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Abstract Since 2010, the client base of online-trading service providers has grown
significantly. Such companies enable small investors to access the stock market at
advantageous rates. Because small investors buy and sell stocks in moderate amounts,
they should consider fixed transaction costs, integral transaction units, and dividends
when selecting their portfolio. In this paper, we consider the small investor’s problem
of investing capital in stocks in a way that maximizes the expected portfolio return and
guarantees that the portfolio risk does not exceed a prescribed risk level. Portfolio-
optimization models known from the literature are in general designed for institutional
investors and do not consider the specific constraints of small investors. We therefore
extend four well-known portfolio-optimization models to make them applicable for
small investors. We consider one nonlinear model that uses variance as a risk measure
and three linear models that use the mean absolute deviation from the portfolio return,
the maximum loss, and the conditional value-at-risk as risk measures. We extend all
models to consider piecewise-constant transaction costs, integral transaction units,
and dividends. In an out-of-sample experiment based on Swiss stock-market data and
the cost structure of the online-trading service provider Swissquote, we apply both
the basic models and the extended models; the former represent the perspective of
an institutional investor, and the latter the perspective of a small investor. The basic
models compute portfolios that yield on average a slightly higher return than the port-
folios computed with the extended models. However, all generated portfolios yield
on average a higher return than the Swiss performance index. There are considerable
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346 P. Baumann, N. Trautmann

differences between the four risk measures with respect to the mean realized portfolio
return and the standard deviation of the realized portfolio return.

Keywords Portfolio optimization · Transaction costs · Integral transaction units ·
Experimental performance analysis

1 Introduction

The basic portfolio-optimization problem consists of investing some capital in stocks
in such a way that the expected portfolio return is maximized and the portfolio risk
does not exceed a prescribed risk level. A well-known formulation of this problem
as a quadratic optimization problem has been proposed by Markowitz (1952). Using
alternative risk measures, Konno and Yamazaki (1991), Young (1998) and Rockafellar
and Uryasev (2000) have formulated this problem as a linear optimization problem.

In recent years, the number of individuals who purchase assets for their own account
has been increasing considerably. When constructing their portfolio, such individuals,
whom we should call small investors, face certain constraints that institutional inves-
tors may neglect. These constraints are piecewise constant transaction costs, integral
transactions units, maximum number of different stocks, maximum weight of individ-
ual stocks, and dividends. In this paper, we integrate these constraints efficiently into
the above-mentioned models for portfolio optimization and discuss how the extended
models differ with respect to the CPU times required and the portfolios obtained.

In the literature, it has been discussed how the above-mentioned small-investor
specific constraints can be included individually in some of these basic portfolio-
selection models. Speranza (1996) extends a modified version of the model of Konno
and Yamazaki (1991) to account for different types of transaction costs, integral trans-
action units and limits on the maximum number of different stocks. Young (1998)
considers piecewise-constant transaction costs and an upper bound on the number of
different stocks. Konno and Wijayanayake (2001) are concerned with the model of
Konno and Yamazaki (1991) under concave transaction costs and minimal transaction
units and propose a model-specific branch-and-bound algorithm that involves a round-
ing procedure. Mansini and Speranza (2005) present an exact solution algorithm for
portfolio optimization with fixed transaction costs and integral transaction units. For
the experimental analysis, they use the model of Konno and Yamazaki (1991). Konno
and Yamamoto (2005) show that the portfolio-optimization problem with piecewise-
linear or piecewise-constant transaction costs, minimal transaction units, and con-
straints on the number of different stocks can be solved within reasonable CPU time
when using the model of Konno and Yamazaki (1991). Bonami and Lejeune (2009)
extend the model of Markowitz (1952) to consider stochastic asset returns, integral
transaction units, minimum investments, and diversification requirements; for the solu-
tion of the resulting nonlinear optimization problem, a branch-and-bound algorithm
and two specific branching rules are proposed.

In this paper, we extend each of the basic portfolio-optimization models such that all
of the above-mentioned constraints are considered simultaneously. In a computational
experiment we investigate how the small-investor specific constraints influence the
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Portfolio-optimization models for small investors 347

CPU time requirements and the performance of the resulting portfolios. For this pur-
pose we applied each basic model with and without small-investor specific constraints
to 19 datasets that we generated using the stock notations of the Swiss Stock Exchange
in four-year intervals from 1988 to 2009. Surprisingly, we found that all extended mod-
els can be (approximately) solved to optimality within a reasonable amount of CPU
time. For the evaluation of the portfolio performance, we applied an out-of-sample
approach. Our analysis demonstrates considerable differences between the four mod-
els with respect to the mean realized portfolio return, the standard deviation of the
realized portfolio return, and the development of the portfolio value. Furthermore,
we found that the small-investor specific constraints reduce the performance of the
portfolios only to a small extent.

The remainder of this paper is structured as follows. In Sect. 2, we recapitulate the
four basic portfolio-selection models using a common notation. In Sect. 3, we present
the extension of the basic models by the small-investor specific constraints. In Sect. 4,
we report on the design and the results of our computational experiment. In Sect. 5,
we provide some concluding remarks and directions for future research.

2 Basic portfolio-optimization models

In this section, we briefly present the four basic portfolio-optimization models. The
objective of each model is to maximize the expected return of the portfolio such that
the portfolio risk does not exceed the risk level prescribed by the investor (risk con-
straint) and that the entire budget is invested (budget constraint). We do not account
for short sales; thus, the stock weights need to be non-negative.

First, we present the mean-variance (MV) model (cf. Markowitz 1952). The port-
folio risk is measured by the variance of the expected portfolio return. In general, the
required covariances between the returns of the individual stocks are estimated using
historical data. The MV model reads as follows.

n number of stocks
σi j covariance between return of stock i and return of stock j
r i expected return of stock i
� maximal risk level

∗ xi weight of stock i in portfolio

(MV)

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Max.
∑n

i=1
r i xi

s.t.
∑n

i=1

∑n

j=1
σi j xi x j ≤ � (1)

∑n

i=1
xi = 1 (2)

xi ≥ 0 (i = 1, . . . , n)

Constraint (1) represents the risk constraint, and constraint (2) represents the budget
constraint.

Second, we refer to the mean-absolute-deviation (MAD) model proposed by
Konno and Yamazaki (1991). The portfolio risk is measured by the mean of the
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348 P. Baumann, N. Trautmann

absolute deviations of the portfolio return from the expected portfolio return in all
periods. The portfolio return is devised from the corresponding historical returns of
the stocks. To obtain a linear model, the deviation in period t is computed as the
sum of two non-negative variables φt and ψt , which correspond to the positive and
the negative deviations, respectively (cf. constraint (3)). The MAD model reads as
follows.

T number of periods
rit return of stock i in period t

∗ φt positive deviation of portfolio return
∗ ψt negative deviation of portfolio return

(MAD)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Max.
∑n

i=1
r i xi

s.t. φt − ψt = 1

T

∑n

i=1
(rit − r i )xi (t = 1, . . . , T ) (3)

∑T

t=1
(φt + ψt ) ≤ � (4)

∑n

i=1
xi = 1 (5)

xi ≥ 0 (i = 1, . . . , n)
φt , ψt ≥ 0 (t = 1, . . . , T )

Constraint (4) represents the risk constraint, and constraint (5) represents the budget
constraint.

Third, we consider the minimax (MM) model developed by Young (1998). The
portfolio risk is measured by the minimum portfolio return over all periods. Thus, in
contrast with the models presented by Markowitz (1952) and Konno and Yamazaki
(1991), the risk measure is asymmetric; Young (1998) argues that such an asymmetric
risk measure is more appropriate for skewed return distributions. For an extensive
discussion of such risk measures, we refer to Lüthi and Studer (1997). Constraint (6)
ensures that the portfolio return does not fall below the minimum portfolio return �
in any period. The MM model reads as follows.

(MM)

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Max.
∑n

i=1
r i xi

s.t
∑n

i=1
xirit ≥ � (t = 1, . . . , T ) (6)

∑n

i=1
xi = 1 (7)

xi ≥ 0 (i = 1, . . . , n)

Constraint (6) represents the risk constraint, and constraint (7) represents the budget
constraint.

Fourth, we turn to the conditional value-at-risk (CVaR) model proposed by Rock-
afellar and Uryasev (2000). The portfolio risk is measured by the CVaR, which is
based on the value-at-risk (VaR) and also represents an asymmetric risk measure. The
non-linear CVaR function is generally difficult to optimize (cf. Shapiro et al. 2009).
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Portfolio-optimization models for small investors 349

Therefore, Rockafellar and Uryasev (2000) propose to approximate the joint density
function by a number of scenarios to obtain a linear model. Here, we use historical
stock returns to represent different scenarios. It is assumed that all these scenarios
have the same probability. The β-VaR is the return below which the portfolio return
falls at most, with a given probability 1 − β; let α be the negative of that return. The
CVaR corresponds to the mean of all portfolio returns below −α. The CVaR model
reads as follows.

β probability level
∗ α −β-VaR
∗ ut shortfall of portfolio return with respect to β-VaR

(CVaR)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Max.
∑n

i=1
r i xi

s.t.
∑n

i=1
rit xi + ut + α ≥ 0 (t = 1, . . . , T ) (8)

α + 1

T (1 − β)

∑T

t=1
ut ≤ � (9)

∑n

i=1
xi = 1 (10)

xi ≥ 0 (i = 1, . . . , n)
ut ≥ 0 (t = 1, . . . , T )
α ≥ 0

Constraint (8) enforces for each period t in which the portfolio return falls below −α
that ut is at least equal to this shortfall. Constraint (9) represents the risk constraint:
when sorting the periods by the portfolio return, the portfolio risk is equal to the
mean portfolio return in the 1−β worst periods. Constraint (10) represents the budget
constraint.

3 Model extensions

In this section, we extend the four basic portfolio-optimization models to account for
integral transaction units, a maximum weight of individual stocks, piecewise constant
transaction costs, a maximum number of different stocks, and dividends. To formulate
some of these constraints, it is necessary to use binary or integer variables. In general,
such variables strongly increase the CPU time required for solving the resulting opti-
mization problem; thus, an efficient formulation is of particular interest. Mansini and
Speranza (1999) show that, when integral transaction units are taken into account, the
problem of finding a feasible solution is, independently of the risk measure, NP-com-
plete.

In a real-world portfolio, the number of units zi of any stock i must be integral,
i.e.,

zi ∈ Z≥0 (i = 1, . . . , n) (11)
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350 P. Baumann, N. Trautmann

Fig. 1 Piecewise constant transaction costs

With Pi denoting the price of stock i at the time of purchase and B denoting the budget,
let λi := Pi

B . Then, the weight of stock i is defined by

xi = λi zi (i = 1, . . . , n) (12)

Because of constraint (12), it may not be possible to meet the budget constraint∑n
i=1 xi = 1. Therefore, we replace the budget constraint by

1 − δ ≤
n∑

i=1

xi ≤ 1 + δ (13)

with δ > 0 denoting a small positive constant.
Let τ denote the maximum weight of stock i , i.e.,

xi ≤ τ (i = 1, . . . , n) (14)

This bound implicitly sets up a lower bound on the number of stocks in the portfolio.
Brokers charge transaction costs when their clients buy and sell stocks. In gen-

eral, these costs are not proportional to the total price of the stocks. For our analysis,
we model a piecewise-constant cost structure, which is applied by several banks. The
computation of the transaction cost is illustrated in Fig. 1. For example, if xi ∈]v2, v3],
then a transaction cost of γ1 + γ2 is incurred. Hence, we introduce K binary variables
yik for each stock i . If the fraction of the total budget invested in stock i exceeds vk ,
then yik = 1:

yik ≥ xi − vk

τ
(k = 1, . . . , K ; i = 1, . . . , n) (15)
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Portfolio-optimization models for small investors 351

Fig. 2 Datasets 1, 2 and 3

Thus, the transaction costs for stock i are

ci =
K∑

k=1

γk yik (i = 1, . . . , n) (16)

To limit the time needed for the implementation and supervision of the portfolio,
small investors generally prefer portfolios with a limited number of stocks. With p
denoting the corresponding upper bound, we write this constraint as

n∑

i=1

yi1 ≤ p (17)

Usually, small investors do not reinvest dividends because of the relatively high
transaction costs. Therefore, the dividends Di must be treated explicitly in the opti-
mization model. The same holds for any transaction costs that are proportional to the
invested amounts, e.g. stamp duties s or stock exchange fees b. Using the notation
introduced above, the modified objective function reads

n∑

i=1

[(r i − s − b)xi + Di zi − ci ]

Note that the parameters s, b and γk must be adjusted to the budget and the investment
horizon; moreover, the parameter Di must be adjusted to the price of stock i and the
investment horizon.

4 Computational analysis

In this section, we describe the design of the experimental analysis (cf. Sect. 4.1) and
report the numerical results (cf. Sect. 4.2).

4.1 Experimental design

The aim of the experimental analysis is twofold. First, we want to evaluate the practical
performance of the extended models in a real-world situation of a small investor. In
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352 P. Baumann, N. Trautmann

Table 1 Portfolio-optimization
models

Model Constraints

MV (1), (2)

MAD (3)–(5)

MM (6), (7)

CVaR (8)–(10)

MV+ (1), (11)–(17)

MAD+ (3), (4), (11)–(17)

MM+ (6), (11)–(17)

CVaR+ (8), (9), (11)–(17)

particular, we are interested in the CPU time required to compute the portfolios and the
out-of-sample portfolio return. Second, we want to analyse to what extend the small-
investor specific constraints affect the composition and performance of the portfolios.
To compare the investment situation of a small investor to the investment situation of
an institutional investor, we use the basic models to compute portfolios for institutional
investors and evaluate their composition and out-of-sample performance.

We created 19 datasets using weekly stock returns from 1988 to 2009. Each data-
set contains stock returns over four years (cf. Fig. 2). Depending on the dataset, the
number of different stocks varies from 171 to 239. We used the first two years of each
dataset to construct the portfolios with the basic/extended models (cf. Table 1) and
the last two years to study the out-of-sample performance of the portfolios. To define
the model-specific maximal risk level �, we computed the variance (MV-model), the
mean absolute deviation (MAD-model), the minimum return (Minimax-model) and
the conditional value-at-risk (CVaR-model), based on the returns of the Swiss perfor-
mance index (SPI) over the first two years of each dataset.

We assume that both the small investor and the institutional investor want to invest
in stocks listed on the Swiss performance index (SPI) for two years. Both investors
do not have any special knowledge that allows them to select undervalued stocks.
Therefore, they follow a buy-and-hold strategy.

Table 2 shows the different investment settings that we consider. For the small
investor’s situation, we distinguish among six investment scenarios regarding the bud-
get. The other problem parameters listed in Table 2 are the same for all scenarios.
We implemented the transaction-cost structure of the online-trading service provider
Swissquote. For the institutional investor’s situation, we assume that the invested
amount of money is large enough that broker fees and integral transaction units are
negligible. Further, we do not impose a limit on the number of different stocks in the
portfolio. For the sake of comparability, we adjust the expected returns for propor-
tional transaction costs such as stamp duty and stock exchange fees, and we enforce
that the maximum weight of a stock does not exceed 10 %.

In total, we apply all extended models to 114 problem instances and all basic models
to 19 problem instances. The computations were performed on an HP Z600 worksta-
tion with 2 Intel Xeon X5650 CPUs and 24GB RAM using AMPL together with
CPLEX 12.4.
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Table 2 Investment settings
Parameters Small investor Institutional

investor

Budget (B) in 1,000 CHF 5, 10, 20, 50, 75, 100 –

Model specific maximal
risk level (�)

Risk of SPI Risk of SPI

Maximum weight of a
stock (τ )

10 % 10 %

Allowed deviation from
budget (δ)

1 % –

Maximum number of
different stocks (p)

30 ∞

Number of kinks in
transaction-cost
function (K )

4 –

Stamp duty 0.075 % 0.075 %

Stock exchange fee 0.01 % 0.01 %

Probability level for
CVaR-model (β)

90 % 90 %

Table 3 Comparison of CPU times (tC PU ) and MIP gaps (G), when B = 100,000 CHF

DS MM+ CVaR+
90 % MAD+ MV+

tC PU (s) G (%) tC PU (s) G (%) tC PU (s) G (%) tC PU (s) G (%)

1 <1 0.0 <1 0.0 <1 0.0 <1 0.0

2 <1 0.0 <1 0.0 2 0.0 Lim 0.2

3 <1 0.0 21 0.0 <1 0.0 <1 0.0

4 3 0.0 Lim 0.1 Lim 0.1 Lim 0.1

5 1 0.0 8 0.0 136 0.0 Lim 0.2

6 1 0.0 2 0.0 Lim 0.1 Lim 0.4

7 <1 0.0 2 0.0 Lim 0.0 Lim 0.4

8 <1 0.0 845 0.0 Lim 0.3 Lim 0.1

9 <1 0.0 135 0.0 Lim 0.2 Lim 0.2

10 <1 0.0 <1 0.0 Lim 0.2 Lim 0.1

11 <1 0.0 <1 0.0 3 0.0 1 0.0

12 <1 0.0 142 0.0 Lim 0.1 Lim 0.4

13 <1 0.0 17 0.0 Lim 0.2 Lim 0.3

14 <1 0.0 1 0.0 1 0.0 1 0.0

15 <1 0.0 <1 0.0 1 0.0 1 0.0

16 <1 0.0 2 0.0 Lim 0.1 Lim 0.2

17 <1 0.0 13 0.0 Lim 0.2 Lim 0.3

18 <1 0.0 204 0.0 Lim 0.2 Lim 0.4

19 <1 0.0 1 0.0 Lim 0.0 Lim 0.0

∅ <1 0.0 168 0.0 1,145 0.1 1,327 0.2
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4.2 Numerical results

Table 3 lists for each extended model and for each dataset the CPU time required to
compute an optimal portfolio, when the budget is set to 100,000 Swiss Francs. We
imposed a time limit of 1,800 s, which was reached 12 times by the MAD+-model and
14 times by the MV+-model. In all cases, when the time limit was reached, the MIP gap
did not exceed 0.4 %. The quadratic MV+-model and the linear MAD+-model require
significantly more CPU time to solve the problem instances than do the CVaR+-model
and the MAD+-model. However, both the MV+- and the MAD+-model are able to find
near-optimal solutions within a reasonable amount of CPU time. Thus, all extended
models are applicable to the considered real-world investment situation.

Table 4 reports the two-year portfolio return for each basic/extended model and
each dataset. For all extended models we report the results when the budget is set to
100,000 Swiss Francs. The portfolio return for smaller budgets does not differ signif-
icantly from the values indicated in Table 4. The portfolios yield on average a higher
return than the SPI, independent of the model used. However, the standard deviation
of the portfolio returns is considerably higher compared with that of the SPI. In terms

Table 4 Two-year return of the portfolios (for all extended models B = 100,000 CHF)

Dataset MV MV+ MAD MAD+ MM MM+ CVaR CVaR+
90 % SPI

1 −26.0 −26.3 −26.5 −27.5 −28.1 −29.4 −28.2 −28.2 −11.2

2 −7.3 −16.8 −7.3 −16.8 −7.3 −11.1 −19.0 −28.2 30.5

3 20.4 38.5 25.9 37.7 17.1 15.2 29.0 20.4 73.6

4 66.8 71.5 55.4 55.6 37.0 43.2 52.6 54.5 38.1

5 7.2 10.5 3.9 7.3 4.4 10.7 6.8 6.6 11

6 10.7 10.1 16.3 14.6 14.4 13.7 −5.4 −8.6 41.8

7 60.4 57.4 60.2 58.1 39.4 39.4 40.5 39.4 77.5

8 192.4 197.7 130.1 138.1 114.5 153.6 88.6 103.1 77

9 133.0 142.7 114.7 116.1 283.4 285.4 130.5 132.2 27.3

10 141.5 142.2 84.9 87.4 141.0 148.4 150.0 136.7 20.2

11 −40.6 −39.3 −24.5 −27.0 −37.2 −38.1 −27.8 −23.9 −15.6

12 −19.8 −56.2 12.1 −56.7 100.2 −44.8 −6.0 −59.1 −41.5

13 29.6 26.8 29.9 26.9 −10.6 −18.2 22.7 24.3 −11.7

14 79.7 75.8 80.3 74.1 64.5 58.5 64.0 57.7 25.3

15 38.7 39.9 35.4 37.1 34.8 36.5 39.4 39.2 42.6

16 106.2 110.5 115.5 124.1 74.3 82.8 94.3 100.0 61.4

17 79.8 82.5 76.2 75.9 79.1 77.2 79.7 81.2 17.3

18 −25.2 −25.1 −31.1 −32.1 −33.8 −35.5 −25.8 −25.0 −35.4

19 −32.1 −32.4 −34.3 −35.0 −43.2 −45.8 −42.0 −43.8 −34.2

∅ 42.9 42.6 37.7 34.6 44.4 39.1 33.9 30.4 21.4

SD 64.6 68.7 50.9 56.9 76.7 82.0 54.6 58.3 37.83

∅/SD 0.66 0.62 0.74 0.61 0.58 0.48 0.62 0.52 0.57
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Table 5 Number of different stocks in the portfolios (for all extended models B = 100,000 CHF)

Dataset MV MV+ MAD MAD+ MM MM+ CVaR CVaR+
90 %

1 171 16 14 14 10 11 11 12

2 185 11 10 11 10 11 11 11

3 219 11 12 12 10 11 18 16

4 216 28 28 28 19 21 26 25

5 212 18 23 19 15 14 16 16

6 206 23 23 21 14 15 14 14

7 205 19 20 18 11 11 15 15

8 196 19 25 24 14 15 24 23

9 194 19 26 22 11 11 23 24

10 195 16 27 24 10 12 12 11

11 199 12 16 15 10 11 13 13

12 215 23 22 22 13 12 21 21

13 226 17 20 19 11 12 18 16

14 239 12 12 11 11 12 13 14

15 238 12 11 11 11 11 12 11

16 234 22 21 20 13 12 16 16

17 228 20 24 24 11 11 16 14

18 222 23 24 24 11 11 18 17

19 226 14 16 16 11 13 13 14

∅ 211.9 17.6 19.7 18.7 11.9 12.5 16.3 15.9

of return per unit of standard deviation, all basic models outperform the SPI. From all
extended models, the MV+-model achieves the best result, followed by the MAD+-
model; the SPI is third, followed by the CVaR+

90 %- and the MM+-model. The high
standard deviation of the MM+-portfolios can be explained by the low average num-
ber of stocks included (cf. Table 5). Table 3 shows that portfolios that were computed
with small-investor specific constraints perform slightly worse than the correspond-
ing portfolios that were computed without these constraints. This finding is in line
with the value-of-flexibility concept discussed in Lüthi and Doege (2005). However,
the relative performance loss for small investors is surprisingly small when using the
proposed model extensions.

5 Conclusions

We investigated four well-known portfolio-selection models from the perspective of
a small investor. We have shown how these models can be extended to account for
constraints that are vital to small investors, i.e., integral transactions units, maximum
weight of individual stocks, piecewise constant transaction costs, maximum num-
ber of different stocks, and dividends. For our computational analysis, we constructed

123



356 P. Baumann, N. Trautmann

19 instances using real data from the Swiss Stock Exchange in four-year intervals from
1988 to 2009 and the cost structure of the largest Swiss online broker Swissquote.

We found that all of the extended models are able to compute portfolios within a
reasonable amount of CPU time. All models yield on average a higher return than the
SPI. The best risk-return ratio is achieved by the extended MV model of Markowitz
(1952). The influence of the budget on the portfolio performance, however, can be
neglected.

In the future, the influence of a periodic rebalancing on the portfolio performance
should be studied. Moreover, alternative asset types, e.g. bonds, could be included
in the study. Another interesting direction of future research is to analyze whether
there are subcases for which the extended portfolio-selection models can be solved in
polynomial time; for general integer optimization problems, such subcases have been
devised in De Loera et al. (2008a,b).
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