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Lutz Dümbgen1 and Perla Zerial2

University of Bern and Technical University of Dresden

Abstract: Let P be a probability distribution on q-dimensional space. The
so-called Diaconis-Freedman effect means that for a fixed dimension d << q,
most d-dimensional projections of P look like a scale mixture of spherically
symmetric Gaussian distributions. The present paper provides necessary and
sufficient conditions for this phenomenon in a suitable asymptotic framework
with increasing dimension q. It turns out that the conditions formulated by
Diaconis and Freedman (1984) are not only sufficient but necessary as well.

Moreover, letting P̂ be the empirical distribution of n independent random vec-
tors with distribution P , we investigate the behavior of the empirical process√
n(P̂ − P ) under random projections, conditional on P̂ .

1. Introduction

A standard method of exploring high-dimensional datasets is to examine various
low-dimensional projections thereof. In fact, many statistical procedures are based
explicitly or implicitly on a “projection pursuit”, cf. [8]. As shown by Diaconis
and Freedman [4], under weak regularity conditions on a distribution P = P (q) on
Rq, “most” d-dimensional orthonormal projections of P are similar (in the weak
topology) to a mixture of centered, spherically symmetric Gaussian distribution
on Rd if q tends to infinity while d is fixed. A graphical demonstration of this
disconcerting phenomenon is given by [3]. Precise quantitative analyses are provided
by [9, 10] for situations where most projections are approximately Gaussian. The
present paper provides further insight into the general phenomenon. We extend the
results of [4] in two directions.

Section 2 gives necessary and sufficient conditions on the sequence (P (q))q≥d

such that “most” d-dimensional projections of P are similar to some distribution
Q on Rd. It turns out that these conditions are essentially the conditions of [4].
The novelty here is necessity. The limit distribution Q is automatically a mixture of
centered, spherically symmetric Gaussian distributions. The family of such measures
arises in [5] in a somewhat different context.

More precisely, let Γ = Γ(q) be uniformly distributed on the set of column-wise
orthonormal matrices in Rq×d (cf. Section 4.2). Defining

γ⊤P := LX∼P (γ
⊤X)

for γ ∈ Rd×q, we investigate under what conditions the random distribution Γ⊤P
converges weakly in probability to an arbitrary fixed distribution Q as q → ∞,
while d is fixed.
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2 L. Dümbgen and P. Zerial

In Section 3 we study the relationship between P = P (q) and the empirical
distribution P̂ = P̂ (q,n) of n independent random vectors with distribution P , also
independent from the projection matrix Γ = Γ(q). Suppose that the distributions
P (q) satisfy the conditions of Section 2. Then the random distributions P̂ (q,n) satisfy
these conditions, too, as q and n tend to infinity. Furthermore, the standardized
empirical measure n1/2

(
Γ⊤P̂ −Γ⊤P

)
satisfies a conditional Central Limit Theorem

given the data P̂ .
Proofs are deferred to Section 4. The main ingredients are Poincaré’s [11] Lemma

and a method invented by Hoeffding [7] in order to prove weak convergence of
conditional distributions. Further we utilize standard results from weak convergence
and empirical process theory.

2. The Diaconis-Freedman Effect

Let us first settle some terminology. A random distribution Q̂ on a separable metric
space (M, ρ) is a mapping from some probability space into the set of Borel prob-

ability measures on M such that
∫
f dQ̂ is measurable for any function f ∈ Cb(M),

the space of bounded, continuous functions on M. We say that a sequence (Q̂k)k of
random distributions on M converges weakly in probability to some fixed distribu-
tion Q if for each f ∈ Cb(M),

∫
f dQ̂k →p

∫
f dQ as k → ∞.

In symbols, Q̂k →w,p Q as k → ∞. Standard approximation arguments (e.g. as in

[14], Section 1.12) show that (Q̂k)k converges in probability to Q if, and only if,

DBL(Q̂k, Q) := sup
f∈FBL

∣∣∣
∫

f dQ̂k −
∫

f dQ
∣∣∣ →p 0 (k → ∞),

where FBL stands for the class of functions f : M → [−1, 1] such that |f(x)−f(y)| ≤
ρ(x, y) for all x, y ∈ M.

Now we can state the first result. Here and throughout, ‖ · ‖ denotes Euclidean
norm and Nd,v stands for the Gaussian distribution on Rd with mean vector 0 and
covariance matrix vId.

Theorem 2.1. The following two assertions on the sequence (P (q))q≥d are equiv-
alent:

(A1) There exists a probability measure Q on Rd such that

Γ⊤P →w,p Q as q → ∞.

(A2) If X = X(q), X̃ = X̃(q) are independent random vectors with distribution P ,
then

L(‖X‖2/q) →w R and X⊤X̃/q →p 0 as q → ∞
for some probability measure R on [0,∞).

The limit distribution Q in (A1) is a normal mixture, precisely,

Q =

∫
Nd,v R(dv)

with the limiting distribution R in (A2).
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Projections of High-Dimensional Distributions 3

Corollary 2.2. The random probability measure Γ⊤P converges weakly in probabil-
ity to the standard Gaussian distribution Nd,1 if, and only if, the following condition
is satisfied:

(B) For independent random vectors X = X(q), X̃ = X̃(q) with distribution P ,

‖X‖2/q →p 1 and X⊤X̃/q →p 0 as q → ∞. �

The implication “(A2) =⇒ (A1)” in Theorem 2.1 as well as sufficiency of condi-
tion (B) in Corollary 2.2 are due to [4] (see their Theorem 1.1 and Proposition 4.2).
They considered only (deterministic) empirical distributions P , but the extension
to arbitrary distributions P is straightforward; see also Section 3.

It should be pointed out here that neither Theorem 2.1 nor Corollary 2.2 are
just a consequence of Poincaré’s [11] Lemma, although the latter is somehow at the
heart of the proof. Poincaré showed that if Uq = (Uq,i)

q
i=1 is uniformly distributed

on the unit sphere in Rq, then the Lebesgue density of q1/2Uq,1 converges uniformly
to the standard Gaussian density on R. Translated into the present setting, one can
show that for a fixed vector x = x(q) ∈ R

q \ {0}, the Lebesgue density of the
random vector Γ⊤x converges uniformly to the Lebesgue density of Nd,v as q → ∞
and ‖x‖2/q → v > 0.

Example 2.3. Condition (A2) is not a very restrictive requirement. For instance,
suppose that X = U(µk + σkZk)

q
k=1, where (Zk)k≥1 is a sequence of independent,

identically distributed random variables with mean zero and variance one, while
U = U (q) is an orthogonal matrix in Rq×q and µ = µ(q) ∈ Rq, σ = σ(q) ∈ [0,∞)q.
Then condition (A2) is satisfied if, and only if,

(A3) ‖µ‖2/q → 0, ‖σ‖2/q → v ≥ 0 and max
1≤k≤q

σ2
k/q → 0

as q → ∞; see Section 4. Here R = δv and Q = Nd,v.

Example 2.4. Suppose that X ∼ P (q) has independent, identically distributed com-
ponents such that

IP(Xi =
√
q) = 1− IP(Xi = 0) = πq,

where
lim
q→∞

qπq = λ > 0.

Then L(‖X‖2/q) = Bin(q, πq) →w Poiss(λ) and L(X⊤X̃/q) = Bin(q, π2
q ) →w δ0 as

q → ∞. Hence (A2) is satisfied with R = Poiss(λ).

3. Empirical Distributions

From P to P̂ . If the distributions P = P (q) satisfy conditions (A1-2), then the

empirical distributions P̂ = P̂ (q,n) satisfy these conditions with high probability as
min(q, n) → ∞. Precisely, one can easily deduce from condition (A2) that

DBL

( 1

n

n∑

i=1

δ‖Xi‖2/q, R
)

→p 0

and
1

n2

n∑

i,j=1

min
{
|X⊤

i Xj/q|, 1
}

→p 0
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4 L. Dümbgen and P. Zerial

as min(q, n) → ∞. Thus Theorem 2.1 implies that

Γ⊤P̂ =
1

n

n∑

i=1

δΓ⊤Xi
→w,p

∫
Nd,v R(dv)

as both q and n tend to infinity, where the random projector Γ and the empirical
distribution P̂ are assumed to be stochastically independent.

Comparing P and P̂ , part 1. In some sense Theorem 2.1 is a negative, though
mathematically elegant result. It warns us against hasty conclusions about high-
dimensional data sets after examining a couple of low-dimensional projections. In
particular, one should not believe in multivariate normality only because several
projections of the data “look normal”. On the other hand, even small differences
between different low-dimensional projections of P̂ may be intriguing. Therefore
we study the relationship between projections of the empirical distribution P̂ and
corresponding projections of P in more detail.

In particular, we are interested in the halfspace norm

‖Γ⊤P̂ − Γ⊤P‖KS := sup
closed halfspaces H⊂Rd

|Γ⊤P̂ (H)− Γ⊤P (H)|

of Γ⊤P̂ − Γ⊤P . In case of d = 1 this is the usual Kolmogorov-Smirnov norm of
Γ⊤P̂ − Γ⊤P . In what follows we use several well-known results from empirical
process theory. Instead of citing original papers in various places we simply refer to
the excellent monographs of [12] and [14]. It is known that

(1) IE sup
γ∈Rq×d

‖γ⊤P̂ − γ⊤P‖KS ≤ C
√

q/n

for some universal constant C. For the latter supremum is just the halfspace norm
of P̂ − P , and generally the set of closed halfspaces in Rk is a Vapnik-Cervonenkis
class with Vapnik-Cervonenkis index k + 1. Inequality (1) does not capture the

typical deviation between d-dimensional projections of P̂ and P . In fact,

sup
γ∈Rq×d

IE ‖γ⊤P̂ − γ⊤P‖KS ≤ C
√

d/n,

which implies that

(2) IE ‖Γ⊤P̂ − Γ⊤P‖KS ≤ C
√
d/n.

Our next result implies the limiting distribution of
√
n‖Γ⊤P̂ − Γ⊤P‖KS under

conditions (A1-2). More generally, let H be a class of measurable functions from Rd

into [−1, 1]. Any finite signed measure M on Rd defines an element h 7→ M(h) :=∫
h dM of the space ℓ∞(H) of all bounded functions on H equipped with supremum

norm ‖z‖H := suph∈H |z(h)|. We shall impose the following three conditions on the
class H and the distribution Q =

∫
Nd,v R(dv):

(C1) There exists a countable subset Ho of H auch that each h ∈ H can be
represented as pointwise limit of some sequence in Ho.

(C2) The set H satisfies the uniform entropy condition

∫ 1

0

√
logN(u,H)du < ∞.
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Projections of High-Dimensional Distributions 5

Here N(u,H) is the supremum of N(u,H, Q̃) over all probability measures Q̃ on
R

d, and N(u,H, Q̃) is the smallest number m such that H can be covered with m
balls having radius u with respect to the pseudodistance

ρQ̃(g, h) :=

√
Q̃((g − h)2).

(C3) For any sequence (Qk)k of probability measures converging weakly to Q,

‖Qk −Q‖H → 0 as k → ∞.

Condition (C1) ensures that random elements such as ‖Γ⊤P̂ −Γ⊤P‖H are mea-
surable. An example for conditions (C1-2) is the set H of (indicators of) closed
halfspaces in Rd. Then condition (C3) is a consequence of general results by [2],
provided that Q({0}) = 0, i.e. R({0}) = 0.

A particular consequence of (C2) is existence of a centered Gaussian process BQ,
a so-called Q-bridge, having uniformly continuous sample paths with respect to ρQ
and covariances

IE
(
BQ(g)BQ(h)

)
= Q(gh)−Q(g)Q(h),

which can be proved via a Chaining argument.

Theorem 3.1. Suppose that the sequence (P (q))q≥d satisfies conditions (A1-2) of
Theorem 2.1, and suppose that H fulfills conditions (C1-3). Then

B(q,n) :=
(
n1/2

(
Γ⊤P̂ − Γ⊤P

)
(h)

)
h∈H

converges in distribution in ℓ∞(H) to BQ as min(q, n) → ∞.

Comparing P and P̂ , part 2. Theorem 3.1 takes into account the randomness in
both the data (i.e. P̂ ) and the projection matrix Γ. However, exploratory projection
pursuit means considering several projections of one data set. Thus we consider

independent copies Γℓ = Γ
(q)
ℓ , ℓ ≥ 1, of Γ which are also independent from P̂ . With

these projection matrices we define

B
(q,n)
ℓ :=

(
n1/2

(
Γ⊤
ℓ P̂ − Γ⊤

ℓ P
)
(h)

)
h∈H

and study the distribution of

B(q,n) :=
(
B

(q,n)
ℓ (h)

)
(ℓ,h)∈Λ×H

for Λ := {1, . . . , L} with an arbitrary fixed integer L ≥ 1.
Subsequently a particular decomposition of the Q-Brigde BQ will be used:

BQ = B′
Q +B′′

Q

with stochastically independent and centered Gaussian processes B′
Q, B

′′
Q on H,

where

IE
(
B′

Q(g)B
′
Q(h)

)
= Q(gh)−

∫
Nd,v(g)Nd,v(h)R(dv)

=

∫ (
Nd,v(gh)−Nd,v(g)Nd,v(h)

)
R(dv)

IE
(
B′′

Q(g)B
′′
Q(h)

)
=

∫
Nd,v(g)Nd,v(h)R(dv)−Q(g)Q(h).
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6 L. Dümbgen and P. Zerial

By means of Anderson’s Lemma (cf. [1]) or a further application of Chaining one
can show that both B′

Q and B′′
Q admit versions with uniformly continuous sample

paths.

Theorem 3.2. Suppose that the conditions of Theorem 3.1 are satisfied. Further,
let B′

Q,1, B
′
Q,2, B

′
Q,3, . . . be independent copies of B′

Q and independent from B′′
Q.

Then for any fixed integer L ≥ 1, the process B(q,n) =
(
B

(q,n)
ℓ (h)

)
(ℓ,h)∈Λ×H

con-

verges in distribution in ℓ∞(Λ×H) to

B :=
(
B′

Q,ℓ(h) +B′′
Q(h)

)
(ℓ,h)∈Λ×H

as min(q, n) → ∞.

Remark 3.3 (Understanding the decomposition BQ = B′
Q+B′′

Q heuristically). Note

that B(q,n)(h) =
√
n
∫
h(Γ⊤x) (P̂ − P )(dx). Thus

IE
(
B(q,n)(h)

∣∣ P̂
)

=
√
n

∫
IEh(Γ⊤x) (P̂ − P )(dx)

=
√
n

∫
Ñd,q,‖x‖(h) (P̂ − P )(dx)

with Ñd,q,‖x‖ := L(Γ⊤x). Here we utilize orthogonal invariance of L(Γ). Conse-
quently, IE(B(q,n) | P̂ ) is a standardized empirical process indexed by the special
functions x 7→ Ñd,q,‖x‖(h), h ∈ H, and

IE
(
IE
(
B(q,n)(g)

∣∣ P̂
)
IE
(
B(q,n)(h)

∣∣ P̂
))

=

∫
Ñd,q,‖x‖(g)Ñd,q,‖x‖(h)P (dx) −

∫
Ñd,q,‖x‖(g)P (dx)

∫
Ñd,q,‖x‖(h)P (dx).

Since Ñd,q,‖x‖ is close to Nd,‖x‖2/q and L(‖X‖2/q) is close to R for large q, the
latter covariance is close to
∫

Nd,v(g)Nd,v(h)R(dv) −
∫

Nd,v(g)R(dv)

∫
Nd,v(h)R(dv) = IE

(
B′′

Q(g)B
′′
Q(h)

)
.

Example 3.4. Suppose that d = 1, and let H consist of all indicator functions
1(−∞,t], t ∈ R. Then Theorems 3.1 and 3.2 are applicable whenever R({0}) = 0.
Writing M(t) instead of M(1(−∞,t]), the covariance functions of BQ, B

′
Q and B′′

Q

are given by

IE
(
BQ(s)BQ(t)

)
= Q(min{s, t})−Q(s)Q(t),

IE
(
B′

Q(s)B
′
Q(t)

)
= Q(min{s, t})−

∫
Φ(v−1/2s)Φ(v−1/2t)R(dv),

IE
(
B′′

Q(s)B
′′
Q(t)

)
=

∫
Φ(v−1/2s)Φ(v−1/2t)R(dv) −Q(s)Q(t)

for s, t ∈ R, whereQ(u) =
∫
Φ(v−1/2u)R(dv), and Φ denotes the standard Gaussian

distribution function.

Remark 3.5 (Conservative inference). Under conditions (A1-2) and (C1-3), pretend-

ing the empirical processes B
(q,n)
ℓ , 1 ≤ ℓ ≤ L, to be independent and identically

distributed leads typically to conservative procedures. Precisely, let U be an open
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Projections of High-Dimensional Distributions 7

subset of ℓ∞(H). For instance let U =
{
b ∈ ℓ∞(H) : ‖b‖H < κ

}
for some constant

κ > 0. Then it follows from Theorem 3.2 that

lim inf
min(q,n)→∞

IP
(
B

(q,n)
ℓ ∈ U for 1 ≤ ℓ ≤ L

)
≥ IP(BQ ∈ U)L.

This may be verified as follows: By Theorem 3.2 and the Portmanteau Theorem,
the limes inferior on the left hand side is not smaller than

IP
(
B′

Q,ℓ +B′′
Q ∈ U for 1 ≤ ℓ ≤ L

)
= IE IP

(
B′

Q,ℓ +B′′
Q ∈ U for 1 ≤ ℓ ≤ L

∣∣B′′
Q

)

= IE
(
IP
(
B′

Q +B′′
Q ∈ U

∣∣B′′
Q

)L)
,

and by Jensen’s inequality the latter expression is not smaller than

(
IE IP

(
B′

Q +B′′
Q ∈ U

∣∣B′′
Q

))L

= IP(B′
Q +B′′

Q ∈ U)L = IP(BQ ∈ U)L.

If (A.1-2) is strengthened to (B) and IP(BQ ∈ ∂U) = 0, then the previous
arguments lead to

lim
min(q,n)→∞

IP
(
B

(q,n)
ℓ ∈ U for 1 ≤ ℓ ≤ L

)

lim
min(q,n)→∞

IP
(
B

(q,n)
ℓ ∈ U for 1 ≤ ℓ ≤ L

)





= IP(BQ ∈ U)L,

because B′′
Q ≡ 0 almost surely.

Remark 3.6 (The conditional point of view). Considering several projections of one

data set means that we are interested in the conditional distribution of n1/2(Γ⊤P̂ −
Γ⊤P ), given P̂ . Indeed one may interpret Theorem 3.2 in the sense that for large q
and n,

L
(
B(q,n)

∣∣ P̂
)

≈ L
(
B′

Q +B′′
Q

∣∣B′′
Q

)
.

In case of the stronger condition (B) in Corollary 2.2, B′′
Q ≡ 0, and

L
(
B(q,n)

∣∣ P̂
)

≈ L(BQ).

Here are precise statements:

Corollary 3.7. Suppose that the conditions of Theorem 3.1 are satisified. Let F be
any bounded and continuous functional on ℓ∞(H) such that F (B(q,n)) is measurable
for all q ≥ d and n ≥ 1. Then

IE
(
F (B(q,n))

∣∣ P̂
)

→L IE
(
F (B′

Q +B′′
Q)

∣∣B′′
Q

)

as min(q, n) → ∞. In case of a degenerate distribution R,

IE
(
F (B(q,n))

∣∣ P̂
)

→p IEF (BQ)

as min(q, n) → ∞.

4. Proofs

4.1. Hoeffding’s (1952) trick

In connection with randomization tests, [7] observed that weak convergence of con-
ditional distributions of test statistics is equivalent to the weak convergence of the
unconditional distribution of suitable statistics in R2. His result can be extended
straightforwardly as follows.
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8 L. Dümbgen and P. Zerial

Lemma 4.1 (Hoeffding). For k ≥ 1 let Xk, X̃k ∈ Xk and Gk ∈ Gk be independent
random variables, where Xk, X̃k are identically distributed. Further let mk be some
measurable mapping from Xk × Gk into the separable metric space (M, ρ), and let
Q be a fixed Borel probability measure on M. Then, as k → ∞, the following two
assertions are equivalent:

(D1) L
(
mk(Xk, Gk)

∣∣Gk

)
→w,p Q.

(D2) L
(
mk(Xk, Gk),mk(X̃k, Gk)

)
→w Q⊗Q.

Applications of this equivalence with non-Euclidean spaces M are presented by
[13]. We shall utilize Lemma 4.1 in order to prove Theorem 2.1.

Proof of Lemma 4.1. Define Yk := mk(Xk, Gk) and Ỹk := mk(X̃k, Gk). Suppose
first that (D2) ist true, i.e. L(Yk, Ỹk) →w Q⊗Q. Then for any f ∈ Cb(M),

IE
((
IE(f(Yk) |Gk)−Q(f)

)2)

= IE
(
IE(f(Yk) |Gk)

2
)
− 2Q(f) IE IE(f(Yk) |Gk) +Q(f)2

= IE IE
(
f(Yk)f(Ỹk)

∣∣Gk

)
− 2Q(f) IE IE(f(Yk) |Gk) +Q(f)2

= IE
(
f(Yk)f(Ỹk)

)
− 2Q(f) IE f(Yk) +Q(f)2

→
∫

f(y)f(ỹ)Q(dy)Q(dỹ)−Q(f)2

= 0.

Thus L(Yk |Gk) →w,p Q.
On the other hand, suppose that (D1) is satisfied, i.e. L(Yk |Gk) →w,p Q. Then

for arbitrary f, g ∈ Cb(M),

IE
(
f(Yk)g(Ỹk)

)
= IE IE

(
f(Yk)g(Ỹk)

∣∣Gk

)

= IE
(
IE(f(Yk) |Gk) IE(f(Ỹk) |Gk)

)

→ Q(f)Q(g),

because IE(h(Yk) |Gk) →p

∫
h dQ and

∣∣ IE(h(Yk) |Gk)
∣∣ ≤ ‖h‖∞ < ∞ for each

h ∈ Cb(M). Thus we know that IEF (Yk, Ỹk) →
∫
F dQ ⊗Q for arbitrary functions

F (y, ỹ) = f(y)g(ỹ) with f, g ∈ Cb(M). But this is known to be equivalent to weak
convergence of L(Yk, Ỹk) to Q⊗Q; see Chapter 1.4 of [14].

Here is an alternative argument: With Q̂k := L(Yk |Gk), Assumption (D1) is

equivalent to DBL(Q̂k, Q) →p 0. To prove that L(Yk, Ỹk) → Q ⊗ Q, it suffices to

show that IE
(
F (Yk, Ỹk)

∣∣Gk

)
→p

∫
F dQ⊗Q for any function F : M×M → [−1, 1]

such that
∣∣F (y, ỹ)−F (z, z̃)

∣∣ ≤ ρ(y, z)+ ρ(ỹ, z̃) for arbitrary y, ỹ, z, z̃ ∈ M. But this
entails that F (y, ·), F (·, ỹ) ∈ FBL for arbitrary y, ỹ ∈ M. Consequently,

∣∣∣∣IE
(
F (Yk, Ỹk)

∣∣Gk

)
−
∫

F dQ⊗Q

∣∣∣∣

=

∣∣∣∣
∫

F d
(
Q̂k ⊗ Q̂k −Q⊗Q

)∣∣∣∣

≤
∫ ∣∣∣∣

∫
F (·, ỹ) d

(
Q̂k −Q

)∣∣∣∣ Q̂k(dỹ) +

∫ ∣∣∣∣
∫

F (y, ·) d
(
Q̂k −Q

)∣∣∣∣Q(dy)

≤ 2DBL(Q̂k, Q).
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4.2. Proofs for Section 2

That Γ = Γ(q) is “uniformly” distributed on the set of column-wise orthonormal
matrices in Rq×d means that L(UΓ) = L(Γ) for any fixed orthonormal matrix U ∈
Rq×q. For existence and uniqueness of the latter distribution we refer to Chapters 1-
2 of [6]. For the present purposes the following explicit construction of Γ described in
Chapter 7 of [6] is sufficient. Let Z = Z(q) := (Z1, Z2, . . . , Zd) be a random matrix
in Rq×d with independent, standard Gaussian column vectors Zj ∈ Rq. Then

Γ := Z(Z⊤Z)−1/2

has the desired distribution, and

(3) Γ = q−1/2Z (I +Op(q
−1/2)) as q → ∞.

This equality can be viewed as an extension of Poincaré’s [11] Lemma.

Proof of Theorem 2.1. Let Γ = Γ(Z) as above. Suppose that Z = Z(q), X = X(q)

and X̃ = X̃(q) are independent with L(X) = L(X̃) = P , and let Y, Ỹ be two
independent random vectors in Rd with distribution Q. According to Lemma 4.1,
condition (A1) is equivalent to

(A1′)

(
Γ⊤X

Γ⊤X̃

)
→L

(
Y

Ỹ

)
.

Because of equation (3) this can be rephrased as

(A1′′)

(
Y (q)

Ỹ (q)

)
:=

(
q−1/2Z⊤X

q−1/2Z⊤X̃

)
→L

(
Y

Ỹ

)
.

Now we prove equivalence of (A1”) and (A2) starting from the observation that

L
((

Y (q)

Ỹ (q)

))
= IE L

((
Y (q)

Ỹ (q)

) ∣∣∣X, X̃

)
= IE N2d(0,Σ

(q)),

where

Σ(q) :=

(
q−1‖X‖2 Id q−1X⊤X̃ Id
q−1X⊤X̃ Id q−1‖X̃‖2 Id

)
∈ R

2d×2d.

Suppose that condition (A2) holds. Then Σ(q) converges in distribution to a
random diagonal matrix

Σ :=

(
S2 Id 0

0 S̃2 Id

)

with independent random variables S2, S̃2 having distribution R. Clearly this im-
plies that

IE N2d(0,Σ
(q)) →w IE N2d(0,Σ) = L

((
Y

Ỹ

))

with Q = IE Nd(0, S
2Id). Hence (A1”) holds.

On the other hand, suppose that (A1”) holds. For any t = (t⊤1 , t
⊤
2 )

⊤ ∈ R2d, the
Fourier transform of L

(
(Y (q)⊤, Ỹ (q)⊤)⊤

)
at t equals

IE exp
(
i (t⊤1 Y

(q) + t⊤2 Ỹ
(q))

)
= IE exp(−t⊤Σ(q)t/2) = H(q)(a(t)),
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10 L. Dümbgen and P. Zerial

where i stands for
√
−1, a(t) :=

(
‖t1‖2/2, ‖t2‖2/2, t⊤1 t2

)⊤ ∈ R3, and

H(q)(a) := IE exp
(
−a1‖X‖2/q − a2‖X̃‖2/q − a3X

⊤X̃/q
)

denotes the Laplace transform of L
((
‖X‖2/q, ‖X̃‖2/q,X⊤X̃/q

)⊤)
at a ∈ R3. By

assumption, the Fourier transform at t converges to

IE exp(i t⊤1 Y ) IE exp(i t⊤2 Y ).

Setting t2 = 0 and varying t1 shows that the Laplace transform of L(‖X‖2/q)
converges pointwise on [0,∞) to a continuous function. Hence ‖X‖2/q converges in
distribution to some random variable S2 ≥ 0, and Q = IENd,S2 . Therefore, if S̃2

denotes an independent copy of S2, we know that H(q)(a(t)) converges to

IE exp(−a1(t)S
2) IE exp(−a2(t)S

2) = IE exp
(
−a1(t)S

2 − a2(t)S̃
2 − a3(t) · 0

)
.

A problem at this point is that for dimension d = 1 the set {a(t) : t ∈ R
2d} ⊂

R3 has empty interior. Thus we cannot apply the standard argument about weak
convergence and convergence of Laplace transforms. However, letting t2 = ±t1 with
‖t1‖2/2 = 1, one may conclude that

0 = lim
q→∞

(
H(q)(1, 1, 2) +H(q)(1, 1,−2)− 2H(q)(1, 0, 0)2

)

= lim
q→∞

(
H(q)(1, 1, 2) +H(q)(1, 1,−2)− 2 IE exp(−‖X‖2/q − ‖X̃‖2/q)

)

= 2 lim
q→∞

IE
(
exp

(
−‖X‖2/q − ‖X̃‖2/q

)(
cosh(2X⊤X̃/q)− 1

))
.

But for arbitrary small ǫ > 0 and large r > 0,

IE
(
exp

(
−‖X‖2/q − ‖X̃‖2/q

)(
cosh(2X⊤X̃/q)− 1

))

≥ exp(−2r)(cosh(2ǫ)− 1) IP
(
‖X‖2/q < r, ‖X̃‖2/q < r, |X⊤X̃/q| ≥ ǫ

)

≥ exp(−2r)(cosh(2ǫ)− 1)
(
IP
(
|X⊤X̃/q| ≥ ǫ

)
− 2 IP(‖X‖2/q ≥ r)

)

≥ exp(−2r)(cosh(2ǫ)− 1)
(
IP
(
|X⊤X̃/q| ≥ ǫ

)
− 2 IP(S2 ≥ r) + o(1)

)
.

Hence
lim sup
q→∞

IP
(
|X⊤X̃/q| ≥ ǫ

)
≤ 2 IP(S2 ≥ r).

Letting r → ∞ shows that X⊤X̃/q →p 0.

Proof of equivalence of (A2) and (A3). Proving that (A3) implies (A2) is elemen-
tary. In order to show that (A2) implies (A3) note first that conditions (A2) for the
distributions P (q) imply the same conditions for the symmetrized distributions

Po = P (q)
o := L(X − X̃) = L

((
σk(Zk − Zq+k)

)
1≤k≤q

)
.

Condition (A2) for these distributions reads as follows.

L
( q∑

k=1

(Zk − Zq+k)
2σ2

k/q
)

→w Ro = R ⋆ R and(4)

q∑

k=1

(Zk − Zq+k)(Z2q+k − Z3q+k)σ
2
k/q →p 0.(5)
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The factors (Zk − Zq+k)(Z2q+k − Z3q+k), 1 ≤ k ≤ q, in (5) are independent,
identically and symmetrically distributed. By conditioning on any one of these
factors one can deduce from (5) that max1≤k≤q σ

2
k/q → 0. But then

q∑

k=1

σ2
k(Zk − Zq+k)

2/q = 2‖σ‖2/q + op(1 + ‖σ‖2/q),

and one can deduce from (4) that ‖σ‖2/q converges to some fixed number v; in
particular, R = δv. Now we return to the original distributions P . Here the second
half of (A2) means that

k∑

k=1

(µk + σkZk)(µk + σkZq+k)/q

= ‖µ‖2/q +
q∑

k=1

µkσk(Zk + Zq+k)/q +

q∑

k=1

σ2
kZkZq+k/q

= op(1).

Since

IE

(( q∑

k=1

µkσk(Zk + Zq+k)/q
)2

)
=

q∑

k=1

µ2
kσ

2
k/q

2 = o(‖µ‖2/q),

IE

(( q∑

k=1

σ2
kZkZq+k/q

)2
)

=

q∑

k=1

σ4
k/q

2 → 0,

it follows that ‖µ‖2/q → 0.

4.3. Proofs for Section 3

Since Theorem 3.1 is just Theorem 3.2 with L = 1, it suffices to verify the latter.

Proof of Theorem 3.2. It suffices to verify the following two claims:

(F1) As q → ∞ and n → ∞, the finite-dimensional marginal distributions of the

process B(q,n) converge to the corresponding finite-dimensional distributions of B.

(F2) As q → ∞, n → ∞ and δ ↓ 0,

max
ℓ∈Λ

sup
g,h∈H:ρQ(g,h)<δ

∣∣∣B(q,n)
ℓ (g)−B

(q,n)
ℓ (h)

∣∣∣ →p 0.

The second condition, (F2), means that the processes B(q,n) are asymptotically
equicontinuous with respect to the pseudodistance

ρQ

(
(ℓ, g), (m,h)

)
:= 1{ℓ 6= m}+ ρQ(g, h)

on Λ×H.
In order to verify assertions (F1-2) we consider the conditional distribution of

B(q,n) given the random matrix

Γ = Γ(q) := (Γ1,Γ2, . . . ,ΓL) ∈ R
q×Ld.
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12 L. Dümbgen and P. Zerial

In fact, if we define

fℓ,h(v) := h(vℓ) for v = (v⊤1 , . . . , v
⊤
L )

⊤ ∈ R
Ld,

then
B

(q,n)
ℓ (h) = n1/2(Γ⊤P̂ − Γ⊤P )(fℓ,h).

Thus L(B(q,n) |Γ) is essentially the distribution of an empirical process based on
n independent random vectors with distribution Γ⊤P on RLd and indexed by the
family H̃ := {fℓ,h : ℓ ∈ Λ, h ∈ H}.

The multivariate version of Lindeberg’s Central Limit Theorem entails that for
large q and n, the finite-dimensional marginal distributions of B(q,n), conditional
on Γ, can be approximated by the corresponding finite-dimensional distributions of
a centered Gaussian process on Λ×H with the same covariance function, namely,

Σ(q)
(
(ℓ, g), (m,h)

)
:= Cov

(
B

(q,n)
ℓ (g), B(q,n)

m (h)
∣∣Γ

)

= Γ⊤P (fℓ,gfm,h)− Γ⊤P (fℓ,g)Γ
⊤P (fm,h).

It follows from equality (3) and the proof of Theorem 2.1 that

Γ⊤P →w,p Q :=

∫
NLd,v R(dv) as q → ∞,

and this should imply convergence of Σ(q) to some limiting function as well. It was
shown by [2] that condition (C3) is equivalent to

(6) lim
δ↓0

sup
h∈H

Q
{
y ∈ R

d : sup
z:‖z−y‖<δ

|h(z)− h(y)| > ǫ
}

= 0 for any ǫ > 0.

Note that the d-dimensional marginal distributions of Q are just Q. Therefore one
can easily deduce from (6) that for any fixed ǫ > 0,

lim
δ↓0

sup
f ′,f ′′∈H̃∪{1}

Q
{
v ∈ R

Ld : sup
w:‖w−v‖<δ

|f ′f ′′(w)− f ′f ′′(v)| > ǫ
}

= 0.

Hence a second application of [2] shows that

(7) sup
f ′,f ′′∈H̃∪{1}

|Γ⊤P (f ′f ′′)−Q(f ′f ′′)| → 0 as q → ∞,

because Γ⊤P →w,p Q. In particular, the conditional covariance function Σ(q) con-
verges uniformly in probability to the covariance function Σ, where

Σ
(
(ℓ, g), (m,h)

)
:= Q(fℓ,gfm,h)−Q(fℓ,g)Q(fm,h)

=

∫
NLd,v(fℓ,gfm,h)R(dv)−Q(g)Q(h)

=





∫
Nd,v(gh)R(dv)−Q(g)Q(h) if ℓ = m,

∫
Nd,v(g)Nd,v(h)R(dv)−Q(g)Q(h) if ℓ 6= m,

= Cov
(
B′

Q,ℓ(g) +B′′
Q(g), B

′
Q,m(h) +B′′

Q(h)
)

as q → ∞. This proves assertion (F1).
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As for assertion (F2), it is well-known from empirical process theory that condi-
tions (C1-2) imply that for arbitrary fixed ǫ > 0,

(8) max
ℓ∈Λ

IP
(

sup
g,h∈H:ρ

(q)
ℓ

(g,h)<δ

∣∣∣B(q,n)
ℓ (g)−B

(q,n)
ℓ (h)

∣∣∣ ≥ ǫ
∣∣∣Γ

)
→p 0

as min(q, n) → ∞ and δ ↓ 0. Here

ρ
(q)
ℓ (g, h) :=

√
Γ⊤P ((fℓ,g − fℓ,h)2) =

√
Γ⊤
ℓ P ((g − h)2).

But it follows from (7) that

max
ℓ∈Λ

sup
g,h∈H

|ρ(q)ℓ (g, h)2 − ρQ(g, h)
2| →p 0

as q → ∞. Hence one may replace ρ
(q)
ℓ in (8) with ρQ and obtain assertion (F2).

Proof of Corollary 3.7. The main trick is to replace conditional expectations with

suitable sample means. Note that conditional on P̂ , the processes B
(q,n)
1 , B

(q,n)
2 ,

B
(q,n)
3 , . . . are independent copies of B(q,n). Likewise, conditional on B′′

Q, the pro-
cesses B′

Q,1 + B′′
Q, B

′
Q,2 + B′′

Q, B
′
Q,3 + B′′

Q, . . . are independent copies of B′
Q + B′′

Q.
Hence

IE
∣∣∣IE

(
F (B(q,n))

∣∣ P̂
)
− L−1

L∑

ℓ=1

F (B
(q,n)
ℓ )

∣∣∣

IE
∣∣∣IE

(
F (B′

Q +B′′
Q)

∣∣B′′
Q

)
− L−1

L∑

ℓ=1

F (B′
Q,ℓ +B′′

Q)
∣∣∣





≤ L−1/2‖F‖∞

for any integer L ≥ 1. Consequently it suffices to show that for any fixed L ≥ 1,

the random variable L−1
∑L

ℓ=1 F (B
(q,n)
ℓ ) converges in distribution to the random

variable L−1
∑L

ℓ=1 F (B′
Q,ℓ + B′′

Q) as min(q, n) → ∞. But this is a consequence of
Theorem 3.2 and the Continuous Mapping Theorem, because

b =
(
bℓ(h)

)
(ℓ,h)∈Λ×H

7→ L−1
L∑

ℓ=1

F (bℓ)

defines a continuous mapping from ℓ∞(Λ ×H) to R.

Acknowledgement. Part of this work is contained in the diploma thesis of Perla
Zerial (1995, Univ. of Heidelberg). We are grateful to Jon Wellner, Aad van der
Vaart and an anonymous referee for their interest in this work, stimulating discus-
sions and pertinent questions.

References

[1] Anderson, T.W. (1955). The integral of a symmetric unimodal function over
a symmetric convex set and some probability inequalities. Proc. Amer. Math.

Soc. 6, 170-176.
[2] Billingsley, P. and F. Topsoe (1967). Uniformity in weak convergence. Z.

Wahrschein. verw. Geb. 7, 1-16.

imsart-coll ver. 2011/12/01 file: DFEffect_ims.tex date: February 20, 2012
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