of all components of X which are smooth and of
maximal dimension.

9µ. ‖φµ(w, x)‖ ≥ µ+ 1 for every x ∈ X \XRµ
and for every w ∈ µBk.

10µ. Rµ > Rµ−1 + 1.

We will now confirm that such a construction is possible.
For step 2 of the induction we choose, in the following order,

(1) ǫ2 <
ǫ1
3

(2) ∪
k(2)
j=1{a

2
j} a finite subset of ∂(3Bn) ⊂ Cn which does not intersect

the image π2(φ1(C
k × X)) and satisfies 22. This is possible by

Lemma 2.1, namely dimX + k < n makes it possible to choose the
points {a2j} outside π2(φ1(C

k × X)) (which has measure zero by
Sards theorem).

(3) ∪
k(2)
j=1{x

2
j} a finite subset of X such that ρ(x2j ) > max{ρ(t(x)) : t ∈

T2, x ∈ P2(φ
−1
1 (2Bk × 2Bn))}. Property 32 will then be fulfilled.

We shall also choose x2j such that (w, x2j) /∈ K̂2 for every j, where

K2 = (2Bk×2Bn)∪φ1(1Bk×XR1
) is a compact subset of Ck×Cn.

As φ1 is a proper holomorphic embedding, Lemma 2.2 gives that
K̂2 is contained in (2Bk × 2Bn) ∪ φ1(1Bk × X), in particular the

points (w, a2j) will not intersect the set K̂2.

By our dimension assumptions (k < n− 1) the parametrized points
{(w, a2j), (w, x

2
j)} are simultaneously standardizable (Corollary 2.2). We
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will now use Lemma 2.3 k(2) times to find an automorphism α′
2 ∈

Autkhol(C
n) holomorphically depending on w ∈ Ck such that 42, 52, 62

and 72 are satisfied with ǫ2/2 instead of ǫ2, (as we will combine α′ with
another automorphism α′′).

Using Lemma 2.5 we find an automorphism α′′
2 ∈ Autkhol(C

n) not
moving any point of α′

2(K2) more than ǫ2/2, matches the identity up
to order l at the points (w, ξi(w)) for every w ∈ Ck and fixing the points
(w, a2j) j = 1, . . . , k(2) for every w ∈ Ck. In addition, for w ∈ 2Bk, the

submanifold α′′
2 ◦ α

′
2 ◦ φ1(w, X̃) of Cn do not osculate of order l in any

of the points P2(φ1(w, x)) with x ∈ (XR1
∩ X̃) \ U1. The composition

α′′
2 ◦α

′
2 will then satisfy 42, 52, 62, 72 and 82. Finally choose R2 so large

that 92 and 102 are satisfied.
The induction for step s, s > 2, goes exactly as step 2.
At all steps s, we have to make sure that the property not to osculate

of order l for φs−1 ◦ φ0(X̃) is preserved in every point of the image of
(XRs−2

∩X̃)\Us−2. We therefore have to choose ǫs ≤ ǫs−1 so small that

every perturbation of φs−1 ◦φ0 : X̃ →֒ Cn less than 3ǫs on the compact
(XRs−2

∩ X̃) \ Us−2 do not destroy that property.
Because of 5µ and the fact that ǫµ <

1
µ

Proposition 4.1 and 4.2 from

[14] gives that A = limµ→∞Aµ(w, z) = (w, limµ→∞ Ãµ(w, z)) exists
uniformly on compacts on Ω = ∪∞

µ=1A
−1
µ (µBk × µBn) and defines a

biholomorphic mapping from Ω onto Ck × Cn. By 4µ the set Ck × X
is contained in Ω. Since Aµ ∈ Autkhol(C

n) for each fixed w0 ∈ Ck the

map Aw0
: Ωw0

→ Cn, given by (w, z) 7→ Ã(w, z), is a biholomorphic
mapping from Ωw0

= {z ∈ Cn : (w0, z) ∈ Ω} onto Cn, and Ωw0
contains

X. Therefore for all w0 ∈ Ck the map φw0
defined by x 7→ φ(w0, x) is

a proper holomorphic embedding of X.
We will now confirm that the constructed embedding satisfies the

theorem. Property 3µ and 6µ gives for every n ∈ N that φ(w, xnj ) =

(w, anj ) for every w ∈ Ck and j = 1, 2, . . . , k(µ).

Define ǫ =
∑∞

i=2 ǫi, condition 1µ gives that ǫ < 1
2
.

Now suppose that there is a non-degenerate holomorphic mapping
F : Cn → Cn and that there are two values w1 6= w2 ∈ Ck of the
parameter space such that F−1(Cn \ φw2

(X)) = Cn \ φw1
(X) and that

φ−1
w2

◦ F ◦ φw1
= t for some t ∈ T , i.e. some element of the family of

automorphisms of X. In particular this will hold if for w1 6= w2 the
embeddings φw1

and φw2
are equivalent.

By moving the origin by an arbitrary small translation, we can as-
sume that JF (0) 6= 0. Let β =

∏∞
i=2(1−

ǫi
2
) > 0 and let ν0 be a number
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so large that for every ν ≥ ν0 we have that t ∈ Tν , JF (0) >
1

(νβ)n
,

F (0) ∈ ν+2
2
B and w1, w2 ∈ νBk.

For a given ν ≥ ν0 choose a natural number k such that F (νβBn) ⊂
(k+2)Bn and k > ν+2. Define Fj(z) : Bn → (k+2)Bn by Fj(z) = F (z ·

ν
∏k

l=j+1(1−
ǫl
2
)) for j = 1, 2, . . . , k. For some fix j ∈ {ν+1, . . . , k} we

have that Fj(Bn) = F (ν
∏k

l=j+1(1−
ǫl
2
)Bn) ⊂ F (νBn), which by Lemma

3.2 implies that Fj(Bn) do not contain any point ajl ∈ ∂(j + 1)Bn,
l = 1, 2, . . . , k(j) and j ≥ ν + 1.

In addition we have

|JFj(0)| = |νn
k∏

l=j+1

(1−
ǫl
2
)nJF (0)| > νnβnJF (0) > 1

and Fj(0) = F (0) ∈ j+1
2
Bn. Property 2k now gives that Fk((1 −

ǫk
2
)Bn) = Fk−1(Bn) ⊂ (k + 1)Bn. Induction from k down to ν + 1 gives

that Fj−1(Bn) ⊂ (j+1)Bn so, for j = ν+1 we have Fν(Bn) ⊂ (ν+2)Bn
and therefore F (βνBn) ⊂ (ν+2)Bn for every ν ≥ ν0. This growth con-
dition implies that F is an affine mapping, and the fact that F is
non-degenerate means that F is an affine automorphism.

Remember that (ϕ1)w(X̃) osculates of order l at ξi(w), for w ∈ Ck,
and this is preserved by 7µ over the induction. Hence, we see that

ϕw(X̃) osculates of order l at ϕ(xi) = ξi(w), i = 1, 2, . . . , m. From
property 8µ it follows that ϕw(X̃) do not osculate of order l in any other

point. Due to this, since the affine automorphism F maps ϕw1
(X̃) to

ϕw2
(X̃), it also maps the set {ξi(w1)}

m
i=1 to the set {ξi(w2)}

m
i=1. By

the choice of {ξi(w)} there is no such automorphism, see Proposition
2.1. �

Lemma 3.1. In the notation of the proof of Theorem 1.1 holds:

ϕ−1((ν − 1)Bk × (ν − 1)Bn) ⊂ P2((Aν ◦ φ0)
−1((ν − 1)Bk × νBn)) =

= P2(φ
−1
ν ((ν − 1)Bk × νBn))

Proof. Let w ∈ (ν−1)Bk be a fix point and consider some x ∈ ϕ−1
w ((ν−

1)Bn), where ϕ−1
w is the restriction of ϕ−1 to {w} × Cn. This implies

that ϕw(x) ∈ (ν − 1)Bn. Now choose k0 > ν and 0 < δ < 1 − 2ǫ such
that

(3) φk,w(x) ∈ (ν − 1 + δ)Bn for every k ≥ k0.

Property 5ν+1 gives that ‖αν+1(w, z) − (w, z)‖ ≤ ǫν+1 for (w, z) ∈

(ν+1)(Bk×Bn) and Rouchés theorem that αν+1,w(νBn) ⊃ (ν−2ǫν)Bn,
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see Remark 6, or in other words νBn ⊃ (αν+1,w)
−1((ν − 2ǫν)Bn) so

(φν)
−1
w (νBn) = (Aν ◦ φ0)

−1
w (νBn) ⊃ (Aν+1 ◦ φ0)

−1
w ((ν − 2ǫν)Bn) =

= (φν+1)
−1
w ((ν − 2ǫν)Bn).

Induction using 5ν+2, . . . , 5k gives

(4) (Aν ◦ φ0)
−1
w (νBn) ⊃ (Ak ◦ φ0)

−1
w ((ν − 2

k−1∑

l=ν

ǫl)Bn) ⊃

⊃ (Ak ◦ φ0)
−1
w ((ν − 2ǫ)Bn).

By our choice of δ we have ν − 2ǫ > ν − 1 + δ, so (3) and (4) implies
that φwµ (x) ∈ νBn. �

Remark 6. To see that αν+1,w(νBn) ⊃ (ν − 2ǫν)Bn holds, we consider

the following situation, ‖αq(w, z)− (w, z)‖ ≤ ǫq for (w, z) ∈ qBk× qBn.

‖αq(w, z)− (w, z)‖ = ‖αq(w, z)− (w, p)− ((w, z)− (w, p))‖ ≤

ǫq < ‖(w, z)− (w, p)‖ for z ∈ qBk × ∂qBn and p ∈ (q − 2ǫq)Bn.

Since (w, z)−(w, p) has a root and consequently, by Rouché, αq(w, z)−
(w, p) will too. So for every p ∈ (q − 2ǫq)Bn we always have a solution

to the equation αq(w, z) = (w, p) for some z ∈ qBn, therefore we draw
the conclusion that αν+1,w(νBn) ⊃ (ν − 2ǫν)Bn.

Lemma 3.2. In the notation of the proof of Theorem 1.1 holds: For

every j ≥ ν + 1 we have that F (νBn) ∩ ∪
k(j)
l=1 {a

j
l } = ∅.

Proof. Suppose, to reach a contradiction, that there exist z ∈ νBn such
that F (z) = ajl for some j ≥ ν + 1 and some l between 1 and k(j).
Since F−1(Cn \ ϕw2

(X)) = Cn \ ϕw1
(X), we have that z ∈ ϕw1

(X).

Let x = ϕ−1
w1
(z) ∈ ϕ−1

w1
(νBn), which gives F◦ϕw1

(x) = ajl = ϕw2
(xjl (w2)).

Thus t(x) = ϕ−1
w2

◦F ◦ϕw1
(x) = xjl (w2). Using Lemma 3.1 we conclude

that x ∈ P2(φ
−1
ν+1,w1

((ν + 1)Bn)) and with t ∈ Tν and w1 ∈ νBk it
follows that

ρ(t(x)) ≤ max
φ−1

ν+1
(ν+1)Bn,t∈Tν ,w∈νBk

ρ(t(y)).

Since j ≥ ν + 1 we have

ρ(t(x)) ≤ max
φ−1

j,wjBn,t∈Tj−1,w∈(j−1)Bk

ρ(t(y)),

(for j > ν +1 we have that φj maps the inverse image φ−1
j−1((j − 1)Bn)

into (1 + ǫj)(j − 1)Bn ⊂ jBn). However condition 3j gives

ρ(xjl (w)) > max
y∈φ−1

j−1,w(jBk×jBn),t∈Tj

ρ(t(y)).
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Therefore ρ(xjl (w2)) > ρ(t(x)), which contradicts t(x) = xjl (w2). �

4. Eisenman hyperbolicity of the embeddings

Let M be a complex manifold of dimension n. We denote the holo-
morphic tangent bundle of M by TM and the holomorphic tangent
space at p ∈M by TpM . The k-th exterior power of TpM and TM will

be denoted by
∧k TpM and

∧k TM . Let also Dk
pM and DkM denote

the set of decomposable elements in
∧k TpM and

∧k TM .
Recall that the Eisenman n-norm for a u ∈ Dn

pM is defined as [10],
[22]

EM
n (p, u) = inf{‖v‖2 : v ∈ Dn

0Bn, ∃F ∈ O(Bn,M), F (0) = p, F∗v = u}.

A complex manifold is called n-Eisenman hyperbolic if EM
n (p, u) > 0

for all p ∈M and all non-zero u ∈ Dn
pM . Compare with [5].

We use the notation from the proof of Theorem 1.1.

Theorem 4.1 (Addition to Theorem 1.1). For all w ∈ Ck the comple-
ment Cn \ ϕw(X) of the embedding ϕw(X) is Eisenman n-hyperbolic.

Proof. Suppose there exists a point p ∈ Cn \ ϕw(X) = M such that
EM
n (p, u) = 0 for the (unique up to a constant) non-zero u ∈ Dn

pM .
This means that

(5) inf
f

1

|Jf(0)|2

(
i

2

)n

dz ∧ dz̄ = 0

for some point p where f ∈ O(Bn,M) such that f(0) = p and f∗(T0Bn) =
v.

Let ν ∈ N be a fixed number such that p ∈ ν+2
2
Bn. By (5) there

is F : Bn → M such that F (0) = p and JF (0) is arbitrary large, for
example

(6) JF (0) > max(
1

βn
, (ν + 2)nβn)

There is an α ∈ C, 0 < α < 1 so that JF (0) > 1
αnβn . Since F (αBn) is

compact we find k ∈ N such that F (αBn) ⊂ (k + 2)Bn.

Define Fj(z) = F (α
∏k

l=j+1(1−
ǫj
2
)z). It holds:

JFj(0) ≥ αnβnJF (0) > 1 for every j, also for ν+1 ≤ j ≤ k we have
Fj(0) = p ∈ ν+2

2
Bn and Fj(Bn) obviously does not meet the points

ajl , l = 1, 2, . . . , k(j), (for j large enough as in the proof of the main
theorem).

We conclude inductively by property 2j Fj−1(Bn) ⊂ (j + 1)Bn for
ν + 1 ≤ j ≤ k. This means in particular Fν(Bn) ⊂ (ν + 2)Bn which
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implies

JFν(0) ≤ (ν + 2)n

and therefore

JF (0) ≤ (ν + 2)nαnβn.

This contradicts (6), thus Cn \ ϕw(X) is Eisenman n-hyperbolic. �

That Eisenman hyperbolic manifold have a cancellation property was
used in [44], Theorem 1.10., (for a simple proof see for example [4])

Proposition 4.1. Let Y and Z be n-Eisenman hyperbolic manifolds.
Then any biholomorphic map Ψ = (ψ1, ψ2) : Y ×Cl → Z ×Cl is of the
form Ψ(y, z) = (ψ1(y), ψ2(y, z)), where ψ1 : Y → Z is biholomorphic.

With Proposition 4.1 and Theorem 4.1 we get

Theorem 4.2. Let X be a complex space, which can be embedded in
Cn and such that the group of holomorphic automorphisms Authol(X)
is a Lie group. Then there exist, for k = n − 1 − dimX, a family
of holomorphic embeddings of X × Cl into Cn × Cl parameterized by
Ck, such that for different parameters w1 6= w2 ∈ Ck the embeddings
ψw1

, ψw2
: X × C

l →֒ C
n+l are non-equivalent (up to automorphisms).

Proof. Take ϕ from Theorem 1.1 and consider

Ψ : Ck ×X × C
l → C

k × C
n × C

l

defined by

(w, x, y) 7→ (w, ϕ(w, x), y) = (w, ψ(w, x, y)).

Assume that the embeddings ψw1
and ψw2

, where w1 6= w2 are equiva-
lent. This means that there exists an automorphism α ∈ Authol(C

n+l)
such that α(ϕw1

(X) × Cl) = ϕw2
(X) × Cl and therefore the same for

the complements α((Cn \ ϕw1
(X))× C

l) = (Cn \ ϕw2
(X))× C

l.
Now by Proposition 4.1 there exists α1 ∈ Authol(C

n) such that
α1(C

n \ ϕw1
(X)) = Cn \ ϕw2

(X). Thus α1(ϕw1
(X)) = ϕw2

(X), which
contradicts the choice of ϕ. �

A special case which is worth to state separately is X = C.

Corollary 4.1. There exist, for k = n− l−1, a family of holomorphic
embeddings of Cl into Cn parameterized by Ck, such that for different
parameters w1 6= w2 ∈ Ck the embeddings ψw1

, ψw2
: Cl →֒ Cn are

non-equivalent.

We end this section with a little trick showing that one can even have
families of pairwise non-equivalent embeddings containing the standard
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embedding as a member of the family. Note that the embeddings con-
structed in the proof of Theorem 1.1 are not containing the standard
embedding since the complement of each embedding is n-Eisenman
hyperbolic.

Proposition 4.2. For each 0 < l < n−1 there is a holomorphic family
of holomorphic embeddings of Cl into Cn parameterized by C, such that
for different parameters w1 6= w2 ∈ C the embeddings ψw1

, ψw2
: Cl →֒

Cn are non-equivalent. Moreover for the embedding ψ0 is equivalent to
the standard embedding.

Proof. Take a family Φ : C× C → C× Cn−l+1 Ψ0(w, z) = (w, φ(w, z))
as constructed in Theorem 1.1 and cross it with Cl−1 as in Theorem
4.2 to get a family Ψ1 : C×Cl → C×Cn Ψ1(w, x) = (w, φ1(w, x)). By
using a translation we can assume that φ1(w, 0) = 0 ∀w ∈ C.

Now define the family Ψ : C× C
l → C× C

n by

Ψ(w, x) = (w,
1

w
φ1(w,wx)) =: (w, ψ(w, x))

for w 6= 0 and by its obvious limit x 7→ φ′
1(0, 0)x for w = 0. Thus

for w = 0 we have the standard embedding in the family. All other
members ψw of the family are by definition equivalent to the embedding
φw and therefore pairwise non-equivalent. No member in the family
except ψ0 is equivalent to the standard embedding since otherwise there
would exist a holomorphic map of rank n−l+1 into the complement of
φw(C) which contradicts the Eisenman n−l+1-hyperbolicity (Theorem
4.1). �

5. Families of holomorphic C∗-actions on affine space

In this section we employ the method from [8] and [9] to construct
(non-linearizable) C∗-actions on affine spaces out of embeddings Cl →֒
Cn. We will not give all proofs in detail. The important point we want
to check here is that if the embeddings are holomorphically parametrized,
then the resulting C∗-actions depend holomorphically on the parame-
ter.

Let’s go through the method:
For an embedding ϕ : Cl → Cn take generators of the ideal Iϕ(Cl) <

O(Cn) of the image manifold, say f1, . . . , fN ∈ O(Cn) (in this case
N = n−l would be sufficient, since Cl is always a complete intersection
in Cn by results of Forster and Ramspott [13], but this is not important
for the construction) and consider the manifold
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M := {(z1, . . . , zn, u1, . . . uN , v) ∈ C
n+N+1 :

fi(z1, . . . , zn) = ui v ∀ i = 1, . . . , N}

which in [8] is called Rees space. This notion was introduced there
by the authors since they were not aware of the fact that this is a well-
known construction, called affine modification, going back to Oscar
Zariski. Geometrically the manifold M results from Cn+1

z,v by blowing

up along the center C = ϕ(Cl)×0v and deleting the proper transform of
the divisor D = {v = 0}. Since our center is not algebraic but analytic,
the process usually is called pseudo-affine modification.

Lets denote the constructed manifold M by Mod(Cn+1,D, C) =
Mod(Cn+1

z,v , {v = 0}, ϕ(Cl) × {v = 0}). It’s clear from the geometric
description that the resulting manifold does not depend on the choice
of generators for the ideal IC of the center.

The important fact about the above modifications is that
Mod(Cn+1

z,v , {v = 0}, ϕ(Cl)× {v = 0})× Cl is biholomorphic to Cn+l+1

∼= Mod(Cn+l+1
z,u,v , {v = 0}, ϕ(Cl) × 0u × 0v). The later biholomorphism

comes from the fact that there is an automorphism of Cn+l+1 leaving
the divisor {v = 0} invariant and straightening the center ϕ(Cl) × 0v
inside the divisor (see Lemma 2.5. in [8]).

Lets check that this important fact depends holomorphically on the
parameter.

Lemma 5.1. Let Φ1 : C
k×X →֒ Ck×Cn, Φ1(w, x) = (w, ϕ1(w, x)) and

Φ2 : C
k ×X →֒ Ck ×Cm, Φ2(w, x) = (w, ϕ2(w, x)) be two holomorphic

families of proper holomorphic embeddings of a complex space X into
Cn resp. Cm parametrized by Ck. Then there is an automorphism
α of Cn+m parametrized by Ck, i.e. α ∈ Authol(C

k
w × Cn+m

z ) with
α(w, z) = (w, α̃(w, z)), such that α ◦ (Φ1 × 0m) = 0n × Φ2.

Proof. By an application of Theorem B the holomorphic map ϕ1 :
Ck × X to Cn extends to a holomorphic map µ1 from Ck × Cm ⊃
Φ2(C

k ×X) to Cn (so µ1 ◦ ϕ2 = ϕ1). Likewise there is a holomorphic
map µ2 : Ck × Cn → Cm with µ2 ◦ ϕ1 = ϕ2. Define the parametrized
automorphisms α1, α2 of Ck × Cn × Cm by α1(w, z, y) = (w, z, y +
µ2(w, z)) and α2(w, z, y) = (w, z + µ1(w, y), y). Now α = α−1

2 ◦ α1 is
the desired automorphism. �

Lemma 5.2. Let Φ : Ck × Cl →֒ Ck × Cn Φ(w, θ) = (w, ϕ(w, θ)) be
a holomorphic family of proper holomorphic embeddings of Cl into Cn

parametrized by C
k.
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Then Mod(Ck+n+1
w,z,v , {v = 0},Φ(Ck×Cl)×{v = 0})×Cl ∼= Ck+n+l+1.

Moreover there is a biholomorphism such that the restriction to each
fixed parameter w ∈ C

k is a biholomorphism from Mod(Cn+1
z,v , {v =

0},Φ({w} × Cl)× {v = 0})× Cl ∼= Cn+l+1.

Proof. Apply Lemma 5.1 to the families Φ1 = Φ and Φ2 the triv-
ial family Φ2 : Ck × Cl →֒ Ck × Cl Φ2(w, θ) = (w, θ). Let α ∈
Authol(C

k × Cn × Cl) be the resulting parametrized automorphism
which we extend to Ck+n+l+1 by letting it act trivial on the last coor-
dinate v. Then by definition Mod(Ck+n+1

w,z,v , {v = 0},Φ(Ck ×Cl)×{v =

0}) × Cl = Mod(Ck+n+l+1
w,z,θ,v , {v = 0},Φ(Ck × Cl) × {v = 0} × 0l) and

applying (the extended) α we get that the later is biholomorphic to
Mod(Ck+n+l+1

w,z,θ,v , {v = 0},Ck
w× 0n×C

l
θ×{v = 0}). The last manifold is

obviously biholomorphic to Ck+n+l+1 since blowing up along a straight
center and deleting the proper transform of a straight divisor does not
change the affine space. The above constructed biholomorphism re-
stricts to each fixed parameter as desired since α is a parametrized
automorphism. This can be also seen by writing down concrete formu-
las for the modifications using generators f1(w, z), . . . , fN(w, z) of the
ideal Iφ(Ck×Cl) in O(Ck+n) and remarking that for each fixed w ∈ Ck

the functions f1(w, ·), . . . , fN(w, ·) generate the ideal IΦw(Cl). �

Now we describe the group actions:
Let f1(w, z), . . . , fN(w, z) be generators of the ideal Iφ(Ck×Cl) in O(Ck+n)

and consider Mod(Ck+n+1
w,z,v , {v = 0},Φ(Ck × Cl) × {v = 0}) × Cl ∼=

Ck+n+l+1 as the affine manifold given by equations:

{(w, z, v, u) ∈ C
k×C

n×C×C
N : fi(w, z) = ui v ∀ i = 1, . . . , N}×C

l
x

On it we consider the action of C∗
ν given by the restriction of the

following linear action on the ambient space:

(7) C
∗ × C

k × C
n × C× C

N × C
l → C

k × C
n × C× C

N × C
l

(ν, (w, z, v, u, x)) 7→ (w, z, ν2v, ν−2u1, . . . , ν
−2uN , νx1, . . . , νxl)

This gives by Lemma 5.2 a holomorphic family of C∗-actions on
Cn+l+1 parametrized by Ck, i.e., an action C∗ × Ck × Cn+l+1 → Ck ×
C
n+l+1 of the form (ν(w, z)) 7→ (w, ν(w, z)). Calculating (as in [9]) the

Luna-stratification of the categorical quotient Cn+l+1//C∗ for the C∗-
action for fixed w, in particular the inclusion of the fixed point stratum
in the Z/2Z-isotropy stratum one sees that this inclusion is biholomor-
phic to Φw(C

l) ⊂ C
n. Thus if for different parameters w1 6= w2 there
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were an equivariant automorphism α ∈ Authol(C
n) the induced isomor-

phism of the categorical quotients would map the Luna-stratifications
onto each other. Therefore the restriction of that induced isomorphism
to the Z/2Z-isotropy stratum would give an automorphism β of Cn

with β(Φw1
(Cl)) = Φw2

(Cl). This shows that pairwise non-equivalent
embeddings lead to non-equivalent C∗-actions. Combining this with
Theorem 1.1 (embeddings of C into Cn parametrized by Cn−2 for n ≥ 3)
we have proved Theorem 1.3 from the introduction. In the same way
Theorem 1.4 from the introduction follows from Proposition 4.2. It’s
an easy exercise that a straight embedding leads to a linear action.

6. Concluding remarks

Carefully examining the proof of Theorem 1.1 and the proofs of the
technical results from section 2 one sees that there is no place where
we use the fact that the parameter space is affine space C

k. What
we use of the parameter space is a graduation (in the proof of the
parametrized Andersén-Lempert-theorem) so say an affine algebraic
variety would do the job. Most important is the dimension condition
dimX+dim(parameterspace) < n (here dimension is always dimension
of the smooth part). So in fact we construct families parametrized by
any space of the right dimension. The authors wonder whether there
is any nice structure on the set of all equivalence classes of proper
holomorphic embeddings say of Cl into Cn and how "big" is this set?

Our construction of embeddings used two techniques, the growth re-
strictions which worked well for embedding manifolds with a "small"
automorphism group, namely a Lie group, and the Eisenman hyper-
bolicity for crossing the situation with affine space. Combining this we
got families of embeddings of affine spaces.

What about the number of equivalence classes of proper holomorphic
embeddings of other manifolds with infinite-dimensional automorphism
groups, e.g. manifolds with the density property, into affine spaces? A
concrete question in this direction would be:

How many embeddings of a Danielevski surface f(X) = uv into affine
spaces do there exist?

It’s known that there exist at least two algebraic embeddings of the
Danielevski surface p(y) = unv (degree of p is at least 2) into C3 which
are algebraically non-equivalent, i.e. there is no algebraic automor-
phism of C3 mapping one image onto the other [20]. In the same pa-
per Freudenburg and Moser show that the constructed embeddings are
holomorphically isomorphic using the linearization results of Heinzner
and the first author [27]. On the other hand there is a non-standard
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holomorphic embedding of the Danielevski surface into C3, which fol-
lows from the ideas of Rosay and Rudin [38]:

Proposition 6.1. Any algebraic subvariety A in Cn (n ≥ 2) admits
another holomorphic embedding into Cn not isomorphic to the inclu-
sion.

Proof. The restriction of a generic projection onto a hyperplane to A
is a proper map. Thus by the results in [38] any discrete sequence of
points in A is tame (in fact very tame). Now there is a holomorphic
embedding ϕ of A into Cn (constructed by applying a sequence of
automorphisms to the inclusion) such that ϕ(A) contains a non tame
set F (details as in [16]). The existence of a holomorphic automorphism
mapping A onto ϕ(A) contradicts the non tameness of F . �

It would be interesting to know under which conditions parametrized
points (by any parameter space and in any category, continuous, holo-
morphic differentiable, algebraic) are simultanuously standardizable.

7. APPENDIX: proofs of technical preparations

In this section we give the proofs of the lemmas etc. used in the
proof of the main theorem.

7.1. A parametrized version of the Andersén-Lempert theo-

rem. Our main technique we use to construct families of embeddings
are (compositions of) automorphisms of Cn.

The ground-breaking papers of Andersén and Lempert ([1], [2]) es-
tablished remarkable properties of the automorphism group of Cn (n ≥
2) which imply, in particular, that any local holomorphic phase flow
on a Runge domain Ω in C

n can be approximated by global holomor-
phic automorphisms of Cn (for an exact statement see Theorem 2.1
in [19]). We will give here a parametrized version of the so called
Andersén-Lempert-theorem and in addition we consider the following
two geometric structures: that of vector fields vanishing on the first N
standard points in Cn, and that of vector fields vanishing on the first
coordinate axis. Since the parametric version is an easy consequence of
the non-parametric version and the fixing of the first N -standard points
is a special case of Theorem 6 in [32] we just give a small indication of
the proof.

Theorem 7.1 (Andersén-Lempert-theorem with parameter and fixing
finitely many points). Let Ω be an open set in C

k ×C
n (n ≥ 2) and let
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(w, zj) = (w, j, 0, . . . , 0) ∈ Ω, j = 1, . . . , N . For every t ∈ [0, 1] let Φt
be a biholomorphic map from Ω into C

k × C
n, which is of the form

Φt(w, z) = (w, ϕt(w, z)), z ∈ C
n, w ∈ C

k

such that Φt(w, zj) = (w, zj) ∀w ∈ C
k (resp. Φt(w, z1, 0, . . . , 0) =

(w, z1, 0, . . . , 0) ∀z1 ∈ C ∀w ∈ Ck) and such that it is of class C2 in
(t, z, w) ∈ [0, 1] × Ω. Assume that each domain Φt(Ω) is Runge in
Ck × Cn. If Φ0 can be approximated on Ω by holomorphic automor-
phisms of Cn depending on the parameter w ∈ Ck, fixing (w, zj) for
every w ∈ Ck (resp. fixing (w, z1, 0, . . . , 0) ∀z1 ∈ C ∀w ∈ Ck) then
for every t ∈ [0, 1] the map Φt can be approximated on Ω by holo-
morphic automorphisms α of Cn depending on the parameter w ∈ C

k

such that α(w, zj) = (w, zj) ∀w ∈ Ck (resp. α(w, z1, 0, . . . , 0) =
(w, z1, 0, . . . , 0) ∀z1 ∈ C ∀w ∈ Ck).

To indicate the proof we just remark that the above theorem follows
by standard techniques from the following version of the

Andersén-Lempert-observation:

Every polynomial vector field on C
k+n (n ≥ 2) of the form

X = p1(w1, . . . , wk, z1, z2, . . . , zn)
∂

∂z1
+ . . .+

+ pn(w1, . . . , wk, z1, z2, . . . , zn)
∂

∂zn
.

vanishing at the first N standard points, i.e. with

pi(w, zj) = 0 ∀i = 1, . . . , n ∀j = 1, . . . , N,

is a finite Lie combination of completely integrable polynomial vector
fields of the above form vanishing at the first N standard points. The
same holds if we consider polynomial vector fields vanishing on the first
coordinate line instead.

To prove this observation we develop X by powers of w

X =
∑

α

wαXα

and remark that the polynomial vector fields Xα on Cn vanish at the
firstN standard points (resp. on the first coordinate line). By Theorem
6 in [32] (the union of the first N standard points is an algebraic subset
of Cn of codimension at least 2) (resp. by Theorem 5.1 in [42]) they can
be written as a finite Lie combination of globally integrable polynomial
fields on C

n vanishing on the first N standard points (resp. on the first
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coordinate line) say θiα i = 1, . . . , N(α). The same Lie combination
with θ1α replaced by wαθ1α (which is still globally integrable on Cn+k, on
each orbit the factor wα is a constant) yields wαXα as a Lie combination
of globally integrable fields. Summing up over the multiindex α we get
the desired result.

7.2. Families of generic finite sets with respect to affine auto-

morphisms. As already mentioned we will use growth restrictions to
prove that the embeddings for different parameters are not equivalent.
The conclusion of these growth conditions will be the following: If two
different embeddings in our family are equivalent, then their images
can be mapped onto each other only by some affine automorphism of
Cn. Although it is very unlikely that the images of two different and
more or less complicated embeddings can be mapped onto each other
by affine automorphisms, we must be accurate in excluding this possi-
bility. Here are some technical preparations to this point.

If we choose n + 1 points x1, x2, . . . , xn+1 such that the difference
vectors x1−xi, i = 2, 3, . . . , n+1 form a basis of Cn, i.e. x1, x2, . . . , xn+1

do not all lie on some affine hyperplane, then with a little linear algebra
we reach the following conclusion:

Lemma 7.1. For each m ≥ n+2 there exist m points x1, x2, . . . , xm ∈
Cn with the following property: No affine automorphism α ∈ Aff(Cn)
of Cn can map n + 2 of them into the set {x1, x2, . . . , xm}.

Remark 7. Given any open subset Ω of Cn the points x1, x2, . . . , xm
can be chosen to be contained in Ω.

Let δij denote the diagonal

δij = {(z1, z2, . . . , zN) ∈ (Cn)N : zi = zj}

and (Cn × · · · × C
n

︸ ︷︷ ︸

N

\
⋃

1≤i<j≤N δij)/SN is the quotient (manifold since

we have excluded all diagonals) by the action of the symmetric group
SN in N letters acting by permuting the entries on N -tuples of points
in Cn. The corresponding map is denoted by π.

Lemma 7.2. Let n ≥ 2 and k > 0 be natural numbers. Then there
exists some N ∈ N such there is an injective holomorphic map

ϕ : Ck → C
n × · · · × C

n

︸ ︷︷ ︸

N

\
⋃

1≤i<j≤N

δij

such that the composition map

π ◦ ϕ : Ck → (Cn × · · · × C
n

︸ ︷︷ ︸

N

\
⋃

1≤i<j≤N

δij)/SN
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is injective. Moreover if ϕ = (ϕ1, ϕ2, . . . , ϕN) then Cn \ ∪Ni=1ϕi(C
k)

contains some nonempty open subset.

Proof. The desired number N will be any number such that n ·N ≥ k.
Namely we will prove that there is a biholomorphic image Ω of (Cn)N in
(Cn)N (a so called Fatou-Bieberbach domain) which does not intersect
any of the diagonals δij and so that the restriction of the quotient
map π : (Cn)N → ((Cn)N )/SN onto Ω is injective, i.e. if the point
(z1, z2, . . . , zN) is in Ω then for any permutation σ ∈ SN \ Id the point
(zσ(1), zσ(2), . . . , zσ(N)) is not contained in Ω.

For this start with countably many pairwise disjoint Fatou-Bieber-
bach domains Ω1,Ω2, . . . ,ΩN , . . . in Cn. Such domains exist, see for ex-
ample [43], where countably many pairwise disjoint Fatou-Bieberbach
domains are constructed arising as basins of attraction of some auto-
morphism of Cn having countably many attracting fixed points. Now
take N of them and denote by ψi some biholomorphic maps ψi : C

n →
Ωi ⊂ Cn i = 1, 2, . . . , N .

The map

ψ : (Cn)N → (Cn)N , ψ(z1, z2, . . . , zN) = (ψ1(z1), ψ2(z2), . . . , ψN(zN))

is injective, its image is the Fatou-Bieberbach domain Ω1 ×Ω2 × · · · ×
ΩN in (Cn)N , which does not intersect any diagonal since the Ωi’s
are pairwise disjoint and for the same reason Ω ∩ σ(Ω) = ∅ for any
permutation σ ∈ SN \ Id. The complement Cn \ ∪Ni=1(C

k) contains
the union ∪∞

i=N+1Ωi of all remaining Fatou-Bieberbach domains, hence
a non-empty subset. For n · N ≥ k we can choose some injective
holomorphic map α : Ck 7→ (Cn)N and put ϕ := ψ ◦ α, which is the
desired map. �

Now we are able to prove Proposition 2.1.

Proof of Proposition 2.1. By Lemma 7.2 we can find N (for n · N ≥
k) (pairwise different) points ξ1, ξ2, . . . , ξN in Cn parametrized by Ck

such that for different parameters w1 6= w2 ∈ C
k the set of points

{ξ1(w1), ξ2(w1), . . . , ξm(w1)} and {ξ1(w2), ξ2(w2), . . . , ξm(w2)} are dif-
ferent. Choose M ∈ N such that M−N ≥ n+2. By Lemma 7.1 we can
find M points x1, x2, . . . , xM in Cn such that no affine automorphism
except the identity can map n+2 of them into the set {x1, x2, . . . , xM}.
Choose the next parametrized points ξN+1, ξN+2, . . . , ξN+M : Ck → Cn

to be constant

ξN+i(w) = xi for every w ∈ C
k i = 1, 2, . . . ,M.

To make the parametrized points ξ1, ξ2, . . . , ξM+N pairwise different
(for any fixed parameter) we choose the points x1, x2, . . . , xM from
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some open subset in the complement of all images ξj(C
k) ⊂ Cn j =

1, 2, . . . , N .
We claim that {ξ1(w), ξ2(w), . . . , ξN+M(w)} satisfy our condition (so

m = N + M). Indeed suppose that for two different parameters
w1 6= w2 ∈ Ck there is an affine automorphism α ∈ Aff(Cn) which
map the set of points {ξ1(w1), ξ2(w1), . . . , ξN+M(w1)} onto the set of
points {ξ1(w2), ξ2(w2), . . . , ξN+M(w2)}. Since M − N ≥ n + 2 at least
n + 2 of the last M points, (x1, x2, . . . , xM), are mapped by α into
{x1, x2, . . . , xM}, and note that at most N points among them can be
mapped onto the first N points! By the choice of x1, x2, . . . , xM ac-
cording to Lemma 7.1 this implies that α is the identity map. But this
means that the identity maps the last M (constant) points onto them-
selves, hence the points {ξ1(w1), ξ2(w1), . . . , ξN(w1)} onto the points
{ξ1(w2), ξ2(w2), . . . , ξN(w2)}, which is impossible since those sets are
different by Lemma 7.2. Thus no such affine automorphism α exists.

�

7.3. Moving finitely many parametrized points. Recall that we
needed the notion of simultaneously standardazable points in the proof
of the main theorem. Given N parametrized points ζi : C

k → Cn. If
we can find an automorphism ψ ∈ Autkhol(C

n) such that

ψ(w, ζi(w)) = (w, (i, 0)) for all i = 1, 2, . . . , N and for all w ∈ C
k,

we say that the points are simultaneously standardazable.
The following theorem is a special case of the Oka-Grauert-Gromov-

h principle in complex analysis. Even if our application would fit in
the classical context proved by Grauert [23], [24], [25] (our transition
functions are affine linear, i.e. contained in a complex Lie group) we
formulate it in a more general (but not too general in order to avoid
the discussion of sprays) way. For reference see [15] , section 2.3 in [26]
or Theorem 1.4 in [18].

Theorem 7.2 (Oka principle with approximation). Let X be a Stein
manifold and let Z be a locally trivial bundle such that the fiber Zx
is isomorphic to Cn. If s : X → Z is a continuous section which
is holomorphic in a neighborhood of an O(X)-convex compact subset
K then there exists a holomorphic section s̃ : X → Z such that s̃
approximates s uniformly on K.

Example 2. Let q1(w), q2(w), . . . , qn(w) : C
k → C be holomorphic func-

tions without common zeros. We want to find holomorphic functions
h1(w), h2(w), . . . , hn(w) : C

k → C such that

h1(w)q1(w) + h2(w)q2(w) + . . .+ hn(w)qn(w) = 1
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for every w ∈ Ck, i.e. find a point (h1(w), h2(w), . . . , hn(w)) in the
hyperplane given by

(8) x1q1(w) + x2q2(w) + . . .+ xnqn(w) = 1.

Since q1(w), q2(w), . . . , qn(w) do not have common zeros, we can find
local solutions: If (e.g.) q1(w) 6= 0 then we can solve the problem in a
neighborhood of w0 by setting h2(w) = . . . = hn(w) = 1 and

h1(w) =
1− (h2(w)q2(w) + . . .+ hn(w)qn(w))

q1(w)
.

Let Z be the (locally trivial with affine linear transition functions)
bundle over Ck such that the fiber Zw is the hyperplane (8) in Cn. Given
a holomorphically convex compact set J ∈ Ck and a holomorphic sec-
tion s of the bundle over a neighborhood of J we can, by standard
arguments in obstruction theory (all homotopy groups of the fiber van-
ish), extend it to a continuous section s : Ck → Z. Theorem 7.2 gives
a holomorphic section s̃ : Ck → Z which approximates s uniformly on
the compact J .

Lemma 7.3. Given a holomorphic map ξ = (ξ1, . . . , ξn) : Ck → Cn,
(n ≥ 2), always disjoint from the first N standard points, ξ(w) /∈
∪Ni=1{(i, 0, . . . , 0)}, and such that the functions ξ2, . . . , ξn ∈ O(Ck) have
no common zero on Ck. Then there exist α ∈ Autkhol(C

n) fixing the first
N standard points, α(w, i, 0, . . . , 0) = (w, i, 0, . . . , 0) with α(w, ξ(w)) =
(w, z0), i.e. α(w, ξ(w)) is a constant point (w, z0) for every w ∈ Ck.

Moreover given a ball J = rBk ⊂ Ck and a number R > N such that
for w ∈ J hold: |ξ(w)| > R. Then for any ǫ > 0 the automorphism α
can be chosen in such a way that

max
w∈J,|z|≤R

|α(w, z)− (w, z)| < ǫ.

Proof. The first step consists in an application of Theorem 7.1 with
fixing the first coordinate line to bring the points ξ(w), w ∈ J , ar-
bitrarily nearby to a constant position. To apply the theorem let
Ω =

⋃

w∈r′Bk
{w} × {R′

Bn ∪ ǫ1Bn(ξ(w))}, where Bn(ξ(w)) is the unit
ball in Cn with center in ξ(w), with r′, R′ slightly bigger than r, R and
ǫ1 sufficiently small so that ǫ1Bn(ξ(w)) has empty intersection with the
first coordinate line for all w ∈ r′Bk. Note that Ω is Runge in Ck×Cn.

Approximating the map Φt : [0, 1] × Ω → Ck × Cn defined by
Φt(w, z) = (w, z) for every w ∈ r′Bk, z ∈ R′Bn and Φt(w, z) =
(w, ξ((1 − t)w) + z − ξ(w)) for w ∈ r′Bk, z ∈ ǫ1Bn(ξ(w)), gives an
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α1 ∈ Autkhol(C
n):

α1(w, (z1, 0, . . . , 0)) = (w, (z1, 0, . . . , 0)) ∀z1 ∈ C ∀w ∈ C
k

|α1(w, z)− (w, z)|w∈J,z∈RBn
< ǫ

|α1(w, ξ(w))− (w, ξ(0))| < ǫ ∀w ∈ J

where ǫ is arbitrarily small.
Remark that the last n− 1 coordinate functions of α1(w, ξ(w)) have

no common zero on Ck, since by assumption the same was true for ξ(w)
and the first coordinate line is fixed by α1.

A second application of Theorem 7.1 again with fixing the first coor-
dinate line using a C2-path from ξ(0) to the point (2R, 1, 0, . . . , 0) not
intersecting the first coordinate line and not intersecting R′Bn shows
that we in addition can assume

|α1(w, ξ(w))− (2R, 1, 0, . . . , 0)| < ǫ

for w ∈ J .
Denote the coordinate functions of α1(w, ξ(w)) by (q̌1(w), q̌2(w), . . . ,

q̌n(w)) and observe that q̌2(w), . . . , q̌n(w) have no common zeros for
w ∈ Ck.

Now define functions ĥi ∈ O(J) by

ĥ3(w) = . . . = ĥn(w) = 1

and

ĥ2(w) =
1− q̌3(w)ĥ3(w)− . . .− q̌n(w)ĥn(w)

q̌2(w)

for w ∈ J . Note that ĥ2(w) ≈ 1 for w ∈ J .
By Theorem 7.2 (see example thereafter) we have that for every ǫ > 0

there exist hi ∈ O(Ck) with
n∑

i=2

hi(w)q̌i(w) = 1, ∀w ∈ C
k

and
‖hi(w)− ĥi(w)‖J < ǫ,

which implies hi(w) ≈ 1 for w ∈ J for all i = 2, . . . , n. Define an
automorphism α2 ∈ Autkhol(C

n) by

(w, z) 7→

(w, z1+(2R− q̌1(w))[z2h2(w)+ z3h3(w)+ . . . znhn(w)], z2, z3, . . . , zn).

It holds:
α2(w, q̌(w)) = (w, 2R, q̌2(w), . . . , q̌n(w))
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and
α2(w, (i, 0, . . . , 0)) = (w, (i, 0, . . . , 0))

The next step is to construct an automorphism α3 ∈ Autkhol(C
n) that

moves α2(w, q̌(w)) to (w, 2M, 0, . . . , 0). So define a polynomial on C

Q(t) =

(

(t− 1)(t− 2) · · · (t−N)
1

(2R− 1)(2R− 2) · · · (2R−N)

)H

,

where H is so large that |t| < R implies |Q(t)| < ǫ, and define the
automorphism α3 by

(w, z) 7→

(w, z1, z2 −Q(z1)q̌2(w), z3 −Q(z1)q̌3(w), . . . , zn −Q(z1)q̌n(w)).

From this we get

α3(w, i, 0, . . . , 0) = (w, i, 0, . . . , 0)

for i = 1, . . . N,

α3 ◦ α2(w, q̌(w)) = (w, 2R, 0, . . . , 0)

and it is easy to check that

max
w∈J,|z|≤R

|α3 ◦ α2 ◦ α1(w, z)|

is arbitrarily small. The composition α = α3 ◦ α2 ◦ α1 is our desired
automorphism. �

Remark 8. The reason that we bring the points {ξ(w), w ∈ J} first
near to (2R, 1, 0, . . . , 0) (instead of (2R, 0, . . . , 0) directly) and make
them afterwards constant at the point (2R, 0, . . . , 0) is the following:
Our method could lead to a big movement of RBn, as we see in the
following example.

Example 3. Let K = K1 × ∆̄n where ∆̄n is the closure of the unit
polydisc in Cn and K1 some compact set in the parameter space Ck.
We will consider the following perturbation of the first N standard
points:

We suppose that the first N − 1 points remains at their standard
positions,

ζi(w) = (i, 0, . . . , 0) i = 1, 2, . . . , N − 1

and the N -th point is moved by some very small amount from the
standard position

ζn(w) = (2R− ǫ, ǫ2, . . . , ǫ2).

According to the proof of Lemma 7.3 we have to find holomorphic
functions h2(w), h3(w), . . . , hn(w) with

∑N
i=2 hi(w)ǫ

2 = −2R+ǫ+2R =
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ǫ, i.e.
∑N

i=2 hi(w) = 1/ǫ. Therefore the automorphism α2 ∈ Autkhol(C
n)

defined by

(w, z1, z2, . . . , zn) 7→ (w, z1 + z2h2(w) + . . .+ znhn(w), z2, z3, . . . , zn)

moves for instance all points of the form (0, z1, 1, . . . , 1) ∈ K1 × ∆̄n by
the vector (0, 1/ǫ, 0, . . . , 0), i.e. (0, z1, 1, . . . , 1) 7→ (0, z1+1/ǫ, 1, . . . , 1),
which has length going to infinity when our perturbation of the N -th
point is going to zero.

From Lemma 7.3 we get Proposition 2.2

Proof of Proposition 2.2. Proceed by induction over the number N of
points: For N = 1 the (parametrized translation) automorphism de-
fined by (w, z) 7→ (w, z − ζ1(w) + 1) solves the problem in general, i.e.
without any assumption on the dimension k of the parameter space.

Suppose the problem is solved for N − 1 parametrized points. To
solve it for N points take by induction assumption an automorphism
α1 ∈ Autkhol(C

n) which moves the first N − 1 points to their standard
places

α1(w, ζi(w)) = (w, (i, 0)) for all i = 1, 2, . . . , N − 1 and for all w ∈ C
k.

It is not difficult to find an automorphism α2 ∈ Autkhol(C
n) which

fixes the first N − 1 standard points, α2(w, (i, 0)) = (w, (i, 0)) for all
i = 1, 2, . . . , N − 1 and for all w ∈ C

k, such that the submanifold of
Ck+n described by the (moved) last parametrized point

U := {(w, α2 ◦ α1 ◦ ζN(w)) : w ∈ C
k} ⊂ C

k+n

is transversal to the (parametrized) z1-axis

V := {(w, (z1, z2, . . . , zn)) ∈ C
k+n : z2 = z3 = . . . = zn = 0}.

Because of the dimension assumption this means that the two subman-
ifolds U and V do not meet (dimU + dimV = k + (k + 1) < n + k =
dimCk+n). In other words we are in the position of Lemma 7.3 and
find an automorphism α3 ∈ Autkhol(C

n) fixing the first N − 1 standard
points and moving (w, α2 ◦ α1 ◦ ζN(w)) to its standard place. The
composition α3 ◦ α2 ◦ α1 is the desired automorphism moving all N
parametrized points into their standard positions. �

We are now set to prove the interpolation lemma, Lemma 2.3.

proof of Lemma 2.3. Since by the dimension assumption dimX+k < n
the points bi(w) are simultaneously standardizable(see Corollary 2.2),
we can find α1 ∈ Autkhol(C

n) such that α1(w, bi(w)) = (w, (i, 0, . . . , 0))
for every w ∈ C

k. Choose R > 0 such that π2(α1(K)) ⊂ RBn and
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choose M such that α−1
1 (RBn) ⊂ MBn. Let C be a positive real con-

stant such that the point p̃(w) = Cp(w) is outside of the ball of radius
M for every w ∈ ∆. By transversality and our dimension condition
(1) we can assume that an arbitrary small perturbation γp of the path
p(w) + t(p̃(w)− p(w)), t ∈ [0, 1], does not intersect π2(φ(∆×XR)) for
any w ∈ ∆. Construct q̃(w) and a path γq, in the same way with the
additional demand that the path for q does not intersect the path for
p.

By the Andersén-Lempert-theorem with parameters and fixing stan-
dard points (see Theorem 7.1) applied to the set α1(K) union with
a neighborhood of the paths α1(γp) and α1(γq) there exists an α2 ∈
Autkhol(C

n) such that α2(w, z) is close to the identity for (w, z) ∈ K
and |π2(α2 ◦ α1(w, q(w)))| > R for every w ∈ ∆. Furthermore we
have α2 ◦ α1(w, bi(w)) = (w, (i, 0, . . . , 0)) for every w ∈ Ck. More-
over α2 ◦ α1(K) ⊂ RBn. To be able to apply Lemma 7.3 we perturb
α2 ◦ α1(w, p(w)) slightly to make sure that the last n − 1 coordinate
functions have no common zero on C

k, at the same time fixing the
points (w, (i, 0, . . . , 0)), i = 1, . . . , N . This is possible by transversal-
ity and our dimension assumption (1), i.e. dimX + k < n. Now an
application of Lemma 7.3 gives an automorphism α3 arbitrarily close
to identity on ∆ × RBn fixing the first N standard points, such that
α3 ◦ α2 ◦ α1(w, p(w)) = (w, 2R, 1, 0, . . . , 0) for every w ∈ Ck.

By another application of the same lemma, we can in addition assume
that α3 ◦ α2 ◦ α1(w, q(w)) = (w, 2R, 2, 0, . . . , 0) for every w ∈ Ck.

Finally we take a polynomial P̃ (z1) such that P̃ (2R) = 1, |P̃ (z1)| < ǫ
for z1 ∈ (R + 1)B1 and P̃ (z1) = 0 to order l, for z1 ∈ {1, . . .N}. Then
define the automorphism

α4(w, z) = (w, z1, z2 + P̃ (z1), z3, . . . , zn).

Consequently
α4(w, i, 0, . . . , 0) = (w, i, 0, . . . , 0)

to prescribed order for i = 1, . . . N and α4 ◦ α3 ◦ α2 ◦ α1(w, p(w)) =
α3 ◦ α2 ◦ α1(w, q(w)).

In total, the automorphism

α = α−1
1 ◦ α−1

2 ◦ α−1
3 ◦ α4 ◦ α3 ◦ α2 ◦ α1,

will have the properties stated in the lemma.
�

7.4. Proof of osculation lemma. Remember that we will mark a
finite number of points. The points will be used to exclude affine au-
tomorphisms in the main theorem.
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Before we come to this point, a standard jet interpolation lemma in
a parametrized form is established. This form is quite easy, since we
do assume that the linear part of each prescribed jet is the identity.
For general linear parts one would need (in order to get the linear part
from shears) to write a holomorphic (depending on the parameter in
Ck) invertible matrix as a product of holomorphic elementary matrices.
This is the so called Vaserstein problem posed by Gromov in [26]. Al-
though it was recently solved by Ivarsson and the first author [29], [30]
we will restrict ourselves to the present simple version of our lemma
since it is fully sufficient for the purpose of the present paper.

Lemma 7.4. Let ξi = (i, i, . . . , i) ∈ Cn for i = 0, 1, 2, . . . , N and let
Pi : C

k × Cn → Cn be polynomial maps of degree s such that

Pi(w, z) = ξi + (z − ξi) +O(|z − ξi|
2)

for z → ξi and all w ∈ Ck.
Then there exists κ ∈ Autkhol(C

n) such that

π2(κ(w, z)− (w, Pi(w, z))) = O(|z − ξi|
s+1)

for z → ξi with i = 0, 1, 2, . . . , N .

Remark 9. The reason that we have chosen ξi = (i, i, . . . , i) ∈ Cn for
i = 0, 1, 2, . . . , N is to ensure that our points have pairwise different
projections along all coordinate directions. This is suitable for the use
of shears.

Proof. The proof goes exactly as in the non-parametric case (see Step
2.10 in Forstneric [14]) by induction over the number of points and
the order of the jets. The beginning step of the induction (first order)
is empty in our case. To realize the homogeneous part P j of order
j ≥ 2 of a polynomial map P by a composition of overshears on Cn

depending holomorphically on the parameter on w we need to establish
the existence of finitely many linear functionals λi together with vectors
vi having the properties λi(vi) = 0 and |vi| = 1 such that

P j(w, z) =
∑

i

ci(w)(λi(z − ξ1))
jvi+

+
∑

k

dk(w)(λk(z − ξ1))
j−1〈z − ξ1, vk〉vk

(9)

with holomorphic functions ci, di ∈ O(Ck).
This follows from the purely algebraic fact, Lemma 7.6 below.

�
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We denote the complex vector space Cn by V , Sk(V ∗) denotes the
vector space of homogenous polynomials of degree k on V and rk,n =
(
n+k−1
n−1

)
its dimension.

Lemma 7.5. There exist rk,n linear forms λ1, λ2, . . . , λrk,n ∈ (Cn)∗

such that the homogenous polynomials (λi)
k of degree k i = 1, 2, . . . , rk,n

form a basis of Sk(V ∗). Moreover the λi can be chosen from any
nonempty open subset Ω of (Cn)∗.

Proof. Take any nonzero element λ0 ∈ Ω ∈ V ∗. The map V ∗ → Sk(V ∗)
defined by λ 7→ λk is Gl(V)-equivariant and since Sk(V ∗) is an irre-
ducible Gl(V)-module the linear span of the Gl(V)-orbit through λ0

span{(g · λ0)
k, g ∈ Gl(V)}

is the whole module Sk(V ∗). The same holds for any open part of the
orbit, i.e.

span{(g · λ0)
k, g ∈ U} = Sk(V ∗)

for any open subset U of Gl(V), since if the left hand side would be
contained in some proper linear subspace W ⊂ Sk(V ∗) then by the
identity theorem for holomorphic mappings the whole orbit would be
contained in W contradicting the irreducibility of Sk(V ∗). We can
therefore find rk,n group elements g1, g2, . . . , grk,n ∈ Gl(V) contained in
some open neighborhood U of the identity (with U · λ0 ⊂ Ω) such that
the homogenous polynomials (gj ·λ0)

k k = 1, 2, . . . , rk,n form a basis of
Sk(V ∗). �

Lemma 7.6. There exist n ·
(
n+k−2
n−1

)
−
(
n+k−2
n−1

)
linear forms λi ∈ (Cn)∗

and vectors vi ∈ Cn with λi(vi) = 0 and ‖vi‖ = 1 i = 1, 2, . . . ,
(
n+k−2
n−1

)

together with
(
n+k−2
n−1

)
linear forms λ̃j ∈ (Cn)∗ and vectors wj ∈ Cn with

λj(wj) = 0 and ‖wj‖ = 1 j = 1, 2, . . . , n ·
(
n+k−2
n−1

)
−

(
n+k−2
n−1

)
such that

the homogenous polynomial maps

z 7→ (λi(z))
kvi, i = 1, 2, . . . , n ·

(
n + k − 1

n− 1

)

−

(
n+ k − 2

n− 1

)

of degree k together with the homogenous polynomial maps

z 7→ (λ̃j(z))
k−1〈z, wj〉wj, j = 1, 2, . . . ,

(
n+ k − 2

n− 1

)

of degree k form a basis of the vector space Vk ∼= Sk((Cn)∗) ⊗ Cn

of homogenous polynomial maps of degree k. Moreover if v0 ∈ Cn and
a non-zero functional λ0 ∈ (Cn)∗ with λ0(v0) = 0 and ‖v0‖ = 1 and
a number ǫ > 0 are given, then the vectors vi, wj together with the
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functionals λi, λ̃j can be chosen with ‖v0 − vi‖ < ǫ ‖v0 − wj‖ < ǫ and

‖λ0 − λi‖ < ǫ, ‖λ0 − λ̃j‖ < ǫ.

Proof. Set V = Cn. The vector space Vk ∼= Sk(V ∗) ⊗ V is as Gl(V)-
module isomorphic to the direct sum of two irreducible representations
W1 ⊕W2, where W1 is isomorphic to Sk−1(V ∗) and W2 is isomorphic
to the kernel of the Gl(V)-equivariant map

ψ : Sk(V ∗)⊗ V → Sk−1(V ∗), X 7→ divX.

We will provide some “section” of ψ: By Lemma 7.5 there exist

λ̃j ∈ V ∗ j = 1, 2, . . . ,
(
n+k−2
n−1

)
(ǫ-near to λ0 if desired) such that the ho-

mogenous polynomials λ̃k−1
i form a basis of Sk−1(V ∗). Choose vectors

wj with λ̃j(wj) = 0 and ‖wj‖ = 1 (and ǫ-near to v0 if desired). For a
homogenous polynomial p(z) of degree k − 1 we write it in the basis

p(z) =
∑(n+k−2

n−1 )
j=1 dj(λ̃j(z))

k−1 and define the section s(p) by

s(p)(z) =

(n+k−2

n−1 )
∑

j=1

dj(λ̃j(z))
k−1〈z, wj〉wj.

An easy calculation shows ψ(s(p))) = div s(p) = p. Thus the ho-

mogenous polynomial maps z 7→ (λ̃j(z))
k−1〈z, wj〉wj j = 1, 2, . . . ,

(
n+k−2
n−1

)

form a basis of some linear subspace of Sk(V ∗)⊗ V complementary to
the kernel of ψ. Now take our nonzero linear functional λ0 ∈ V ∗ and

some vector v0 ∈ V with λ0(v0) = 0 and ‖v0‖ = 1. Since kerψ ∼= W2 is
an irreducible Gl(V)-module the linear span of any Gl(V)-orbit through
a nonzero point in W2 is the whole vector space W2

∼= kerψ. Since
λ0(v0) = 0 the element λk0 ⊗ v0 is such a point and like in the proof of
Lemma 7.5 we find group elements g1, g2, . . . , gn·(n+k−1

n−1 )−(n+k−2

n−1 ) ∈ Gl(V)

contained in any given nonempty open neighborhood of the identity el-
ement such that the homogenous polynomial maps gj · (λ

k
0 ⊗ v0) =

(gj · λ0)gj · v0 form a basis of kerψ. Defining
lambdai = gi · λ0 (remember g · λ0(v) := λ0(g

−1v)) and ṽi = gi · v0, vi =
ṽi
|ṽi|

(instead of normalizing we could have chosen the gj from the uni-

tary group since by the identity principle in complex analysis any ir-
reducible Gln-representation is Un-invariant) we get a basis λki ⊗ vi
i = 1, 2, . . . , n ·

(
n+k−1
n−1

)
−

(
n+k−2
n−1

)
of kerψ. Together with the above

constructed basis of the complementary subspace it forms a basis of
the vector space Vk ∼= Sk((Cn)∗)⊗C

n of homogenous polynomial maps
of degree k. �

Using these prerequisits we give the proof of Lemma 2.4
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proof of Lemma 2.4. Since the points ξ1(w), . . . , ξt(w) are simultane-
ously standardizable we can assume that ξi(t) = (i, i, . . . , i) for 1 ≤
i ≤ t. Now we want to apply Lemma 7.4 to make κ(M(w)) osculating
of order l. This means we have to ensure that there is for each i a
holomorphically depending on w ∈ Ck polynomial map Pi(w, z) with

(10) Pi(w, z) = ξi + (z − ξi) +O(|z − ξi|
2).

We then get osculation of order l at ξi(w) after applying an automor-
phism with this prescribed jet at ξi(w).

For a given point x in a submanifoldM of Cn the set P (x,M) of l-jets
of the form (10) ensuring the osculation up to order l is biholomorphic
to a vectorspace and the change of variables in the jet-bundle is affine-
linear. This means we have to find a holomorphic section in a locally
trivial fibration over Ck of the form

⋃

w∈Ck P (ξi(w),M(w))
↓
Ck

where the fibers are biholomorphic to a vectorspace C
N and the struc-

ture group is Aff(CN), the group of affine linear automorphisms of CN .
Since CN is contractible a continuous section always exists and the Oka-
Grauert principle (Theorem 7.2) implies the existence of a holomorphic
section. �

7.5. The proof of Lemma 2.5. To prove Lemma 2.5 we use the
following sublemma:

Lemma 7.7. For every point p = (w0, p̂) ∈ KM = K1×K2 there is an
open neighborhood Vp × Up ∋ p in K1 ×M and a family of automor-
phisms ψt of Ck × Cn parametrized by CN , where N = N(m,n, s) =
((
m+s
m

)
− (m+ 1)

)
(n−m), such that

1. ψ0 = Id.
2. Every ψt satisfies 1. and 2. in Lemma 2.5.
3. There exist an open neighborhood T of 0 in CN such that

Σ = {t ∈ T : There exists p′ ∈ Vp × Up such that ψt(w,M(w))

osculates of order l in ψt(p
′)}

is a set of Lebesgue measure zero.

Proof. If M(w) does not osculate of order l in p let ψt = Id for every
t ∈ CN .

Now suppose that M(w) osculates of order l in p. Without loss of
generality assume that p = (w0, 0) and that the tangent plane is given
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by T(w0,0)M(w) = {(z1, . . . , zm, 0, . . . , 0)}. Let π1 : Cn → Cm denote
the projection to the m first coordinates of Cn. After a linear change
of variables we can assume that π1(bi(w)) 6= 0 ∈ C

m for 1 ≤ i ≤ q and
for w ∈ Ṽp where Ṽp is some open neighborhood in K1.

To control if ψ(M(w)) osculates of order l in some point ψ(p′),
p′ ∈ Ck ×M(w) for a given automorphism ψ ∈ Autk(Cn), consider the
map F ψ : Ck ×M(w) → CN where the coordinate functions F ψ

α,u, enu-
merated by pairs (α, u), where α is a multi index α = (α1, α2, . . . , αm)
with 2 ≤ |α| ≤ l and u ∈ N satisfies that m+ 1 ≤ u ≤ n, are given by

F ψ
α,u(w, ζ) = det








∂
∂ζ1

(ψ)1(w, ζ) . . . ∂
∂ζ1

(ψ)m(w, ζ)
∂
∂ζ1

(ψ)u(w, ζ)
...

. . .
...

...
∂
∂ζm

(ψ)1(w, ζ) . . . ∂
∂ζm

(ψ)m(w, ζ)
∂
∂ζm

(ψ)u(w, ζ)
∂
∂ζα

(ψ)1(w, ζ) . . . ∂
∂ζα

(ψ)m(w, ζ)
∂
∂ζα

(ψ)u(w, ζ)








Here (ψ)i denotes the i-th z-coordinate function of the map ψ : Ck ×
Cn → Ck × Cn and (ζi)1≤i≤m is some fixed system of local coordinates
of M(w) near p. Then ψ(M(w)) osculates of order l in some point
(w, ζ) if and only if F ψ(w, ζ) = 0.

If we restrict our attention to a small enough neighborhood Ũp ∈ K2,
containing 0, we can use z1, . . . , zm as local coordinates on M(w0) near
p, in fact we will use the coordinates (w, z1, . . . , zm) in the restriction
to Ṽp × Ũp. To construct the family of automorphisms ψt of Ck × Cn

we do the following: For every pair (α, u) we choose a holomorphic
function hα,u on Ck × Cm such that

1. (w, hα,u(w, z)) = (w, zα) of order at least l + 1 in (w0, 0).
2. (w, hα,u(w, π1(bi(w)))) = (w, 0) of order at least l + 1 for 1 ≤ i ≤ q

and for all w ∈ Ck.
3. (w, hα,u(w, π1(ai)) = (w, 0) for 1 ≤ i ≤ r and for all w ∈ Ck.

Now define the map ψ : CN × Ck × Cn → Ck × Cn by

ψ(t, w, z) = (w, z +
∑

(α,u)

t(α,u)hα,u(w, z1, . . . , zm)eu),

where eu is the u-th unit vector, m+ 1 ≤ u ≤ n.
This construction gives that for every t ∈ CN the map ψt = ψ(t, ·) is

a parametrized automorphism of Cn and because of condition 2. and
3. ψ fulfills conditions 1. and 2. of Lemma 2.5. Furthermore ψ0 = Id.
The only thing left to check is that ψ fulfills condition 3..
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Using the fact that hα,u(w, z) = zα we get that

∂

∂t(α,u)
F ψt

α,u| z=0
w0=0

= −
∂

∂t(α,u)

∑

t(α,u)
∂

∂zα
hα,u(w, z)| z=0

w0=0
=

=
∂

∂t(α,u)

∑

t(α,u)
∂zα

∂zα
| z=0
w0=0

= α!.

Moreover the derivative with respect to t depending on other pairs
(α′, u′) will vanish

∂

∂t(α′,u′)

F ψt

α,u| z=0
w0=0

= −
∂

∂t(α′ ,u′)

∑

t(α,u)
∂

∂zα
hα,u(w, z)| z=0

w0=0
=

=
∂

∂t(α′,u′)

∑

t(α,u)
∂zα

∂zα
| z=0
w0=0

= 0,

whenever u 6= u′ or whenever u = u′, |α′| ≤ |α| and α′ 6= α.
This implies that the map Φ : CN × Ck × M → CN defined by

Φ(t, w, z) = FΦt(w, z) has maximal rank near (0, w0, 0) = (0, p). Thus
there exists an open neighborhood Ωp of the form Ωp = T × Vp×Up of
(0, p) in CN × Ck ×M such that Φ|Ωp

is transversal to 0 ∈ CN . This
implies that for almost all t ∈ T the map F ψt : Ck ×M(w) → C

N is
transversal to 0. Since m < N this means that for almost all t ∈ T the
image F ψt(Vp×Up) does not meet 0, i.e. ψt((w,M)) does not osculate
of order l for any p′ ∈ Vp × Up. �

Proof of Lemma 2.5. Choose finitely many open subsets Vi×Ui of Ck×
M together with families ψ : Ti×Ck×Cn → Ck×Cn of automorphisms
i = 1, 2, . . . , r as in Lemma 7.7 and choose compact subsets Ki ⊂ Vi×Ui
of Vi × Ui which cover KM . Since ψ1

0 is the identity, for t sufficiently
small the automorphism ψ1

t moves no point of KM more than ǫ
r
. So we

find t1 ∈ T1 such that |P2φ
1
t1
(w, z) − z| < ǫ

r
for every (w, z) ∈ K and

the submanifold ψ1
t1
(Ck ×M) does not osculate of order l at any point

of ψ1
t1
(K1).

Observe that the property of not osculating of order l at some point is
preserved under small perturbations, i.e. for each compact subset L of
a submanifold M of Cn which does not osculate of order l at any point
of L there exists some ǫ > 0 such that for each automorphism ψ of Cn

the property |ψ(z)− z| < ǫ for every z ∈ L implies that ψ(M) remains
non-osculating of order l at any point of ψ(L) (for holomorphic maps
small perturbations in values imply small perturbations in derivatives).

Hence we find a sufficiently small t2 ∈ T2 such that first |P2ψ
2
t2
(w, z)−

z| < ǫ
r

for every z ∈ ψ1(K), second the submanifold ψ2
t2
◦ ψ1

t1
(Ck ×M)

does not osculate of order l at any point of ψ2
t2
◦ ψ1

t1
(K2) and third
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ψ2
t2
◦ ψ1

t1
(Ck × M) remains non-osculating of order l at any point of

ψ2
t2
◦ ψ1

t1
(K1). Proceeding by induction we find an automorphism ψ :=

ψrtr ◦ ψ
r−1
tr−1

◦ · · · ◦ ψ1
t1

moving no point of K more than ǫ and such that

ψ(Ck ×M) does not osculate of order l at any point of ψ (∪ri=1Ki) ⊃
ψ(KM). Since all automorphisms ψt satisfy properties 1. and 2., ψ
satisfies them as well. �
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