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1. Introduction

Current-sensing atomic force microscopy (CSAFM) and spectroscopy have been

increasingly employed to characterize mechanical and electrical properties of surfaces,

nanostructures and various biosystems. In this approach the force-sensing capability of

AFM is combined with the measurement of the current flowing between a bifunctional

conductive probe and a conductive sample upon application of a potential difference [1].

The CSAFM technique is employed in three operational modes: (i) Monitoring of the

current during AFM imaging allows to distinguish areas with different conductances

at the nanoscale [2]. This mode was used to investigate the homogeneity of various

organic conductive layers [3], such as polymer electrolyte membranes [4], films employed

for photovoltaics [5] and in organic light emitting diodes [6]. (ii) The active force

feedback mode is used to create a stable nanojunction, which is characterized by

current-voltage spectroscopy. This method was applied to investigate charge transfer

characteristics through self-assembled monolayers [7], to address individual nanoparticle-

tagged molecules in an insulating matrix [8], and light-controlled conductance switching

[9]. (iii) In current-sensing force spectroscopy experiments both the force acting on the

cantilever and the current flowing through a nanoscale junction are measured during

approach and retraction of the probe to/from the sample. Applying this technique,

the electromechanical properties of gold nanocontacts [10–13] and gold-molecule-gold

junctions [11–13] were studied.

Up to now, CSAFM experiments were only carried out in non-conductive

environments, such as ultra-high vacuum, air, in a controlled gaseous atmosphere or

in non-conductive organic solvents. Important scientific and technological progress

is expected if this methodology could be applied in a conductive (electrochemical)

environment (figure 1a). However, the preparation of well-insulated, except of the very

end, conductive probes (figure 1b) still comprises a major challenge.

Pioneering proof-of-principle experiments were reported by Macpherson et al, who

used Si3N4 probes metallized with platinum and coated with a thin polymer film [14] or

insulated by electrodeposition of electrophoretic paint (EP) [15]. Abbou et al adopted

this method to prepare coated gold microwires employed as AFM probes [16]. This

group used high voltage pulses of several kV to expose the very end of the tip.

Although new approaches for the benchtop fabrication of insulated conductive AFM

probes are still being communicated [17], more recent research focuses on fabrication

procedures based on semiconductor processing techniques, e.g. physical and chemical

vapor deposition (PVD/CVD), electron beam lithography (EBL), focused ion beam

(FIB) machining, reactive ion etching (RIE), atomic layer deposition (ALD), etc. The

latter leads to higher reproducibility and provides opportunities for the batch fabrication

of the probes. Kranz et al pioneered the development of AFM probes with an integrated

recessed frame [18–21] or ring [22, 23] platinum nanoelectrodes of controlled dimensions

around a non-conductive tip for application in combined AFM-scanning electrochemical

microscopy (SECM) experiments. These probes were insulated with various coatings,
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Figure 1. (a) Schematics of an electrochemical CSAFM experiment in a 4-electrode
configuration. A bipotentiostat controls the potentials of sample Es and probe Ep

electrodes with respect to a common reference electrode and measures the current
flowing through sample (Is) and probe (Ip). The counter electrode allows to pass the
current through the solution. (b) Schematics of a wired and insulated conductive AFM
probe. The zoomed frame illustrates the geometric parameters of the tip used to model
its electrochemical properties.

such as Si3N4 [18, 22], SiO2 [23], Si3N4/SiO2 sandwich layers [19], poly(p-xylylene)

(parylene) [20] or plasma-deposited fluorocarbon films [21]. Recently, the group of

Kranz reported on diamond-coated tips with integrated boron-doped diamond (BDD)

nanoelectrodes [24].

A variety of procedures was employed to fabricate AFM probes with insulated

conductive tips (ECCSAFM probes), but only few types were applied for actual

CSAFM experiments in an electrochemical environment. ECCSAFM probes were first

fabricated by Hirata et al [25], who coated commercial Si3N4 probes with gold and

insulated them afterwards with a photoresist layer. Akiyama et al [26–28] developed a

batch lithographic process to fabricate probes with cone-shaped platinum silicide tips

insulated with Si3N4/SiO2. The latter was partially etched to expose the conductive

tip. Macpherson and Unwin used EBL to create triangular-shaped gold electrodes at

the apex of a Si3N4 cantilever as well as contact lines [29]. The whole probes were

subsequently insulated with Si3N4 and the tips were then exposed by RIE. The insulation

of commercial CSAFM probes with parylene and EP was also reported recently [30, 31].

The application of CSAFM in an electrochemical environment is still at a very

premature level, despite the progress in probe fabrication. So far all ECCSAFM probes

were produced in a small scale and used by the same research group, typically in very

basic test experiments. Moreover, establishing and insulation of the electric contact of

the probe to the outside world (figure 1) is still poorly described and resolved. To date,

the electric contact to the conductive tip was established by a metal clamp [15, 29, 30],
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or a wire [17–19, 28, 31] attached to the contact pad. The exposed part was subsequently

covered with an insulating coating, which was applied manually.

Recently we described the insulation of BDD and Au-covered Si AFM probes with

Si3N4 [32]. The tip apex was exposed by a combination of FIB and RIE steps. The

electrochemical experiments revealed that the Si3N4 coating is not pinhole-free and

that the conductive tip is partially covered with non-electroactive material, presumably

TiO2 [32, 33]. In this paper we present an improved fabrication procedure, which

overcomes these problems: (i) We employed two types of secondary insulations, such as

an ALD-fabricated ZrO2 layer or EP, to “post-coat” the Si3N4-covered probes. (ii) We

removed TiO2 by wet etching. We also describe a reproducible procedure to prepare

mount-ready ECCSAFM probes by gluing an insulated wire to the back end of the

probe with a conductive epoxy and post-coating the contact with EP (figure 1b). We

demonstrate the application of these probes for current-sensing imaging, to measure

force/current-distance spectroscopy and SECM-like approach curves [33, 34], as well as

for the characterization of electromechanical properties of gold nanocontacts [13]. With

this work we aim at providing guidelines for future applications of conductive AFM

probes in an electrochemical environment.

2. Experimental details

2.1. Fabrication of probes

Insulated conductive AFM probes were fabricated using a modified procedure from our

previous paper [32]. Commercial Si AFM probes with a pyramidal tip at the end of a

125 µm long cantilever (Tap300, BudgetSensors) were sequentially sputter-coated with

5 nm Ti, 120 nm Au and 5 nm Ti layers. The Au layer acts as electrode surface while

the Ti layers improve the adhesion of Au to Si and Si3N4, respectively. The Au-covered

probes were insulated by plasma-enhanced chemical vapor deposition of Si3N4 at 300◦C

for 50 min, which leads to a nominal film thickness of 600 nm. In addition, a 40 nm-thick

ZrO2 insulation layer was deposited on Si3N4 using ALD (Savannah 100, Cambridge

Nano Tech) according to a previously described procedure [35]. Thereafter, the AFM

probes were sputter-coated with a 50 nm thick sacrificial chromium layer leading to a

sandwich structure, as shown in figure 2a. In the next step the Cr, ZrO2 and Si3N4 layers

were partly removed at the very apex of the tip with a FIB in a CrossBeam 40EsB dual

FIB/SEM system utilizing a beam of Ga+ ions at 30 keV and a beam current of 50 pA.

After this step the conductive tip remains buried underneath the remaining ≈150 nm

thick insulation layer. Subsequently, an inductively coupled plasma (ICP)-RIE process

was applied using a Plasmalab System 100 (Oxford Instruments). First, a mixture of

SiCl4 and SF6 was chosen to remove the Ga-containing top insulation layer. Otherwise

it would act as an etch stop during dry etching of Si3N4 with SF6 [36, 37]. Second, SF6

was used to isotropically etch the Si3N4 with a high rate, which led to the exposure

of the tip. The remaining Cr protects the rest of the insulation. Height and radius of
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Figure 2. Process flow chart of the probe fabrication with the corresponding SEM
images (left). (a) AFM tip with a Ti/Au electrode layer, 600 nm Si3N4, 40 nm ZrO2

and a 50 nm Cr protection layer. The arrow shows the site for the partial removal of
the Si3N4/ZrO2/Cr layer by FIB exposing the Si3N4 layer for the subsequent etching
procedure. (b) Two step ICP-RIE etching of Si3N4 exposing the tip and forming a
ZrO2/Cr ring around the tip. (c) Removal of the ring by a FIB cut. (d) Fully featured
probe after removal of the Cr layer by wet etching.

the exposed tip depend on the etching time, which is well controllable. The ZrO2 layer

remained intact after this procedure, creating a ZrO2/Cr ring around the tip (figure 2b).

At this stage, a second FIB step was used to remove this ring. The probe was placed in

the FIB system with the ring positioned perpendicular to the beam, and then the side

portions of the ring were removed (figure 2c). Subsequently, the probe was turned 90◦

and the rest of the ring was removed by FIB cutting. After the removal of the ring, the

rest of the Cr coating was dissolved by wet etching employing Microposit chrome etch

18 (figure 2d).

The Ti adhesion layer, which was originally located between the Au and the Si3N4

layers, was partially removed from the tip and partially oxidized during etching with

SiCl4/SF6. The residual TiO2 layer, which covered the tip and therefore reduced the

electro-active area, was removed by immersing the AFM probe for 1 min at 60◦C into

an aqueous solution of 60 mM Na2EDTA + 370 mM NH4OH + 1100 mM H2O2.

The stability of the Al2O3 and ZrO2 layers, which were fabricated by ALD, was

tested using probes of a simpler design. The metal oxides were deposited directly onto

the Au layer.
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2.2. Chemicals and materials

Milli-Q water (Millipore, resistivity 18.2 MΩ·cm, 2 ppb total organic carbon) was

used for cleaning and for the preparation of the solutions. The solutions used in the

electrochemical and AFM experiments were prepared from sulfuric acid H2SO4 (96%,

suprapure, Merck), potassium nitrate KNO3 (≥ 98 %, Fluka) and ferrocenemethanol

FcMeOH (97%, Aldrich). Argon (99.999%, Alphagaz) was used to dry the probes and

to deoxygenate the electrolytes before and during the electrochemical experiments.

2.3. Wiring of the probes

All probes employed in this work were connected to the measurement circuit via a thin

copper wire, which was insulated with polyurethane (BLOCK CUL 200/�0.15 mm,

≈5 cm long). First, the contact area was created on the working surface of the probe on

the side opposite to the cantilever (figure 1b) by slightly scratching the insulation layer.

The end of the wire was covered with a small amount of tin. Then, a small droplet of

conductive two-component epoxy (Circuit Works 2400) was picked up by the wire and

was gently positioned on the contact area. The probe was then cured in an oven for

one hour at 110◦C. This procedure creates a mechanically stable and well-conducting

contact between the inner conductive layer of the probe and the insulated wire. For

electrochemical experiments, such as cyclic voltammetry (CV) and EP deposition, the

free end of the insulated wire was soldered to a thicker copper wire (�0.5 mm, 3-4 cm

long), which was inserted into a lab-made capillary-type electrode holder.

2.4. Insulating probes with electrophoretic paint

The electric contact between the probe and the connecting wire was insulated by

deposition of an EP (Clearclad HSR, Clearclad Inc.). The probe was cleaned by

immersion into Milli-Q water, gently dried in an Ar stream, mounted in the electrode

holder and immersed into the homogenized EP in a backward manner, with the

cantilever and the front part of the chip being kept above the surface of the liquid. This

prevented the conductive tip from being coated. The deposition process was carried out

in a two-electrode configuration with the AFM probe and a Pt wire acting as cathode

and anode, respectively, by applying a potential difference of 15 V DC for 10 min.

Subsequently, the probe was cured in an oven at 80◦C for 8 hours. The coating-curing

process was repeated three times. Finally, the probe was tempered for 1 hour at 160◦C.

These conditions enhanced the polymerization and increased the adhesion of the polymer

layer.

2.5. Electrochemical characterization

The electrochemical characterization of the probes was carried out by cyclic voltammetry

in a 3-electrode glass cell using a lab-built potentiostat capable of measuring sub-

picoampere currents [38]. All glassware used was cooked in boiling nitric acid (25%



Electrochemical current-sensing atomic force microscopy in conductive solutions 7

in water v:v) and extensively rinsed with Milli-Q water. A saturated calomel electrode

(SCE) and a Pt wire served as reference (RE) and counter (CE) electrodes, respectively.

Ar was used to purge the solution prior to and was directed above it during the

measurements. The step-wise immersion of the AFM probe into the electrolyte solution

was performed by a micrometer screw attached to the electrode holder with the AFM

probe mounted on it.

2.6. Electrochemical current-sensing AFM experiments

The electrochemical AFM experiments were carried out in contact mode using a modified

PicoSPM 5500 (Agilent) setup equipped with a 10 µm multi-mode AFM scanner

with a contact mode nose cone. PicoView 1.12 was employed as controlling software.

The parts of the AFM scanner, which were in contact with the solution during the

measurements, were rinsed with isopropanol and dried in an Ar stream. The wired

AFM probe was cleaned by immersion into Milli-Q water and gently dried in an Ar

stream prior to mounting into the AFM scanner. The probe was held with a metal

clamp. A build-in bipotentiostat (Agilent) was used to control the potentials of probe

and sample. The probe potential was kept at ground during all measurements. The

insulated wire attached to the probe was connected to a lab-built dual-channel linear

amplifier. A lab-built electronics measured the current flowing through the probe and

controlled the probe movement in the current-sensing force spectroscopy experiments

[13]. Either the low or the high current output of a dual-channel amplifier was fed back

into the PicoPlus controller as an Aux/CSAFM signal for data acquisition during the

electrochemical characterization of the probe (figure 4) or during the current-mapping

and the force/current-distance spectroscopic experiments (figures 5, 6).

Two samples were employed in the AFM experiments: (1) A nanostructured Si

wafer was used in the current-mapping experiments. Its surface was covered with a 1

µm-thin insulating SiO2 layer onto which 200 nm-thick gold lines of variable width were

deposited using optical lithography. (2) The second sample was a lab-built Clavilier-

type gold bead electrode supported by a gold sheet with the (111) facet exposed to

the probe. These electrodes were employed in force and current measurements upon

forming and pulling gold nanocontacts. The samples were cleaned as follows prior to

the measurements. Sample 1 was immersed into chloroform (98%, Arcos Organics) and

ethanol (94%, Dr Grogg Chemie AG, Basel), and dried in an Ar stream. Sample 2 was

electropolished by oxidizing its surface at 5 V vs a gold CE in 1 M H2SO4 for 5-10 s.

The gold oxide was then removed by immersing the sample without potential control

into 1 M HCl solution for 1 min. This cycle was repeated three times. The electrode

was rinsed with copious amounts of Milli-Q water after each step. Finally, the electrode

was flame annealed in a butane flame and cooled down in an Ar stream.

The AFM samples were mounted on a lab-built sample plate. An O-ring

(16 mm×2 mm for sample 1 or 6.07 mm×1.78 mm for sample 2, Kalrez 4079, DuPont)

and the corresponding Kel-F liquid cell were placed onto the sample and fixed by a
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metal holder. The cell was then immediately filled with electrolyte. The O-rings and

liquid cells were cleaned in caroic acid (3:1 v:v conc. H2SO4 and 30% H2O2, CAUTION:

extremely strong oxidant), rinsed with copious amounts of Milli-Q water and dried in

an Ar stream before mounting. Two Pt wires (99.999%, �0.5 mm, Goodfellow) served

as RE and CE. All potentials given in this paper refer to the SCE scale, and were

recalculated from the individual experiments accordingly. The AFM experiments were

carried out in the presence of ambient oxygen.

3. Results and discussion

3.1. Fabrication and electrochemical characterization of the insulated conductive AFM

probes

In our previous publication we characterized the electrochemical properties of the Si3N4-

insulated probes by immersing their front parts into the electrolyte solution. Based on

cyclic voltammetry, we demonstrated that these probes have well-defined conductive tips

[32]. Later we carried out a detailed investigation of the insulation (leakage and stability)

of the entire chip by a step-wise immersion of the probe into the solution (figure 3). This

procedure allows to quickly detect defects within the insulation at the probe surface,

and to estimate the corresponding leakage currents (cf figure 1). We found that the

Si3N4-insulated probes display a continuous increase of the electrochemical current upon

immersion (SI, section A) indicating an increase of the electroactive area. Thus, these

probes have many pinholes in the insulating layer, which prevent their application in

electrochemical AFM experiments.

Aiming to solve the problem of leakage currents, we added a second insulation

layer. In a first attempt, we modified our fabrication procedure by insulating the gold-

coated probes with a metal oxide layer (ZrO2 and Al2O3) using the ALD technique

(paragraph 2.1). This approach is known to produce uniform and compact layers [35].

Prior to the fabrication of probes with exposed tips, we fabricated a series of gold-coated

probes completely insulated with a thin layer of ZrO2 or Al2O3, and investigated their

stability in 0.1 M KNO3 and 0.1 M H2SO4, both representing typical environments of

electrochemical experiments (SI, section B). We found that the Al2O3 insulation is only

stable in neutral electrolytes, such as 0.1 M KNO3, while ZrO2 is stable within a broad

range of electrode potentials in neutral as well as in acidic environment.

Further, we fabricated probes with exposed gold tips insulated by combining

Si3N4 and ZrO2 coatings (figure 2), and characterized them electrochemically. Cyclic

voltammograms of the insulated and wired probes were obtained upon its gradual

immersion into an aqueous solution of 0.1 M KNO3 containing 1 mM FcMeOH as

reactant. Figure 3a demonstrates that the same current response was measured with

either only the cantilever or with more than half of the chip being immersed in the

electrolyte (positions 1 and 2). These experiments revealed a well-defined sigmoidal

current response with shape and height being rather independent of the potential sweep



Electrochemical current-sensing atomic force microscopy in conductive solutions 9

Figure 3. Cyclic voltammograms of gold-coated CSAFM probes insulated with
Si3N4/ZrO2 (a) or Si3N4/EP (b) measured upon their gradual immersion in 0.1 M
KNO3 + 1 mM FcMeOH. The potential sweep rate was 0.05 V·s−1. The dotted curve
in (a) indicates the current measured when the contact entered the solution at position
3. The left insets show the SEM micrographs representing the geometries of the tips
used. The solid lines illustrate an approximation of the tip geometries as used in
simulations. The right insets show the positions of the probes with respect to the
surface of the electrolyte upon immersion of the probe.

rate. The electrochemical response corresponds to the oxidation of FcMeOH on a well-

defined nanoelectrode with the limiting current controlled by the diffusion of FcMeOH.

A sharp increase of the current was observed upon further immersion of the probe up to

the position of the contact to an external wire (position 3), as indicated by the dotted

line in figure 3a.

In a second double-coating procedure, we combined the Si3N4 insulation of the

probes [32] with an electrochemical post-coating step. After wiring of a Si3N4-coated

probe, EP was deposited on the whole probe surface (except of the tip) and on the

electric contact of the probe (see paragraph 2.4). We avoided in this way a separate

step for the insulation of the latter. Figure 3b shows typical cyclic voltammograms, as

recorded during the step-wise immersion of a Si3N4-insulated Au probe freshly-coated

with EP into an electrolyte containing 0.1 M KNO3 and 1 mM FcMeOH. The sigmoidal

voltammogram was independent on the position of the probe, which reflects the absence

of insulation defects on the surface of the probe as well as on the electric contact.

As the ability to predict the expected electrochemical current is very important

in experiments with nanoelectrodes, we used our electrochemical results to highlight

the correlation between tip current and tip geometry. We compared the experimental



Electrochemical current-sensing atomic force microscopy in conductive solutions 10

Table 1. Tip geometries, calculated [33] and experimentally measured diffusion-
limited currents of FcMeOH oxidation for the probes presented in figures 3a and 3b.

rtip htip rg Area Id,calc Id,exp

(nm) (nm) (nm) (µm2) (nA) nA

3a 360 1145 1680 1.36 0.25 0.13
3b 510 1290 1860 2.22 0.31 0.26

diffusion-limited current of the FcMeOH oxidation Id, as measured by the two insulated

probes (figure 3), with the theoretical values determined according to recently derived

analytical expressions [33]. We first approximated the shape of the probes as depicted in

the SEM micrographs by three parameters: the height and the radius of the electroactive

cone, htip and rtip, and the radius of the insulation rg (cf figure 1b). Employing these

parameters, we calculated Id for the oxidation of 1 mM FcMeOH (diffusion coefficient

D = 7.8×10−6 cm2·s−1 [39]) as described in SI, section C and [33] (table 1). These results

are rather close to the experimental values. The difference between Id,calc and Id,exp could

be related to unavoidable errors upon estimation of the geometric parameters, as well as

to deviations of the tip shapes from an ideal one [33]. For comparison, Id,calc ≈ 4×Id,exp

was previously obtained for another Au-coated tip [32]. We believe that the removal of

titanium oxide from the gold tip, as implemented in our new experiments, comprises the

critical step to obtain a better agreement between calculated and experimental currents.

3.2. Current-sensing AFM experiments in an electrochemical environment

We used those insulated probes, which showed a low leakage current during the

electrochemical characterization, in subsequent ECCSAFM experiments (see paragraph

2.6 for details). The first series of experiments was carried out with a sample consisting

of conductive gold lines on an insulating SiO2 surface in 0.05 M H2SO4 + 0.05 M

KNO3 + 0.5 mM FcMeOH and the probe insulated with Si3N4/EP as presented in

figure 3b. Figure 4 illustrates CVs of the sample and of the AFM probe as recorded

in the AFM cell. Both CVs show the characteristic responses of FcMeOH oxidation

controlled by planar diffusion (sample macroelectrode) or hemispherical diffusion (tip

nanoelectrode). The overall shape of the redox response of the probe as well as the

capacitance response in the double layer region are comparable with the data recorded

in the electrochemical cell in the absence of oxygen (figure 3b). However, the height of

the oxidation wave is 3 to 4 times larger despite the lower concentration of FcMeOH.

This effect is attributed to a degradation of the EP-coating as well as to its damage

during handling, in particular during the mounting of the probe into the AFM scanner.

However, already at this stage the leakage current of the probe was sufficiently small to

carry out proof-of-principle experiments, which will be presented next. We note that the

negative probe current was measured in the AFM cell at potentials E < 0.15 V. This

current is attributed to the reduction of oxygen, which, unlike in experiments carried out



Electrochemical current-sensing atomic force microscopy in conductive solutions 11

in an electrochemical cell (paragraph 3.1), is dissolved in the electrolyte under ambient

conditions in the AFM setup employed in the current study.

The gold lines on the SiO2 surface were imaged by contact-mode AFM in

electrolyte under potential control with a resolution below 100 nm (figure 5a). The

simultaneously mapped current, which flows through the junction (figure 5b), allows to

distinguish conductive and insulating parts of the structured Si wafer. This approach

helps to discern between domains with different electric properties on more complex

samples. The conductance of different domains can be quantified in a current histogram

(figure 5c). We observed two distinct features. While the majority of data points in

Figure 4. Cyclic voltammograms of the sample (scale on the left) and of the AFM
probe (scale on the right) in 0.05 M H2SO4 + 0.05 M KNO3 + 0.5 mM FcMeOH as
measured in the AFM cell. The potential sweep rate is 0.05 V·s−1.

Figure 5. Simultaneous mapping of topography (a) and current (b) upon AFM
imaging in 0.05 M H2SO4 +0.05 M KNO3 +0.5 mM FcMeOH, Es = 0 V, Ep = −0.1 V
vs SCE. (c) Histogram of the current values in (b) showing an electrochemical current
I ≈ 0.33 nA and a saturation current I ≈ 100 nA upon contacting the conductive
lines.
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Figure 6. Curves measured upon the approach of the probe towards the surface in
0.05 M H2SO4 + 0.05 M KNO3 + 0.5 mM FcMeOH, Es = 0 V, Ep = 0.3 V vs SCE,
probe moving rate 100 nm·s−1 (solid lines). (a) Force and (b) current on a conducting
gold line. The dashed lines in (a) demonstrate the procedure used to determine the
position of the probe-sample contact. The dotted curve in (b) corresponds to the
sum of simulated FcMeOH oxidation current, tunnelling current and a constant offset
current of 0.68 nA. (c) Current measured upon probe approach to the insulating SiO2

surface. The dotted curve corresponds to the sum of simulated FcMeOH oxidation
current and a constant offset current of 0.71 nA.

the last bin corresponds to the saturation current I ≈ 100 nA flowing between the

probe and the sample upon their contact, the smaller peak centred at I ≈ 0.33 nA

is attributed to the current measured when the probe is in contact with the non-

conductive areas. The current measured at the probe potential Ep = −0.1 V is due

to the oxygen reduction and is approximately 1-2 orders of magnitude higher than the

typical electrochemical currents obtained with well insulated tips in electrochemical

scanning tunnelling microscopy [40] and, according to our estimations, less than 1 order

of magnitude higher than the background current typically measured in AFM-SECM

experiments.

The surface features were characterized by measuring simultaneously the force F

acting on the cantilever and the current I flowing through the junction as a function

of probe-sample distance z upon approach and withdrawal of the AFM probe to the

conductive and to the non-conductive areas. This technique is known as force-distance
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or current-distance spectroscopy in atomic force and scanning tunnelling microscopy

configurations, respectively. As probe and sample potentials were held at values

corresponding to the diffusion-limited oxidation of FcMeOH and its regeneration upon

reduction of FcMeOH+, our setting is also equivalent to a typical SECM experiment.

The experiments were complemented by modelling the current of the diffusion-limited

oxidation of FcMeOH at the probe/electrolyte interface upon the approach of the probe

to the conductive and to the non-conductive surface (for details see SI, section C).

Figures 6a and 6b display the typical evolution of force and current during the

approach of the probe to a conductive gold line. Here, the scale corresponds to the

absolute probe-sample distance. The probe-sample contact (z = 0) was determined as

the point where the initially resting cantilever (F = 0) starts to push against the sample

(F increases) by extrapolation of the linear F −z dependence to zero force (dotted lines

in figure 6a). A constant current Ip ≈ 0.9 nA corresponding to the diffusion-controlled

oxidation of FcMeOH (cf figure 4) was measured when the probe was sufficiently far

from the surface. It increased sharply when the probe-sample distance was below 1 nm.

Two mechanisms could be responsible for the observed current increase: regeneration

of FcMeOH+ (positive feedback in SECM) or electron tunnelling between the probe

and the sample. The transition from the first mechanism to the second one upon the

approach of the probe to the surface was also observed experimentally [41]. However,

the corresponding simulated SECM response (SI, figure S8) demonstrated a slow current

increase over a distance of several µm from the surface reaching ∆I ≈ 0.1 nA at most.

The characteristic exponential current-distance dependence at z < 1 nm in figure 6b

is therefore rather attributed to electron tunnelling. The current-distance curve was

reproduced as a sum of simulated FcMeOH oxidation current, constant offset of 0.68 nA,

and a tunnelling contribution with an estimated barrier height of ≈ 0.95 eV. This

value is slightly lower than 1.0 to 1.5 eV, obtained for typical tunnelling experiments

in aqueous electrolytes with Pt/Ir and Au tips in the absence of redox-active species

[42, 43]. The extrapolation of the tunnelling current to z = 0 results in a contact

conductance of 42.6 µS, which is slightly smaller than the conductance of a single-atom

gold-gold contact (see below).

Approaching of the probe to a non-conductive surface results in a slight decrease

of the current from ≈ 0.84 nA to ≈ 0.82 nA over a distance of ≈1 µm (figure 6c),

while the simulated approach curve (SI, figure S8) displays a current of ≈ 0.15 nA

when the probe is located sufficiently far away from the surface. However, the decrease

of the simulated current due to the screening of the FcMeOH diffusion to the tip, as

described by a negative feedback in SECM, corresponds well to the variation of the

experimental current. Thus, we were able to reproduce the experimental response as

a sum of simulated FcMeOH oxidation current and a constant offset of 0.71 nA. We

attribute the offset current observed in both types of current-distance measurements

(figure 6b,c) to a leakage current. Possible origins of the latter were discussed above.

Finally, we used an experimental configuration, which we already described before

[13], to demonstrate simultaneous current and force measurements upon pulling of gold-
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Figure 7. Examples of traces showing the evolution of the junction conductance (a)
and of the force (b) upon stretching of Au nanocontacts in 0.1 M H2SO4, pulling rate
100 nm·s−1, Es = −0.15 V, Ep = −0.28 V vs SCE.

gold nanocontacts. These contacts were created between an AFM probe and a gold

bead crystal in 0.1 M H2SO4 (figure 7). The formation of gold-gold nanocontacts was

identified by a well-defined conductance G ≈ N ·G0, where G0 = 77.5 µS represents the

quantum of conductance and N is the number of quantum conductance channels in the

narrowest part of the nanocontact (see arrows in figure 7). After breaking of an atomic

contact, the junction conductance rapidly drops by a few orders of magnitude followed

by an exponential decrease in conductance. This decay is attributed to tunnelling

through the solution. At the same time, the force acting on the cantilever suddenly

increases by a few nN. The force jump is attributed to the force required to break the

last stable atomic contact [10–13]. This force is known to be ≈ 1.5 nN for a single-

atom gold contact under non-reactive conditions. However, it appears to be somewhat

higher under electrochemical conditions. The detailed analysis and the discussion of

the potential-dependence of the electromechanical properties of gold nanocontacts in an

electrochemical environment are the subject of a forthcoming publication.

4. Conclusions

In this paper we present (1) an improved technology for the fabrication of atomic

force microscopy probes with insulated conductive tips; (2) a procedure to create a

reliable contact between the internal conductive structure of the probe and an external

current-measuring circuit; (3) an approach to apply a secondary insulation to the electric

contact and to the surface of the probe by electrodeposition of an electrophoretic paint;

(4) a protocol for the characterization of probe insulation with a specific focus on its

stability in a reactive environment; (5) prototypical electrochemical scanning probe
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microscopy/spectroscopy experiments under potential control employing the fabricated

probes as bifunctional force/current sensors; as well as (6) the analysis strategies for the

latter experiments.

Compared to the fabrication process reported previously [32], we improved the

insulation of the conductive probes by combination of plasma-enhanced chemical

vapor deposition of Si3N4 with (1) atomic layer deposition of ZrO2 or, alternatively,

(2) electrochemically-deposited electrophoretic paint. Both approaches lead to well-

insulated probes, except of the conductive tips exposed to the electrolyte. While the

ALD strategy still requires insulation of the electric connection to the external circuit,

electrophoretic deposition allows to obtain a defect-free insulation of the whole probe

and of the electric contact. Particularly promising results were obtained with probes

coated and cured shortly before the experiments. The stability of the insulation layers

was confirmed by experiments with wired probes, that were characterized by cyclic

voltammetry in 0.1 M KNO3, 0.1 M H2SO4 or 0.1 M KNO3 +1 mM FcMeOH. We found

that the maximum diffusion-limited current of FcMeOH oxidation at the tip/electrolyte

interface agrees almost quantitatively with simulated currents obtained according to a

previously reported procedure [33].

The wired and well-insulated probes were further employed in prototype ECCSAFM

experiments. The electroactive area of the probes, as determined in the ECCSAFM

experiments, was found to be 7 to 8 times higher than that extracted from their

characterization in a standard electrochemical cell. This observation is attributed

to microscratches imposed on the probe during its handling. The latter still needs

technical improvements. However, the fabricated insulated probes already allowed proof-

of-principle experiments, which illustrate the feasibility of our approach.

In a first current-sensing AFM experiment we imaged conductive gold lines on

an insulating SiO2 surface. We convincingly demonstrated that mapping of surface

structures with different conductances is possible in electrolyte. In a second experiment,

we measured the force acting on the cantilever as well as the current flowing through the

junction during the approach of the probe to the conductive and to the non-conductive

surfaces. With the potentials of the sample and of the probe corresponding to the

stability range of the reduced and of the oxidized form of FcMeOH, this experiment

is equivalent to force- or current-distance scanning probe spectroscopy as well as to

approach curves in scanning electrochemical microscopy (SECM). We found that the

current increase upon approaching the probe to a conductive area of the sample (at

distances z < 1 nm) represents electron tunnelling between the two electrodes. The

decrease of the current upon the approach of the probe to an insulating area of the

sample was interpreted to be due to the hindering of the FcMeOH diffusion to the

probe, as confirmed by complementary simulations [34]. Finally, we demonstrated,

for the first time in an electrochemical environment, simultaneous measurements of

interaction forces and junction conductances upon breaking of metal nanocontacts.

These experiments open the way towards the exploration of structure and reactivity

of nanojunctions in an electrochemical environment.
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We believe that our work will provide guidelines for the fabrication and

characterization of insulated CSAFM probes and inspire advanced CSAFM experiments

in a wide range of electrochemical applications.
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