
Opportunistic Content-Centric Data Transmission
During Short Network Contacts
Carlos Anastasiades, Tobias Schmid, Jürg Weber, Torsten Braun

Institute of Computer Science and Applied Mathematics
University of Bern,

3012 Bern, Switzerland,
{anastasiades, braun}@iam.unibe.ch

Abstract—In this paper, we investigate content-centric data
transmission in the context of short opportunistic contacts
and base our work on an existing content-centric networking
architecture. In case of short interconnection times, file transfers
may not be completed and the received information is discarded.
Caches in content-centric networks are used for short-term
storage and do not guarantee persistence. We implemented a
mechanism to extend caching on persistent storage enabling the
completion of disrupted content transfers. The mechanisms have
been implemented in the CCNx framework and have been eval-
uated on wireless mesh nodes. Our evaluations using multicast
and unicast communication show that the implementation can
support content transfers in opportunistic environments without
significant processing and storing overhead.
Index Terms—Content-Centric, Opportunistic, Content Trans-

mission, Mesh Nodes

I. INTRODUCTION

Opportunistic networking, a subset of delay-tolerant net-
working, defines communication in challenged networks
where connectivity and contact durations between devices are
unpredictable and intermittent. The main goal is to exploit
contact opportunities between users to support best-effort
content and service interactions where fixed network infras-
tructure may not be available. Based on exchanged beacon
messages, users detect neighboring devices as communication
opportunities and need to connect to neighbors individually to
perform content discovery and file transmissions.
In content-centric networks, routing and forwarding is based

on content names instead of host identifiers. Nodes can
express Interests to receive corresponding Data from any
node in response. The exchanged messages do not contain
any source or destination node addresses enabling caching in
any node. Because content availability may be independent
of neighboring devices, content-centric networking can sup-
port opportunistic communication without device discovery.
Content discovery is performed using multicast to quickly
detect available content sources. If a multicast Interest is
not answered by a neighboring node, no matching content is
available, which - in terms of content retrieval - is equivalent to
the unavailability of neighboring devices. Received content is
cached locally but persistence is not guaranteed for a long time
and, therefore, it can not be used in delay-tolerant networking.
In this paper, we focus on the Content-Centric Networking

approach proposed in [1], which is referred as CCN hereafter.

We investigate content-centric data transmission that follows
content discovery [2] in the context of short opportunistic
network contacts. We implemented an extension for persistent
delay-tolerant caching and evaluate it using both multicast and
unicast communication.
The remainder of this paper is organized as follows: Related

work is reviewed in Section II. Section III describes the
required extensions for delay-tolerant content-centric Data
transmission. Evaluation results are shown in Section IV.
Finally, in Section V we conclude our work.

II. RELATED WORK

A. Content-Centric Networking

CCN communication is based on two basic messages:
Interest and Data. Content is organized in segments similar
to chunks in BitTorrent [3]. File transfer is pull-based, and
thus, users have to express Interests in every segment to
obtain the entire content. CCNx [4] provides an open source
reference implementation of CCN. The core element of the
implementation is the CCN daemon (CCND), which performs
message processing and forwarding decisions. Links from a
CCND to other CCND entities are called faces and are defined
by TCP/IP or UDP/IP sockets to other mobile hosts or by Unix
sockets to local applications on the same host. A CCND has
the following three main memory components:
1) The Forwarding Information Base (FIB) contains for-
warding entries to direct Interests towards potential
content sources.

2) The Pending Interest Table (PIT) stores unsatisfied for-
warded Interests together with the face on which they
were received. If Data is received in return, it can be
forwarded based on face information in the PIT.

3) The Content Store (CS) is used as short-term cache in a
CCN router storing received Data packets temporarily.

The freshnessSeconds value in the content header specifies
the availability of a segment in the CS after its reception. The
Interest Lifetime value in the Interest header determines how
long an Interest remains in the PIT. Since no Interests are
forwarded for existing PIT entries, the Interest lifetime has a
direct impact on when Interests can be re-expressed. Data files
are persistently stored and shared with others in repositories.

s
o
u
r
c
e
:

h
t
t
p
:
/
/
b
o
r
i
s
.
u
n
i
b
e
.
c
h
/
4
0
2
5
1
/

|

d
o
w
n
l
o
a
d
e
d
:

1
6
.
5
.
2
0
1
6

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Bern Open Repository and Information System (BORIS)

https://core.ac.uk/display/33067966?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

B. CCN Content Names
Content names in CCN [1] follow a hierarchical struc-

ture composed of arbitrary numbers and names of com-
ponents. Names may follow a DNS-like structure using
routable name prefixes to support Internet traffic in the form
/<domain>/<prefix>/. The actual content may be stored
at multiple static sites and loop-free forwarding will guar-
antee that no duplicates are forwarded. In case of global
source mobility, naming structures using proxy-based res-
olution [5] and location/identity splits [6], [7], [8] are
proposed. By using temporal name components in the
form /<Point of Attachment>/<Device Id>/<prefix>/ con-
tent that is generated and located at specific devices can be
moved together with the device to other locations. The locator
Point of Attachment is a prefix that defines the location,
where the device is attached. These approaches are based
on a static, structured core network such as the Internet and
cannot solely rely on opportunistic contacts. In opportunistic
networks, the network topology is unpredictable and dynamic.
In such an environment, the location of content can not be
clearly specified. Based on opportunistic content exchange,
content can be stored on multiple devices. A user may look
for specific content names relative to the publisher’s name
space, e.g., /publisherA/video/ or /publisherA/audio/. Content
consumers may easily learn the naming schemes of their
favorite publishers such as BBC, iTunes or Netflix. Reliable
content publishers can be identified with the help of social
structures built by e.g., trusted communities, reputation or
rating systems.

C. Mobile Opportunistic Communication
CCN in mobile networks has already been the subject of

several studies. Early works investigated the applicability of
existing MANET routing protocols for mobile CCN based on
analytical models [9]. A hierarchical CCN routing scheme
based on distributed meta information has also been imple-
mented [10]. The Listen First, Broadcast Later (LFBL) [11]
algorithm limits forwarding of Interests at every node based on
its relative distance to the content source. However, all these
works assume continuous network connectivity and do not
consider intermittent connectivity. Opportunistic and delay-
tolerant communication has been investigated extensively in
the last decade. The Bundle Protocol [12] describes a delay-
tolerant protocol stack to support intermittent connectivity.
Nodes can register in endpoint identifiers to form multicast
trees and these registrations are exchanged when two devices
meet. Content is transmitted in bursts and stored locally
until the next forwarding opportunity arises. Haggle [13]
describes a data-centric network architecture for opportunistic
networks. The platform uses device discovery to establish
point-to-point connections between nodes. Data is described
by meta data composed of multiple keywords. Users express
and forward interests containing keywords when connected to
other devices. All data objects that match the keywords are
exchanged and forwarded to the requesting node by a push-
based dissemination model.

CCN can support opportunistic networking without device
discovery because data transmissions are based on available
content names in the vicinity. Investigations [14] already
identified the potential of CCN for delay-tolerant networking
(DTN). The effectiveness of CCN for opportunistic one-hop
content discovery has been investigated in earlier work [2].
There are also related efforts in creating a new content-
centric opportunistic networking architecture inspired by CCN
[15]. In this work, we describe a cache extension to enable
delay-tolerant content-centric communication and evaluate our
design in a prototype implementation on wireless mesh nodes.
To the best of our knowledge, this is the first work that
evaluates the feasibility of CCNx [4] for DTN communication.

III. CONTENT TRANSMISSION
During short opportunistic contacts to content sources, data

transmissions may not be completed. If no alternative content
sources are available, content is kept in the requester’s cache
until it can be completed and properly stored. Unfortunately,
persistence of data in CCN caches is not guaranteed since
caches are limited in size and can be overwritten by other
files depending on the cache replacement strategy. Caches are
built upon high-speed memory to support quick forwarding.
In delay-tolerant networking, memory speed is not important
since delays between successive requests are large. Therefore,
in case of disruptions, partial data files can be stored on and
loaded from secondary storage on the node.

A. Integration with existing solutions
Every CCN Interest is removed from the PIT if no answer

is received within the lifetime of the Interest. Increasing the
Interest lifetime to obtain long-living Interests may enable the
integration with existing DTN protocols such as the Bundle
protocol [12] but it would result in two major drawbacks:
1) Multiple Interests are required to obtain all file segments.
Since a requester does not know the length of the
requested file until receiving the last segment, proactive
transmission of multiple Interests would be required. If
all entries are valid for a long time, the PIT size would
increase drastically degrading lookup performance.

2) Long-living Interests stay in the PIT and prevent
forwarding of similar Interests because the request
is already pending. Forwarding and retransmission is
blocked for the entire lifetime period even if the en-
vironment has changed due to mobility and the content
would be available.

Therefore, the Interest lifetime should be limited to a rather
small value but Interests can be re-expressed periodically
to account for changes in availability. As we will see later
in Section IV, short Interest lifetime values are particularly
advantageous during multicast communication due to shorter
re-expression times in case of collisions.

B. Storage Persistence
Every content segment is named individually using a seg-

ment number. A CCN requester requests the first segment

followed by n − 1 subsequent segments depending on the
pipeline size n, i.e., the maximum number of segments that
can be requested concurrently. In case of disruptions, content
transfers are aborted and can be restarted again at a later
time. If disruptions are short, the downloaded segments may
still be available in the local cache of the requester and no
redundant Interests or Data need to be transmitted. However,
if disruptions are long, received objects may be removed from
the cache. To obtain storage persistence, the requester needs
to store the partial file and Meta Data on a secondary storage.
In the following two Subsections we will explain what

Meta Data is required and describe the mechanisms to resume
disrupted file transfers by a sample Download Sequence.
1) Meta Data: For every incomplete and aborted file trans-

mission, the received partial data is stored in the file name.part
and the Meta Data in the file name.meta. The required Meta
Data to perform a resume operation is listed in Table I.

1. Name of content object
2. Version of content object
3. Next segment
4. File Position
5. Publisher’s public key digest
6. Expiration Time

TABLE I: Meta Data stored during incomplete transmissions

Name and version of the content object can be stored to-
gether in a string. The name is used to relate the file name.meta
to the corresponding partial file name.part. The third field
defines the segment number that needs to be received next. The
file position depends on the size of the received segments and
defines where in name.part the new segment needs to be ap-
pended. The publisher’s public key digest is used to check that
the resumed file transfer is requesting content from the same
publisher. To avoid incomplete files that never get completed
or storing Meta Data of real-time traffic, the expiration time
indicates a timeout value after which name.meta and name.part
can be deleted. The expiration time is based on the reception
time and freshnessSeconds of the first received segment. In
case of real-time traffic, e.g., if the content is only valid for a
few seconds, no Meta Data needs to be stored.
2) Download Sequence: We illustrate the content transfer

with an example. Figure 1a shows a sample time sequence
and Figure 1b depicts the corresponding storage management
at the requester.
At the beginning of a file transfer in step 1), the application

checks for available name.meta files. If name.meta is available,
it is loaded, otherwise, the file transfer starts from the begin-
ning by transmitting an Interest request r0 in segment s0. If
a content object is available and the segment is received, the
requester can start expressing multiple requests at the same
time in step 2). Similar to TCP slow start, the number of
Interests concurrently transmitted is increasing exponentially
by doubling the pipeline window size pwsize for correctly
received segments up to the maximum value pmax, i.e., the
pipeline size. Since requesters do not know the size of a
requested content object until receiving the last segment, all

Data segments are requested sequentially. The file transfer
application uses a buffer of size pmax to temporarily store
received segments until they can sequentially be written to
name.part. In steps 3) and 4) more segments are received and
pwsize is adapted accordingly.
In case of an Interest timeout, i.e., not receiving the seg-

ment before a timer expires, pwsize is reduced to 1 and the
corresponding segment is requested again. This strategy targets
particularly situations where requesters are disconnected from
nodes that provide content and every Interest retransmission
would result in a timeout. In case of timeouts due to collisions,
other segments may have been received correctly and can be
quickly retrieved from the CCND cache without transmitting
new Interests. If the number of unsuccessful Interest retrans-
missions exceeds a threshold tthresh, a timeout event, i.e.,
disconnection from the content source is assumed. In this case
as shown in step 5), the Meta Data is stored in name.meta
and all buffers are released. Therefore, segments that have
already been received but not yet written to name.part such
as segment s5 are discarded because segment s4 has not been
received. The reasoning behind discarding is the following.
First, segment sizes may vary, and thus, the length of a
potential placeholder in name.part is not known. Second,
pipelining works efficiently if it is only increased from a
certain value. In case of placeholders and holes in name.part,
more state information is required. Because the file size is
not known, no fixed bit fields indicating received and missing
segments similar to BitTorrent [3] can be used. However, the
number of segments that are not stored due to disruptions is
limited by the pipeline size pmax. In case of a pipeline size
of 16 and a segment size of 4096 bytes, this corresponds to
less than 70KB redundant data.
Detecting the availability of a content object can be per-

formed by discovery mechanisms, which are outside the scope
of this paper. In the simplest way, the environment can be
probed periodically for the content. If a resume operation
is performed (step 6), Meta Data is loaded from name.meta
and the download is resumed from the last missing segment.
pwsize starts again at 1 and is increased exponentially for
correctly received segments (step 7). If the last segment has
been received (step 8), which is indicated by a flag, the file
transfer is finished. All Meta Data and buffers are released,
name.meta is deleted, and name.part is renamed to name.

IV. EVALUATION
We implemented content retrieval with resume capability

as CCN application based on the Meta Data described in
Subsection III-B1 and included it in the CCNx v0.6 source
code. The implementation was tested on PCEngines ALIX
3D2 system boards [16] running with ADAM [17], a small-
footprint embedded operating system. The current image was
using Linux kernel 3.2.18. The ALIX boards have a 500MHz
AMD Geode GPU, 256MB DDR DRAM and are equipped
with two 802.11 miniPCI radio cards. All nodes use the
IEEE802.11a wireless standard for transmission and the wire-
less network interfaces are configured in ad hoc mode.

(a) Resume Sequence (b) Resume Storage

Fig. 1: Download Sequence with Resume capability.

A. Evaluation Scenarios

The evaluation is performed in a static setting of two
nodes: one content source shares content via a repository
and one requester transmits Interests for the content. In our
scenarios, we assume short contacts between requester and
content source so that the entire file cannot be completed at
once. We implement this by defining disruption points, i.e.,
specific numbers of segments, after which the requester will
stop requesting segments emulating a disruption timeout.
In our evaluations, there is always exactly one disruption per

measurement and we measure the effective transfer time based
on two file transfers: First, the transfer time until the disruption
point is reached and second, the transfer time of a second
transfer that is always successful. If the resume operation is
enabled, the application loads the stored Meta Data before
starting the second transfer. After long disruptions, the content
from the first incomplete file transfer is not available anymore
in the cache. This is enforced by restarting the CCND daemon
after the first transfer to clear the cache.
The total transfer time in opportunistic networks would also

depend on the time a connection is disrupted, i.e. the disruption
time. However, the disruption time is an additive constant that
could be added to the measured effective transfer time.
In dynamic environments where neighbors change fre-

quently, no static unicast FIB entries can be configured. Since
CCN messages do not include a destination node address,
they can be efficiently transmitted on wireless broadcast media
using multicast MAC frames. In the following sections, we
compare multicast with unicast communication by configuring

the FIB accordingly. The two-node scenario indicates the
baseline performance of multicast communication since there
is no benefit compared to unicast. However, multicast perfor-
mance will improve compared to unicast if more requesters
are available at the same time. In our setting, the main
differences between unicast and multicast are the mechanisms
on the MAC layer. Since MAC acknowledgements are only
transmitted in case of unicast, automatic retransmission can
only be performed during unicast communication. Thus, the
contention window, which controls the delay until a packet
is transmitted on the MAC layer, can only be adapted during
unicast. During multicast, the contention window is by default
larger resulting in lower transfer rates.

B. Interest Lifetime for Multicast Content Transmission
During multicast communication, collisions can only be

detected by unanswered Interest requests. The Interest lifetime
has direct impact on Interest retransmissions and, thus, on
transfer rates, because no Interests are forwarded in case of
existing PIT entries. In this subsection, we evaluate different
Interest lifetime values for multicast communication.
In Figure 2, we evaluate the throughput of a 2MB file with

a segment size of 4096 bytes using Interest lifetimes of 4.0,
1.0, 0.5 and 0.25 seconds. The x-axis shows different pipeline
sizes and the y-axis the achieved throughput. An Interest
lifetime of 4 seconds is the default value in current CCNx
implementations. Transmissions with large Interest lifetimes
result in low data rates for small pipeline sizes because of
large retransmission delays in case of packet collisions. The
throughput increases with larger pipeline sizes from 16 up

 0

 0.5

 1

 1.5

 2

 2.5

 3

tra
ns

fe
r r

at
e

[M
bp

s]

pipeline size
4 8 16 32 64 128 256 512

#1
#2
#3
#4

#1

#2

#3

#4

0.25s
0.5s
1.0s
4.0s

Fig. 2: Multicast Transfer rate with different Interest Lifetimes

to 512 by a factor of 4, i.e., from 0.38Mbps to 1.50Mbps.
The reason for this increase is the larger number of Interests
that are transmitted concurrently until a timeout has been
detected. These Interests may retrieve and pre-fetch content
that is then stored in the content store of the requester since
not all of them will result in a collision. After a timeout is
detected, only Interests that timed out need to be retransmitted
and subsequent Interests can be served from the pre-fetched
content in the cache. However, this strategy will cause 75%
more transmitted Interests compared to a pipeline size of 16
due to more collisions.
While Interest lifetimes of 4 seconds are reasonable in

multi-hop networks, lower values can be used during oppor-
tunistic one-hop communication. By decreasing the Interest
lifetime to 0.25s, the throughput increases drastically by a
factor of 7.2. Pipeline sizes above 16 and Interest lifetimes
shorter than 0.25s do not result in any performance gain.
In Figure 3 we investigate the message overhead during

the transmission of a 5MB file using a pipeline size of 16.
The x-axis denotes the different Interest lifetimes. The left y-
axis shows the number of transmitted Interests and received
content objects. The right y-axis shows the number of received
duplicated content objects. The number of transmitted Interests
depends on the number of collisions and is the same for
all evaluated Interest lifetimes. An Interest lifetime of 0.25s
results in a few occasional duplicates: the median value is 0,
the 75-quartile is 1 and the maximum value, which occured
only once in 100 measurements, is 30. The reason for the
duplicates are Interests that are retransmitted shortly before
the corresponding content object is received. Since content
sources do not memorize recently transmitted content, they
will respond to retransmitted Interests again as we have already
observed in [2]. In the worst case, an Interest lifetime of 0.25s
results in an overhead of 2.34% duplicate content objects,
which corresponds to less than 140KB. However, the median
transfer speed increases from 0.5s to 0.25s by 48% from
1.79Mbps to 2.66Mbps.

C. Effect of Resume Capability

In this subsection, we evaluate file transfers with resume
functionality as described in Section III-B2 and compare it
to regular CCNx file transfer applications without resume
functionality. Figure 4 shows the effective transfer time of

 1200

 1250

 1300

 1350

 1400

 1450

 1500

 0

 20

 40

 60

 80

 100

In

te
re

st
s/

C
on

te
nt

 o
bj

ec
ts

du

pl
ic

at
ed

 C
on

te
nt

 o
bj

ec
ts

Interest lifetime
4.00 1.00 0.50 0.25

#1
#2
#3

#1

#2

#3

transmitted Interests
received Data
duplicate Data

Fig. 3: Interests, Content objects and duplicate Content objects
for different Interest lifetimes

 0

 100

 200

 300

 400

 500

 600

 700

tra
ns

fe
r t

im
e

in
 [s

]

disruption points in [KB]
512 1024 1536 2048 2560 3072 3584 4096 4608 5120

#1
#2
#3
#4
#5
#6

#1

#2
#3

#4
#5

#6

1024
1024 resume
2048
2048 resume
4096
4096 resume

Fig. 4: Transfer time of a multicast file download with different
segment sizes and disruption points

a 5MB file exchanged via multicast using different segment
sizes. The colors represent the different segment sizes denoting
the effective data portion in Data messages, i.e., without
CCN headers containing names, signatures etc. The x-axis
denotes the disruption points represented by the received KBs
before the disruption and the y-axis shows the transfer time in
seconds. The file transfer application with resume (continuous
lines) and without resume (dotted lines) uses a stop-and-wait
strategy to transmit Interests, i.e., using a pipeline size of 1.
Without resume functionality, the effective transfer times

increase if the transfer is interrupted later because all segments
need to be requested again in the second transfer. If the first
download is interrupted immediately before the transfer has
been finished, almost twice the amount of data needs to be
transmitted requiring almost twice the amount of time. If
resume operations are enabled, the transfer time is constant
independent of the disruption points since received content is
persistently stored at the requester. In our evaluations, there is
always only one disruption and the second transfer attempt is
always successful. Therefore, the transfer time can be reduced
by up to 100%. However, in the worst case, when nodes only
meet for a short time and file transfers can not be completed at
once, file transfers without resume would never be completed.
The processing overhead for handling Meta Data is neg-

ligible. The size of the Meta Data depends on the size of
the content name and the length of the publisher’s public
key digest, but it is usually significantly lower than 1KB.
Resume operations do not have a negative impact on file
transfers without disruptions. Evaluations of complete file

 0

 20

 40

 60

 80

 100

 120

 140

tra
ns

fe
r t

im
e

in
 [s

]

disruption points in [KB]
512 1024 1536 2048 2560 3072 3584 4096 4608 5120

#1
#2
#3
#4
#5

#1

#2

#3
#4
#5

1
2
4
8
16

Fig. 5: Transfer time of a multicast file download with different
pipeline sizes and disruption points

transfers did not show any increase in transfer time caused
by Meta Data processing. The MTU of the network cards
on the ALIX boards is 2274 bytes, thus, block sizes larger
than 1024 result in packet fragmentation on the IP layer. We
observe that despite fragmentation, larger block sizes result
in shorter transfer times due to smaller data and processing
overhead since fewer packets need to be transmitted.
In Figure 5 the effective multicast transfer times of a 5MB

file using the resume application, a segment size of 4096
bytes and pipeline sizes of 1, 2, 4, 8 and 16 are shown. The
throughput increases for pipeline sizes of 1 to 16 by 390%. The
largest relative increase, i.e., 78% is observed when increasing
the pipeline size from 1 to 2 because collisions do not affect
subsequent transmissions in the same restrictive way. When
using a pipeline size of 1, no communication is performed in
case of a collision until a retransmission is performed. Due to
space constraints, we do not show the results of the unicast
measurements. However, the throughput increase compared to
multicast is between 56% with a pipeline size of 1 and up to
97% with a pipeline size of 16. Therefore, if only one requester
is available and the content source is known after discovery,
direct node addressing would be favorable.

V. CONCLUSIONS

In opportunistic networks, where contacts between devices
are unpredictable, CCN content discovery is performed using
multicast to quickly find available content objects without
knowing and configuring connections to neighboring hosts. In
this work, we have shown that CCN can be used for delay-
tolerant networking. Requesters need to periodically transmit
multicast Interest requests to find available content sources.
If connectivity to a content source is intermittent and short,
file transmissions may not be completed at once and need to
be resumed. Since CCN caches are only used for short term-
storage, persistence is not guaranteed. Therefore, we extended
caching on mobile nodes by long-term storage that persists in
case of long disruptions. The required changes can be imple-
mented as application without modification of the CCND. File
transfers are resumed by maintaining Meta Data of received
partial files, which is stored after disruptions. While strategies
without resume operations may never be successful, resumed
file transmissions result in constant effective transfer times

independent of the disconnection time from a content source.
Evaluations showed that the processing and storage overhead
is negligible and does not affect content transfers in any way.
If content sources are unknown, transfers need to be per-

formed by multicast. In the absence of MAC layer acknowl-
edgments in case of multicast communication, collisions may
result in long retransmission delays degrading the achievable
throughput. Since opportunistic communication is performed
via one hop, the Interest lifetime can be decreased to a lower
value to reduce retransmission delays. Evaluations have shown
that decreasing the Interest lifetime can increase multicast
throughput by a factor of 7.2 without significantly increasing
the number of transmitted messages.
As future work, we will evaluate the resume functionality

in mobile scenarios using a hybrid emulation framework.
ACKNOWLEDGMENTS

The work presented in this paper was partially supported by
the Swiss State Secretariat for Education and Research under
grant number C10.0139.

REFERENCES
[1] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N. H. Briggs,

and R. L. Braynard, “Network Named Content,” in 5th ACM CoNEXT,
Rome, Italy, December 2009, pp. p. 1–12.

[2] C. Anastasiades, A. Uruqi, and T. Braun, “Content discovery in oppor-
tunistic content-centric networks,” in 5th IEEE WASA-NGI, Clearwater,
FL, USA, October 2012, pp. p. 1048–1056.

[3] B. Cohen, “Incentives Build Robustness in BitTorrent,” in 1st P2PEcon,
Berkely, USA, June 2003, pp. p. 1–5.

[4] (2013, September) CCNx. [Online]. Available: http://www.ccnx.org/
[5] J. Lee, D. Kim, M.-W. Jang, and B.-J. Lee, “Proxy-based mobility

management scheme in mobile content centric networking (ccn) envi-
ronments,” in ICCE, January 2011, pp. p. 595–596.

[6] F. Hermans, E. Ngai, and P. Gunningberg, “Mobile sources in an
information-centric network with hierarchical names: An indirection
approach,” in 7th SNCNW, Linkping, Sweden, May 2011.

[7] R. Ravindran, S. Lo, X. Zhang, and G. Wang, “Supporting seamless
mobility in named data networking,” in IEEE FutureNet V, 2012.

[8] D.-H. Kim, J.-H. Kim, Y.-S. Kim, H. s. Yoon, and I. Yeom, “Mobility
support in content centric networks,” in IEEE Sigcomm ICN Workshop,
Helsinki, Finland, August 2012.

[9] M. Varvello, I. Rimac, U. Lee, L. Greenwald, and V. Hilt, “On the
Design of Content-Centric MANETs,” in 8th WONS, Bardonecchia,
Italy, January 2011, pp. p. 1–8.

[10] S. Y. Oh, D. Lau, and M. Gerla, “Content Centric Networking in Tactical
and Emergency MANETs,” in IFIP Wireless Days, Venice, Italy, October
2010, pp. p. 1–5.

[11] M. Meisel, V. Pappas, and L. Zhang, “Listen First, Broadcast Later:
Topology-Agnostic Forwarding under High Dynamics,” in ACITA, Lon-
don, UK, September 2010, pp. p. 1–8.

[12] K. Scott and S. Burleigh. (2007, November) Bundle protocol
specification. RFC 5050. [Online]. Available: http://tools.ietf.org/html/
rfc5050

[13] J. Su, J. Scott, P. Hui, J. Crowcroft, E. D. Lara, C. Diot, A. Goel,
M. H. Lim, and E. Upton, “Haggle: seamless networking for mobile
applications,” in 9th UbiComp, Innsbruck, Austria, September 2007, pp.
p. 391–408.

[14] G. Tyson, J. Bigham, and E. Bodanese, “Towards an information-centric
delay-tolerant network,” in 2nd IEEE NOMEN, Turin, Italy, April 2013.

[15] B. Batista and P. Mendes, “ICON - An Information Centric Architecture
for Opportunistic Networks,” in 2nd IEEE NOMEN, Turin, Italy, April
2013.

[16] (2013, September) PCEngines. [Online]. Available: http://www.
pcengines.ch/

[17] T. Staub, S. Morgenthaler, D. Balsiger, P. Goode, and T. Braun, “Adam:
Administration and deployment of adhoc mesh networks,” in 3rd IEEE
HotMESH, June 2011, pp. p. 1–6.

