
Enterprise Integration of Smart Objects using
Semantic Service Descriptions

Matthias Thoma∗† Torsten Braun † Carsten Magerkurth∗
∗SAP (Switzerland) Inc., Althardstrasse 80, 8105 Regensdorf, Switzerland

matthias.thoma@sap.com, braun@iam.unibe.ch, carsten.magerkurth@sap.com
†Communication and Distributed Systems, University of Bern, Neubrückstrasse 10, 3012 Bern, Switzerland

Abstract—Integrating physical objects (smart objects) and
enterprise IT systems is still a labor intensive, mainly manual
task done by domain experts. On one hand, enterprise IT
backend systems are based on service oriented architectures
(SOA) and driven by business rule engines or business process
execution engines. Smart objects on the other hand are often
programmed at very low levels. In this paper we describe
an approach that makes the integration of smart objects with
such backends systems easier. We introduce semantic endpoint
descriptions based on Linked USDL. Furthermore, we show how
different communication patterns can be integrated into these
endpoint descriptions. The strength of our endpoint descriptions
is that they can be used to automatically create REST or SOAP
endpoints for enterprise systems, even if which they are not able
to talk to the smart objects directly. We evaluate our proposed
solution with CoAP, UDP and 6LoWPAN, as we anticipate the
industry converge towards these standards. Nonetheless, our
approach also allows easy integration with backend systems, even
if no standardized protocol is used.

I. INTRODUCTION

In the intersection between enterprise IT systems and the
embedded world, also known as the Internet of Things (IoT)
or Cyber-Physical Systems (CPS) one can currently observe
two major trends: (i) Standardization of network protocols, in
particular IP-based protocols (6LoWPAN) [1] and (ii) use of
high level application protocols, in particular CoAP [2]. Both
developments are driven by the needs of software producers
that need standards and higher abstraction levels, thus reducing
the gap between how software is traditionally written and
the very specialized knowledge currently needed to write
applications for wireless sensor networks [3]. They are crucial
for an adoption of sensor network technology in industrial
applications, where interoperability plays a decisive role.

Going a step beyond interoperability at a very technical
level, semantic integration of sensor and actuator devices is
foreseen as one of the next game changers. In this paper we
introduce a novel and industrially applicable semantic service
integration framework. Compared to previous work it is not
only for describing sensor landscapes as, for example, W3C
SSN1, but is completely usable to describe service endpoints at
a low level. Other than WSDL, and existing solutions around
WSDL, our solution is fully integrated into the semantic web,
and does not use anntotations as SA-WSDL does. Additonally,
we provide an quantitative evaluation of our semantic service
descriptions on actual hardware, while most of the previous
work on semantic integration stays at a high level and has
never been running on real hardware.

We first briefly introduce our idea of a semantic service
description based IoT-integration platform and then go on
by presenting two concepts that allow an easy integration
of embedded devices into enterprise environments: semantic
endpoint descriptions and Smart Endpoint Generation (SEG).

1http://www.w3.org/2005/Incubator/ssn/XGR-ssn-20110628/

Semantic endpoint descriptions are used to describe the prop-
erties of an endpoint and the communication paradigm used,
while smart endpoint generation provides an enterprise appli-
cation with various means to access services provided by smart
objects based on the original semantic service description.

II. RELATED WORK

Enterprise Integration of Wireless Sensor Networks has
traditionally been done either by using WSDL [4], HTTP as
in the web of things movement [5] or by introducing proxy-
like components for a conversion between sensor network
protocols and the enterprise side. The idea of describing
services in an ontological way is part of the Linked Services
movement [6]. Linked USDL [7], which is used in this paper,
is one instantiation of Linked Services. Nonetheless, Linked
Service approaches are focusing on describing the services
at a high level and were not designed to enable low-level
interoperability, in contrast to WSDL, which is sometimes
supported. RDF as a data format within WSNs has gained
some attention recently, especially in the IoT-context[8]. While
all these works concentrate on specific aspects, our work can
be seen as an umbrella providing an unified way to describe
and access sensor services.

Linked Services are not the only way to introduce seman-
tics. Apart from our top-down approach from semantics to
endpoints there are also alternative, more endpoint centric,
ways: SA-WSDL [9] introduces semantic annotations into the
endpoint description. Furthermore microformat based solu-
tions such as hrests [10] introduce semantics into (web-based)
service documentation. Closest to our approach is OWL-S
[11], which also uses semantic web technologies to model
services. OWL-S is tailored towards web-services and does
not take business aspects into consideration.

III. INTERGATION PLATFORM

Our semantic endpoint descriptions and the smart endpoint
generation are to be used within a SOA based enterprise
integration platform. The main layers of our architecture are
shown in Figure 1.

Fig. 1. Layered Architecture

The communication between the smart objects and the
integration platform is done via specialized physical resource
adapters. They are feeding their knowledge about the re-
spective resources into the knowledge repositories. Access to

s
o
u
r
c
e
:

h
t
t
p
:
/
/
b
o
r
i
s
.
u
n
i
b
e
.
c
h
/
4
0
2
0
5
/

|

d
o
w
n
l
o
a
d
e
d
:

1
6
.
5
.
2
0
1
6

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Bern Open Repository and Information System (BORIS)

https://core.ac.uk/display/33067932?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

services and provisioning of services to enterprise systems is
done by the service layer. The smart objects themselves are
self-descriptive, thus carrying at least a minimal description
of their capabilities with them. The service layer might need
to complete the service description by following the URIs
or by decompressing (parts of) the description. Furthermore,
with the business information and reasoning layer the service
descriptions might provide additional higher level services
based on SLAs, reasoning (for example ontology based virtual
sensors) or the connection of entities and (virtual) sensor data.
As an example, one is usually not interested in the temperature
of device no. 1321, but in the temperature of some given good,
which could be monitored by several sensors. This abstraction,
away from the sensing devices, towards the "things" they
monitor is one of the key ideas of IoT.

The deployment view of our semantic enterprise integration
platform is shown in Figure 3. The Integration Platform
Instances (IPI) are deployed to different (geographical or
logical) zones and control one ore more Smart Objects (SO).

IV. SEMANTIC ENDPOINT DESCRIPTION

In this section we first argue for the necessity of service
descriptions. We then explain Linked USDL and add different
endpoints and message representations.
A. Introduction

In traditional approaches for describing services for smart
objects like SOAP or TinyWS [12], interoperability comes for
a price in terms of computing power, energy consumption and
delay. We are following the approach of service descriptions
that can be well separated from the actual service and thus
allowing XML based SOAP or REST like interfaces, as well as
propriatary binary protocols. First, we define the term service
description:

A service description is a description of all essential
properties of a given service, as well as the means to
access it. A service description is independent of an
actual implemented callable service.

It is important to distinguish between service descriptions
and the actual implemented (callable) service on a device. The
technical interface to this callable service is called endpoint.

In a semantic IoT integration platform, there are many do-
main specific properties to be described: For example, among
others, Quality of Information parameters, Quality of Service,
location, or SLAs. At a service level this information can be
used to calculate the resulting QoI of composed services. The
ontological link to these values is either attached to the service
as a whole or, where applicable, to the endpoint.

In this work we look at three different ways of integration:
CoAP-based REST style, SOAP based web services and a
custom structured byte based protocol specified in ASN.1 [13].
This allows us to not only specify standard compliant web
services, but also allows interoperability at a very low level
to demonstrate the integration of custom protocols. ASN.1
is used to quantify the overhead of CoAP and SOAP in
comparization to specialized protocols.
B. Linked USDL

We propose to use Linked USDL (LUSDL), as shown in
Figure 2, for describing services. LUSDL has the advantage
of going beyond the technical interface. It covers not only
functional, but also operational and business aspects.

usdl:Service is the main entry point when modeling services.
It describes a service such that it can serve as an interface
between the service provider and the service consumer. The
service description contains functional as well as non func-
tional properties of the service. The functional (technical)

properties are described by the interaction protocol (interaction
points). The non-functional properties are described by qual-
itative or quantitative values, like the link quality of a device
or the accuracy of a sensor. An usdl:InteractionPoint is an
actual step to be performed when accessing the service, like
calling a CoAP based REST interface. usdl:ServiceOffering
is an example for a connection to the business side. Service
offerings may define a price, terms and conditions and SLAs.
C. Endpoint Description in Linked USDL

As shown in Figure 4 we "link" LUSDL to an endpoint
vocabulary, thus adding endpoint information for calling the
actual executable code on the smart object.

Each usdl:InteractionPoint is connected to one ore more
endpoints. The endpoints are modeled using a Linked USDL
extension called Linked USDL4IoT [15]. Each endpoint can
have one or more operations. For each operation input/output
parameters, as well as the actual implemented method to call
is modeled.

Endpoint Vocabulary

Linked USDL

Semantic Link to Domain Specific Ontology
usdl:Service

usdl:InteractionPoint

usdl:hasInteractionPoint

usdl4iot-ep:Endpoint

usdl4iot-ep:hasEndpoint

usdl4iot-ep:Operation

usdl:hasContactPoint

Literal

usdl4iot-ep:hasAddressusdl4iot-ep:hasOperation

usdl4iot-ep:ApplicationProtocol

usdl4iot-ep:hasApplicationProtocol

usdl4iot-ep:Parameter

usdl4iot-ep:hasInputusdl4iot-ep:hasOutput

wsdl

usdl4iot-ep:modelReference

usdl4iot-rest:restMethod

usdl4iot-ep:modelReference

usdl4iot-ep:type

usdl4iot-ep:hasType

rdfs:class

usdl4iot-ep:representsAn

Fig. 4. LUSDL extended by an endpoint vocabulary [14]

It is notable, that endpoint descriptions are mainly used to
express technical aspects, as well as the necessary surrounding
semantics. A semantic link to domain specific ontologies is
established through the yields and receives properties of an In-
teraction Point in LUSDL and the corresponding representsAn
links on the input/output side.

We support REST and SOAP vocabularies, as well as opera-
tions that do not necessarily follow SOAP/REST and are mod-
eled via a custom protocol. In such case the msm:Operation
directly links to an URI endpoint, which can be either 6LoW-
PAN or UDP. These custom protocols are defined in ASN.1
[13]. A simple protocol for getting the temperate following
the request/response pattern could look as follows:
TemperatureProtocol DEFINITIONS ::= BEGIN
Request ::= SEQUENCE {

sensorNo INTEGER
}
Response ::= SEQUENCE {

temperature DOUBLE,
timestamp INTEGER

}
END

The code fragment defines a protocol (TemperatureProtocol)
that accepts a sensor number as an integer and, in response,
will deliver a temperature/timestamp pair. The actual encoding
currently used is that of Java. Nonetheless, encodings like BER
or XER [16] could easily be integrated as there exist several
compilers for different programming languages.

Fig. 2. Linked Unified Service Description Language [14] — only the relevant parts are shown.

������� �������

�	�� �	��
�	��

�	��

�	��

���
���
���
���

���

���

���

���

�	� ����������

����������

����� ���������������

�������������

����� �����
�����

Fig. 3. Deployment

D. Communication Patterns
Traditionally, web service communication follows a request-

response communication scheme. This is sufficient for some
applications, but many IoT applications need more sophisti-
cated communication patterns. In this work we support three
types of communication patterns:

1) Request/Response (R/S): The service consumer issues
a request, which the service providers answers either
synchronously or asynchronously.

2) Publish/Subscribe (P/S): The publish/subscribe pattern
allows a consumer to subscribe to particular events.
As soon as this specific event occurs, the provider
triggers a notification to the consumer. A subscriber
based communication model is a necessary precondition
for running parts of business processes on smart objects,
as these often need to react on specific events.

3) Time triggered: While it can be argued that time-
triggered is just a subclass of P/S in IoT there are many
sense and send applications. This specific pattern is so
common that it deserves to be a category of its own.

The R/S pattern is supported by LUSDL. For supporting
events we add a small event vocabulary, called usdl-event.
Based on existing studies of event-based systems [17] we
identified the following subset of typical P/S operations which
we support in usdl-event: (i) Register event subscriptions, (ii)
Remove event subscriptions, (iii) Decouple resources from
events and (iv) Specify means of delivery, e. g. callbacks.

We aim for compatibility with WS-Eventing, because such
a mapping simplifies smart endpoint generation as outlined
in Section V. Our schema also can be mapped to WS-
Notification, and the semantic links to higher level ontologies
matches the concepts introduced in WS-Topics very well.

V. ENDPOINT GENERATION

Enterprise systems typically have one or more service
repositories. A service consumer queries the repository for the
service to access and retrieves service descriptions and end-
points. Based on existing semantic service endpoint descrip-
tions equivalent (alternative) endpoints can be created. This
allows an application to choose from a set of endpoints, even
when direct communication between the enterprise IT system
and the smart object is not possible. As these descriptions live
in the realm of the enterprise, the size of the description does
not play a crucial role.

We propose the use of a graph transformation algorithm
called smart endpoint generation (SEG). It takes an endpoint
description with a known interface (e. g. CoAP) as input
and transfers it into an equivalent interface using a different
protocol or encoding. Another advantage of our SEG is the
possibility to utilize given ontologies to guide the process of
building the interface.

EPS

EPD

Service Repository

before SEG after SEG

Domain Knowledge
Repository

Encoding of
domain
knowledge

EPT and Code Generation
(Graph Rewriting / knowledge base)

Reasoning (FuXi) Endpoint

(f)

(e)

(d)

(c)

(b)

(a)

(g)

Φ: s->g | s,g ∈ Γ

s ∈ Γ
g ∈ Γ

G(V,E)
G‘(V‘,E‘)

Fig. 5. Smart Endpoint Generation

In the following we take a closer look on how the SEG
enables interoperability: When implementing our research
prototype we did not build up transformations and knowledge
bases for all possible combinations, but concentrated on those
that seemed most interesting for us. On the smart object side
we support REST Style CoAP with RDF and XML output
representing the RDF-based semantic web stream of research.
We also support REST HTTP XML as common in the web of
things domain. As for specialized protocols we support ASN.1
specified protocols following a Request/Response pattern over
MAC layer, over UDP or CoAP. On the IPI we support CoAP
REST RDF, CoAP REST XML, SOAP WSDL, HTTP REST
XML, and HTTP REST JSON. These represent currently the
most frequently used protocols in enterprise computing.

The actual process of generating new endpoints is shown
in Figure 5. Based on an already existing service in the
service repository (a), which is read by the endpoint source
handler (EPS) and then fed (b) into End Point Translation
(EPT) and Code generation. The process of creating a new
service endpoint is driven by a knowledge base and graph
rewriting rules. It is, for example, possible to transform a graph
representing a REST-based CoAP interface into a REST-based
HTTP interface, thus providing a Web of Things like interface.
This step results in a new endpoint description (e), which is
then stored in the service repository. Furthermore, code for the
actual endpoint can be created (g) by traversing the tree and
applying templates stored in the knowledge base.

In the following we describe the structure of the algorithm
which performs the endpoint translation in more detail:

The SEG-Algorithm is traversing a service description graph
G(V, E) and transforming it into a a new service description
graph G’(V’, E’) with one additional endpoint g ∈ Γ from a
set of possible endpoint types Γ.

For easier readability we assume that each node v ∈ V
has a unique type type(v), which refers to the type of node,
for instance "msm:Operation". For each interaction point IPi,
first a new endpoint g is added as a new interface to the
corresponding interaction point. The source interface i is now
traversed in pre-order and generates the interface i′ on the fly.
We defined for each type of a collection of transformation
rules Φ(v ∈ V , s ∈ Γ, g ∈ Γ), which takes a node v, its
original source endpoint type s and a requested destination
endpoint type g. The actual transformation rule depends on
type(v) and can be as easy as rewriting the URI for the
newly created actual endpoint on the IPI, thus changing the
CoAP protocol endpoint to an HTTP interface or creating an
RDF output from an ASN.1 textual description. The latter
one is supported by the yields attribute of the interaction
point and the modelReference to guess an appropriate RDF
subject/predicate/object triple.

The created endpoint g follows the paradigm of source
endpoint s. In a transformation to WSDL, the resulting WSDL
has the look and feel of a REST interface. Conversion from a
WSDL to a REST interface is not possible.

Additionally, SEG can utilize given domain specific on-
tologies (c) to create endpoints tailored towards the business
needs (d). This allows moving away from a pure device centric
approach, in terms of sensor X senses property Y, to a more
business entity based approach: The temperature of good Gi
is Yi, whose average temperature AV G(temperaturei) can
be measured by sensors s1..sn. In such a case, we know from
the domain knowledge base (see Figure 1) that our service
is related to a business entity Gi and that it currently is in
site 1. We, furthermore, have the information that site 1 is a
country which uses the Celsius scale for measuring these types
of goods. We can now generate an endpoint for this specific
good in the respective IPI and therefore allow the enterprise
system to specifically ask for the temperature of good Gi. We
leverage the Rete algorithm [18] to reason on the expected
output value, which is encoded in the business entity. That
way we know, that in case of good G we need to measure
temperature. As both, the entity and the service, use the same
ontology for temperature it is easily possible to reason which
service to call.

VI. IMPLEMENTATION

We use a prototype implementation to show the feasibility
of our approach. The enterprise level software is written in
Java 7. The smart objects use the Moterunner (MR) platform
[19] from IBM Research. The MR platform comes with a Java
to custom byte code compiler (mrc), which can then be run
on very constrained devices. Compared to earlier approaches
(like, for example, Sun SPOTS) it has a very good tradeoff
between using a VM and the energy consumption [19]. We
created a custom CoAP-14 client/server implementation. On
the Iris Motes we use the endpoint descriptions to generate
code for specific services and, if necessary, add a small
lightweight CoAP or HTTP library with minimal overhead.
The smart endpoint generation tool (segen) is written in
Python. Reasoning (forward chaining) is provided by FuXi
- an open source library.

VII. EVALUATION

We performed a quantitative evaluation of the proposed
techniques to determine the additional costs of using RDF
to get an idea how the different possibilities of implementing
an endpoint influence the overall system. Therefore we de-
scribe the experimental setting, in which the evaluation was
performed (VII-A); compare the sizes of different endpoint

representations and compressions (VII-B); evaluate the com-
munication between enterprise systems and motes. As we
aim for easing interoperability between enterprise systems and
sensor motes, it is essential to know the additional costs of
higher level protocols (VII-C).
A. Experimental Setting

The experiments were performed in a living lab on IRIS
Motes, with technical details as given in Table II.

We implemented an experimental retail situation, in which
perishable goods are monitored and their price is adjusted
according to the estimated customer demand and the remaining
lifetime of the goods (dynamic pricing). The local enterprise
application is running a triple store as a service repository and
is connected to an instance of the integration platform. Motes
can join and leave the network dynamically. The application
is "location-aware", thus having a knowledge repository that
contains information about the actual location of the goods as
well as their main parameter (temperature in our case). The
IPI is running on Raspberry Pi with 512MB RAM and an
ARM1176JZF-S 700 Mhz CPU.
B. Endpoint Description

As we store either the complete or at least parts of a service
description on the mote we first compared our on-mote RDF
description with alternative descriptions in ASN.1 and WSDL.
These are, of course, not on the same qualitative level, since
the main purpose was to evaluate RDF compared to WSDL or
ASN.1. The results can be seen in Figure 6: It is not surprising
that ASN.1 is the most compact one, but, of course, does
not come with any additional information for semantic M2M
communication. In that case all the logic has to be in the
application. The difference in resource consumption between
ASN.1/WSDL and LUSDL is the price of semantic M2M. Due
to the verbosity of XML, WSDL uncompressed is the largest
one. We also tested several compression algorithms.

0

500

1000

1500

2000

2500

ASN.1 Linked
USLD/RDF

Linked
USDL/ASN.1

WSDL

uncompressed

ZIP

GZIP

EXI

Fig. 6. Size of different endpoint description representations (in bytes)

It is notable that the general purpose algorithms performed
better than algorithms tailored towards XML or RDF. Similar
studies, but without looking into XML or RDF, also showed
the advantages of general purpose compression schemes on
wireless sensor notes [20]. As the service endpoints are rather
small in size, the results with a full blown service description,
resulting in a large XML is different. With increasing size of
the XML file EXI outperforms ZIP and GZIP [21].
C. Enterprise to Mote Communication

When comparing the various means of an enterprise to ac-
cess services via a generated endpoint we are mainly interested
in measuring the performance and resource consumption, and
compare that against direct access. Considering our use case
introduced in Section VII-A we run the following evaluations:

1) Initial system setup time, this includes the time needed to
recognize new motes, download the service description,
generate an endpoint and add it to the repository.

ASN.1 CoAP UDP RUDP MAC
Stack 256 210 241 101

Heap 2348 2290 2410 340

Flash 923 624 896 311

RDF CoAP UDP RUDP MAC
Stack 282 242 265 154

Heap 2401 2322 2470 387

Flash 935 657 929 332

TABLE I
RESOURCE CONSUMPTION (TOTAL, IN BYTES)

2) Accessing the service via CoAP over 6LoWPAN
3) Accessing the service via an alternative endpoint with

temperature conversion
The initial setup time of motes connecting to the system

consists of the time the 6LoWPAN implementation needs till
the mote is recognized. This is solved by the protocol itself,
which notifies the edge mote about any joining or leaving
mote. Implementation details can be found in [22]. The initial
setup time for our system ranged from less than 5 seconds, up
to 30 seconds depending on the traffic in the sensor network
and interference caused by wireless LAN and GSM devices.
As service descriptions are larger and need more transmission
time they are more prone to packet loss.

We evaluated the behaviour of the system when accessed
from a gateway. First we accessed the service with CoAP
over UDP and 6LoWPAN over one, two and five hops. We
then did the same with the protocol specified in ASN.1 over
UDP, and once more over a custom written UDP based end-to-
end reliability protocol (RUDP) with sequence numbers and
acknowledgements. CoAP was used in reliable mode, thus all
requests were acknowledged. In all cases we measured the
time including serialization and deserialization on the client
side. The timeout values of the RUDP layer request/response
were set to twice the CoAP timeout of 400ms, after which
a packet was considered lost and the request failed. The rate
of unsuccessful requests with more than two subsequent lost
packages was less than 0.001%.

Fig. 7. Measurements Gateway to Mote (in ns)

The results for the two hop scenario are shown in Figure 7.
All other scenarios showed basically the same characteristics.
It is notable that CoAP has a much higher variation in
response time than UDP or RUDP, because of the higher
protocol complexity by an additional layer of information to
be processed. Generally speaking, UDP was slightly more
performant than CoAP, while RUDP was comparable to the
median CoAP response times.

The resource usage of the respective code is shown in
Table I. All values are maximum numbers after 2000 requests
gathered with the MR profiler. As expected, with higher
protocol complexity the resource usage increases. Nonetheless,
CoAP does not need considerably more space than a pure UDP
solution and comes with end-to-end reliability. Our RUDP did
not use much less resources than the CoAP implementation.

Fig. 8. Energy consumption (in µAS, 10min)

Energy consumption is shown in Figure 8. All measure-
ments are given in µAS. Our results are comparable to
previous work done with equally complex software [23]. As
expected, the 6LoWPAN layer contributes most to energy
consumption, as it can be seen in the difference between
UDP/CoAP and the MAC level communication. The additional
power needed for implementing the CoAP layer is less than
1%. A reliable UDP implementation other than CoAP needs
nearly the same energy.

Once the service description was downloaded, we measured
the Service Access Time (SAT), i. e., the time from issuing a
service request by the service consumer until the response has
been decoded and the data is ready to be used. As benchmark
we used a CoAP-based REST style protocol on the mote
as well as just sending the temperature and the time stamp.
We then measured Service Access Times times for (i) direct
access on the same machine via IPv6, (ii) remote access from
a different machine over the local network over IPv6, (iii)
Remote Access via generated SOAP and (iv) HTTP REST
interfaces. The results are shown in Figure 9.

Fig. 9. Service access times (in ns, per protocol)

Direct access is, of course, the fastest method, directly fol-
lowed by access over the local network (no other traffic). More

CPU ATmega1281@8 Mhz, 3V RF IEEE 802.15.4

Flash 512kB (serial), 128kB (program) RAM 8k bytes

Current 8mA(act), 8µA(slp)

TABLE II
TECHNICAL DETAILS OF AN IRIS MOTE

interesting is to quantify the additional costs of accessing the
services on the mote: REST access over http was slightly faster
than SOAP due to reduced protocol stack complexity. The
extra work of converting the temperature did not contribute
significantly to the Service Access Time.

VIII. CONCLUSIONS

We have shown that semantic endpoint descriptions in
conjunction with smart endpoint generation can be used to
efficiently integrate IoT-based smart objects into enterprise
platforms. Compared to existing solutions we integrated not
only ways of establishing technical interoperability, like pure
RDF or WSDL does, but support also legacy protocols or
protocols with special requirements as often found in sensor
network environments. For example, in settings where energy
consumption is a major issue, the semantic service descriptions
with ASN.1 combined with smart endpoints can be used to
ensure interoperability.

One of the main challenges of innovation in the enterprise
industry today is to cope with the myriad of already existing
code. Vendors, therefore, aim towards innovation that has a
clear integration path into existing systems (timeless software).
As most enterprise SOA systems already use service repos-
itories as an integrated part of their SOA environment, the
integration of semantic service descriptions would not change
the paradigm of how software is written today and thus can
be added to enterprise software in an incremental way without
the need of disruptional changes. Our platform eases the
enterprise integration and interoperability by providing high
level application designers with the same means of accessing
a smart object as they access another enterprise system.

When looking into establishing interoperability none of the
options has any severe drawback that would lead to a defini-
tive exclusion from further consideration. Legacy enterprise
systems could be integrated by providing a REST or SOAP-
style interface without having to write any further custom code
and nearly without manual work, because endpoints for these
systems can be created automatically. In the SOAP case the
access time would, for example, increase by around 4.2ms,
compared to direct access via CoAP. Caching of sensor data
would even decrease that further. CoAP proved to consume not
much more energy than a pure UDP solution written for just
one purpose. In special cases, where energy efficiency is the
primary objective, dedicated protocols including lower levels
have to be considered.

Emerging web of data applications can be supported by
either creating RDF triples on the alternative endpoint or by
sending them directly. On the alternative endpoint there is then
the possibility to add further information like the entity to
which the sensor is attached or the geolocation to provide
higher level services to an enterprise system [24].

We have shown the feasibility of our approach in a real
world setting. Our evaluation has shown that endpoint de-
scriptions in RDF do not need considerable more memory than
SOAP or XML REST based services and evaluated the price in
terms of energy for application level protocols and latency for
introducing another layer of indirection. Moreover, we demon-
strated the flexibility that comes with semantic endpoints and

smart endpoint generation. These allow to describe arbitrary
services, including input and output parameters and are easily
transformable into other endpoint formats. Furthermore, they
can be used to decouple sensor data from actual sensing
devices and provide higher level services to enterprise systems,
allowing not only a device centric view on sensor data, but also
a business entity based view, which than can be integrated into
enterprise systems.

ACKNOWLEDGMENT

The research on this topic received funding from the EC
under grant 257521 (IOT-A) and grant 285248 (FI-WARE). We
would like to thank the Moterunner Team at IBM Research,
especially Marcus Oestreicher as well as our students Theano
Mintsi and Michael Gede for their valuable support.

REFERENCES

[1] Z. Shelby and C. Bormann, 6LoWPAN: the wireless embedded internet.
Wiley, 2011, vol. 43.

[2] Z. Shelby, K. Hartke et al., “Constrained Application Protocol, Internet-
Draft,” 2011.

[3] S. Haller, S. Karnouskos et al., “The Internet of Things in an Enterprise
Context,” in Future Internet FIS 2008, ser. Lecture Notes in Computer
Science. Springer, 2009, vol. 5468.

[4] N. Glombitza, D. Pfisterer et al., “Integrating wireless sensor networks
into web service-based business processes,” in Proceedings of the 4th
International Workshop on Middleware Tools, Services and Run-Time
Support for Sensor Networks. New York: ACM, 2009.

[5] D. Guinard, V. Trifa et al., “A resource oriented architecture for the web
of things,” Proc. of IoT, 2010.

[6] C. Pedrinaci and J. Domingue, “Toward the Next Wave of Services:
Linked Services for the Web of Data,” Journal of Universal Computer
Science, vol. 16, no. 3, 2010.

[7] T. Leidig and C. Pedrinaci, “Linked USDL - Development version,”
2013. [Online]. Available: https://github.com/linked-usdl/usdl-core

[8] P. Barnaghi, M. Presser et al., “Publishing linked sensor data,” in CEUR
Workshop Proceedings: Proceedings of the 3rd International Workshop
on Semantic Sensor Networks (SSN), 2010.

[9] J. Kopecky, T. Vitvar et al., “Sawsdl: Semantic annotations for wsdl and
xml schema,” Internet Computing, IEEE, vol. 11, no. 6, 2007.

[10] J. Kopecky, K. Gomadam et al., “hrests: An html microformat for
describing restful web services,” in Web Intelligence and Intelligent
Agent Technology, 2008. WI-IAT’08, vol. 1. IEEE, 2008.

[11] D. Martin, M. Paolucci et al., “Bringing semantics to web services:
The owl-s approach,” in Semantic Web Services and Web Process
Composition. Springer, 2005.

[12] I. K. Samaras, J. V. Gialelis et al., “Integrating wireless sensor networks
into enterprise information systems by using web services,” in Sensor
Technologies and Applications. Conference on. IEEE, 2009.

[13] ITU, “Abstract Syntax Notation One: Specification of Basic Notation,”
ITU-T Rec. X.680, July 2002.

[14] T. Leidig and C. Pedrinaci, “Linked USDL,” 2012. [Online]. Available:
http://www.linked-usdl.org

[15] Thoma, Matthias and Braun, Torsten and Sperner, Klaus and
Magerkurth, Carsten, “Linked USDL4IoT,” Tech. Rep., 2014. [Online].
Available: http://www.iot4bpm.de

[16] ITU, “Information Technology — ASN.1 Encoding Rules,” ITU-T
Recommendation X.690, July 2002.

[17] Y. Huang and D. Gannon, “A comparative study of web services-based
event notification specifications,” in Parallel Processing Workshops,
ICPP Workshops. International Conference on. IEEE, 2006.

[18] C. L. Forgy, “Rete: A fast algorithm for the many pattern/many object
pattern match problem,” Artificial intelligence, vol. 19, no. 1, 1982.

[19] A. Caracas, C. Lombriser et al., “Energy-efficiency through micro-
managing communication and optimizing sleep,” in Sensor, Mesh and
Ad Hoc Communications and Networks, Conference on. IEEE, 2011.

[20] K. Dolfus and T. Braun, “An evaluation of compression schemes for
wireless networks,” in Ultra Modern Telecommunications and Control
Systems and Workshops (ICUMT), 2010. IEEE, 2010.

[21] D. Peintner, H. Kosch et al., “Efficient XML Interchange for rich internet
applications,” in Multimedia and Expo, ICME. IEEE International
Conference on. IEEE, 2009.

[22] IBM Research, “Moterunner SDK Beta 11 Documentation — 6LoW-
PAN implementation details,” 2013.

[23] A. Caracas and A. Bernauer, “Compiling business process models for
sensor networks,” in Distributed Computing in Sensor Systems and
Workshops, International Conference on. IEEE, 2011.

[24] M. Thoma, S. Meyer et al., “On IoT-services: Survey, Classification
and Enterprise Integration,” in Internet of Things (iThings), 2012 IEEE
Conference on. IEEE, 2012.

