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Abstract. We set out to find something that corresponds to deep infer-
ence in the same way that the lambda-calculus corresponds to natural de-
duction. Starting from natural deduction for the conjunction-implication
fragment of intuitionistic logic we design a corresponding deep inference
system together with reduction rules on proofs that allow a fine-grained
simulation of beta-reduction.

1 Introduction

The Curry-Howard-Isomorphism states that intuitionistic natural deduction der-
ivations with the operation of detour-elimination behave exactly like lambda
terms with beta reduction. For an introduction, see the book [4] by Girard, La-
font and Taylor. Since the lambda calculus expresses algorithms, the lambda
calculus is thus an algorithmic interpretation of intuitionistic natural deduction.
We want to find an algorithmic interpretation for deep inference, a formalism
which has been introduced by Guglielmi [5]. So far, no deep inference system
that we are aware of has an algorithmic interpretation. In fact, while they typi-
cally have cut elimination procedures, the cut elimination steps are not given in
the form of simple reduction rules on proof terms.

The natural starting point for algorithmic interpretation of deep inference is
of course a system for intuitionistic logic. There already exists such a system, by
Tiu [11]. However, it focuses on locality of inference rules, and not on algorith-
mic interpretation. Its cut elimination proof works via translation to the sequent
calculus. We design another deep inference system for intuitionistic logic, with
the specific aim of staying as close to natural deduction as possible, because
there the algorithmic interpretation is well-understood. We then give a defini-
tion of proof terms for this system. The general way of building proof terms for
deep inference is already present in [1]. We equip these proof terms with reduc-
tion rules that allow us to simulate beta-reduction. We give translations from
natural deduction to deep inference and back and prove a weak form of weak
normalisation.

The principal way of composing our proof terms is not function applica-
tion, as in the lambda calculus, but is function composition, as in composition
of arrows in a category. So it is a system of what should be called categorical
combinators. In fact, it turns out that our proof terms are very similar to some

s
o
u
r
c
e
:
 
h
t
t
p
s
:
/
/
d
o
i
.
o
r
g
/
1
0
.
7
8
9
2
/
b
o
r
i
s
.
3
7
1
8
7
 
|
 
d
o
w
n
l
o
a
d
e
d
:
 
1
6
.
5
.
2
0
1
6

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Bern Open Repository and Information System (BORIS)

https://core.ac.uk/display/33065598?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


categorical combinators that Curien designed in the eighties, in order to serve as
a target for the compilation of functional programming languages [2]. A very ac-
cessible introduction to those combinators and how they led to the development
of explicit substitution calculi, like the λσ-calculus, can be found in Hardin [7].

The difference between our combinators and Curien’s is in the presentation
of the defining adjunctions of a cartesian closed category. In our presentation
proof terms can be thought of graphically: they are built using vertical com-
position (the usual composition of morphisms) and horizontal composition (the
connectives).

2 A Deep Inference System for Intuitionistic Logic

Formulas, denoted by A, B, C, D, are defined as follows

A ::= a | (A ∧ A) | (A ⊃ A) ,

where a is a propositional variable. As usual, conjunction binds stronger than
implication and is left-associative, implication is right-associative. A formula
context, denoted by C{ }, is a formula with exactly one occurrence of the special
propositional variable { }, called the hole or the empty context. The formula
C{A} is obtained by replacing the hole in C{ } by A. As usual, a context is
positive if the number of implications we pass from the left on the path from
the hole to the root is even. A context is negative if that number is odd, and is
strictly positive if that number is zero.

A deep inference rule is a term rewriting rule on formulas. A rule is written

A
ρ

B
,

where ρ is the name of the rule and A and B are formulas containing schematic
variables. A is the premise and B is the conclusion of the rule. In term rewriting
A would be the left-hand-side or the redex and B would be the right-hand-side
or the contractum. A system is a set of rules. An instance of a formula containing
schematic variables is obtained by replacing the schematic variables by formulas.
An instance of an inference rule as above is

C{A′}
ρ

C{B′}
,

where C{ } is a context, the formula A′ is an instance of A and B′ is an instance
of B. A deep inference derivation is a sequence of rule instances composed in
the obvious way. In term rewriting terminology a derivation is just a reduction
sequence from one formula to another one using the given inference rules as
rewrite rules. Of course, this definition only applies when the context is positive,
since applying a rule in a negative context is generally unsound. For a negative
context C{ }, an instance of ρ will have the form

C{B′}
ρ

C{A′}
.



A
c

A ∧ A

A ∧ B
w1

A

A ∧ B
w2

B

B
i

A ⊃ (B ∧ A)

(A ⊃ B) ∧ A
e

B

Fig. 1. A deep inference system for intuitionistic logic

Before seeing examples of derivations, let us look at a specific system for the
conjunction-implication fragment of intuitionistic logic: the system in Figure 1.
Because we like to think of the pair w1, w2 as one rule, there are essentially four
rules: c, w, i, e, or, respectively: contraction, weakening, implication introduction
and implication elimination. We can think of contraction as conjunction intro-
duction and of weakening as conjunction elimination. Implication elimination
can also be called evaluation. Categorically, each introduction rule is the unit
and each elimination rule the counit of an adjunction. The system is designed
with one goal in mind: to stay as close as possible to natural deduction, the
home ground for algorithmic interpretation of proofs.

Let us now look at two examples of derivations. Notice how the inference
rules apply deeply inside a context, as opposed to, say, rules in natural deduction.
Notice also how the derivation on the right contains a “detour”, a single instance
of w1 would also do the job.

Example 1.

A ∧ B
c

(A ∧ B) ∧ (A ∧ B)
w2

B ∧ (A ∧ B)
w1

B ∧ A

A ∧ B
i

(B ⊃ (A ∧ B)) ∧ B
w1

(B ⊃ A) ∧ B
e

A

We now introduce proof terms, or just terms, to capture deep inference der-
ivations. Proof terms are denoted by R, T, U, V and are defined as follows:

R ::= id | ρ | (R . R) | (R ∧ R) | (R ⊃ R)

where id is identity, ρ is the name of an inference rule from Figure 1, (R1 . R2)
is (sequential) composition and (R1 ∧ R2) and (R1 ⊃ R2) are conjunction and
implication. Both conjunction and implication are also referred to as parallel
composition. Sequential composition binds stronger than parallel composition
and is left-associative. Unnecessary parentheses may be dropped.

Some proof terms can be typed. The typing judgement A
R
−→ B says that

the term R can have the type A −→ B, so R has premise A and conclusion B. In
that case R is called typeable and the triple consisting of A, R, B is called a typed



A
id
−→ A

A
R
−→ B B

T
−→ C

A
R.T
−−→ C

A
R
−→ C B

T
−→ D

A ∧ B
R∧T
−−−→ C ∧ D

C
R
−→ A B

T
−→ D

A ⊃ B
R⊃T
−−−→ C ⊃ D

Fig. 2. Typing rules for proof terms

term. Typing judgements are derived by the typing rules in Figure 2 relative to
a given set of typing axioms. A typing axiom types an inference rule name: we

have A
ρ
−→ B where A and B are instances of the premise and the conclusion of

ρ, respectively. The only set of inference rules (or: typing axioms) we consider
here is the one in Figure 1.

Example 2. Consider the following two terms R and T , which correspond to the
derivations in Example 1:

c . (w2 ∧ id) . (id ∧ w1) and (i ∧ id) . ((id ⊃ w1) ∧ id) . e

It is easy to see that they can be typed as A ∧ B
R
−→ B ∧ A and A ∧ B

T
−→ A.

Clearly, there is canonical way of turning deep inference derivations into proof
terms, as suggested by the examples above, and also a straightforward way of
turning proof terms into deep inference derivations (that requires us to choose
some order among parallel rewrites):

Proposition 1. Given two formulas A, B and a system of inference rules, there
is a derivation from A to B in that system iff there is a proof term R such that

A
R
−→ B can be derived from the typing axioms corresponding to the given system.

Having introduced these typing derivations, we replace them immediately by
a more economical and suggestive notation, where we compose inference rules

vertically and horizontally. Let ρ be an inference rule A
ρ
−→ B, and let A

R
−→ B,

B
T
−→ C, C

U
−→ D. Then the typing derivations for ρ, R . T , R ∧ U and R ⊃ U are

represented as the tiles

A

ρ

B

,

R

A

T

B

C

,

A

R

∧

U

C

B ∧ D

and

B

R

⊃

U

C

A ⊃ D

.



(bur)

R . (T . U)→ (R . T ) . U

R . id→ R← id . R

id ∧ id→ id← id ⊃ id

(R ∧ T ) . (U ∧ V )→ R . U ∧ T . V

(R ⊃ T ) . (U ⊃ V )→ U . R ⊃ T . V

(nw)
(R ∧ T ) . w1 → w1 . R

(R ∧ T ) . w2 → w2 . T

(nc) R . c→ c . (R ∧ R)

(β∧) c . w1 → id← c . w2

(ni) R . i→ i . (id ⊃ (R ∧ id))

(β⊃) (i . (id ⊃ R) ∧ T ) . e→ (id ∧ T ) . R

Fig. 3. System beta

Example 3. Here are the tile representations of the derivations from the first
example:

A ∧ B

c

A ∧ B

w2

∧ A ∧ B

B ∧

w1

A ∧ B

B ∧ A

and

A

i

∧ B

(B ⊃

w1

A ∧ B) ∧ B

(B

e

⊃ A) ∧ B

A

.

2.1 Reduction

Some reduction rules are shown in Figure 3. They were chosen for the single pur-
pose of allowing us to simulate β-reduction of the simply-typed lambda calculus,
the best-understood algorithmic interpretation of a logical system. In particular,
the rules were not chosen to make sense categorically: some naturality equations
are missing, extensionality is missing and the rule for beta reduction is more
general than one would expect.

The system is called System beta. It has two subsystems that we wish to
identify: System bur, the first block of reduction rules, which is labeled with (bur),
and System subst, which is obtained from System beta by removing the (β⊃)-rule.
System bur equationally specifies a category with two bifunctors. From a deep
inference point of view, it has nothing to do with the inference rules involved,
it just equates derivations which differ due to inessential, bureaucratic detail.
System subst is named in accordance with Curien. Consider a β-reduction step
in the lambda calculus. There are two things to do: first, remove the application
operator and the lambda, and second, carry out the substitution. While the



(bur
′)

(W . (R ∧ T )) . (U ∧ V )→W . (R . U ∧ T . V )
(W . (R ⊃ T )) . (U ⊃ V )→W . (U . R ⊃ T . V )

(nw
′)

(W . (R ∧ T )) . w1 → (W . w1) . R)
(W . (R ∧ T )) . w2 → (W . w2) . T )

(β⊃
′)

(i ∧ R) . e→ id ∧ R

(W . (i ∧ R)) . e→W . (id ∧ R)
(W . ((i . (id ⊃ R)) ∧ T )) . e→ (W . (id ∧ T )) . R

Fig. 4. The completion of system beta into system Beta

(β⊃)-rule allows us to do the first step, System subst allows us do the second
step.

System beta is not locally confluent, its completion Beta is obtained by adding
the rules in Figure 4. Morally, the right thing to do could be to work modulo
bur, which would allow us to abandon these extra reduction rules. In this work
we formally stay within the free theory. Nevertheless, we think of the terms as
deep inference derivations, which are equal modulo associativity and, morally,
should be equal modulo bur. System Bur is a completion of System bur and
System Subst a completion of System subst, both are obtained by adding the
corresponding rules from Figure 4.

For a given subsystem of System Beta we write R→ T if R can be rewritten
into T in one step by any rule in the given subsystem, so → is closed under
context and irreflexive. We write →n for the composition of → with itself n-
times, and � for the reflexive-transitive closure of→. If no subsystem is specified
we mean System Beta itself.

Example 4. Our example terms R and T rewrite as follows:

c . (w2 ∧ id) . (id ∧ w1)
→ c . (w2 . id) ∧ (id . w1)
→2 c . (w2 ∧ w1)

and

(i ∧ id) . ((id ⊃ w1) ∧ id) . e

→ (i . (id ⊃ w1) ∧ (id . id)) . e

→ (id ∧ id . id) . w1

→3 w1

Figure 5 shows for most of the reductions in system beta that they preserve
typing. For the remaining rules this is easy to check, so we have the following
proposition.

Proposition 2 (reduction preserves typing). Let R and T be proof terms with

R � T . If A
R
−→ B then A

T
−→ B.

By checking critical pairs we get local confluence, strong normalisation for Bur

can be obtained by a simple polynomial interpretation, so we have the following
proposition.



nc :
R

A

c

B

B ∧ B

→

A

c

A

R

∧

R

A

B ∧ B

nw :

A

R

∧ B

T

C

w1

∧ D

C

→

w1

A ∧ B

R

A

C

A

R

∧ B

T

C

w2

∧ D

D

→

w2

A ∧ B

T

B

D

β∧ :

c

A

w1

A ∧ A

A

→
A

A

c

A

w2

A ∧ A

A

→
A

A

ni :

A

R

B

i

C ⊃ (B ∧ C)

→

A

i

C ⊃

R

(A ∧ C)

C ⊃ (B ∧ C)

β⊃ :

B

i

∧

T

D

A ⊃

R

B ∧ A ∧

(A

e

⊃ C) ∧ A

C

→

B ∧

T

D

R

B ∧ A

C

Fig. 5. Reduction rules with typing



Proposition 3.
(i) Systems Bur, Subst and Beta are locally confluent.
(ii) System Bur is confluent and strongly normalising.

Remark 1. System Subst, and thus also System Beta, is not strongly normalising.
We have the following cycle:

c . w1 . c . w1 → c . (c . w1 ∧ c . w1) . w1

→ c . w1 . (c . w1)

→ c . w1 . c . w1 .

The situation is different from Curien’s system, where the subsystem for carrying
out substitutions is strongly normalising. The confluence proofs for Curien’s
systems, that we know of, use strong normalisation of the subsystem which
carries out substitutions, so they do not seem to directly apply in our setting.
For the moment we do not know whether our system is confluent. In any case
we do not see the failure of strong normalisation as a major defect. The problem
is now to find a natural and liberal strategy which ensures termination.

3 The Relation with Natural Deduction

There is an obvious inductive translation of a natural deduction derivation into
a deep inference derivation. It yields a deep inference derivation with the same
conclusion as the natural deduction derivation and which has as its premise the
conjunction of all premises of the natural deduction derivation. Since our in-
ference rules are all sound and since a suitable replacement theorem holds for
intuitionistic logic, we also know that we can also embed deep inference into
natural deduction. So translations in both directions exist. However, they only
work on derivations, not on the underlying untyped terms. What we would like to
have in both directions is a translation of untyped terms which has the property
of preserving typing. However, the obvious inductive translation of derivations
is not even well-defined on their underlying untyped terms. Consider a stan-
dard sequent-style natural deduction system with additive context treatment
and without structural rules. The two axiom instances A ` A and B, A ` A are

different derivations, that should be translated into A
id
−→ A and B ∧A

w2−→ A, re-
spectively. However, both axiom instances have the same underlying pure term,
namely just a variable. Clearly, taking the underlying pure lambda term loses
too much information of the original derivation. To keep that information we
very slightly extend the syntax of lambda terms. We mark a variable if it corre-
sponds to an axiom of the first kind and we will not mark it if it corresponds to
an axiom of the second kind. The marked variables behave as usual except that
they are not allowed to be bound.

We consider λ-terms with de Bruijn indices, introduced in [3]. They are
defined as follows, where n ≥ 1:

M ::= n | n· | (λM) | (M M) | (π1M) | (π2M) | 〈M, M〉 ,



Γ, A,∆ ` i(·) : A where i = |A, ∆| and i is marked iff |Γ | = 0

Γ `M : A Γ ` N : B
∧

I

Γ ` 〈M, N〉 : A ∧ B

Γ `M : A ∧ B
∧

E

Γ ` π1M : A

Γ `M : A ∧ B
∧

E

Γ ` π2M : B

Γ, A `M : B
⊃

I

Γ ` λM : A ⊃ B

Γ `M : A ⊃ B Γ ` N : A
⊃

E

Γ `MN : B

Fig. 6. Typing rules for the name-free λ-calculus

and where in a given term an occurrence of n·, a marked index, is in the scope of
at most n−1 λ’s. The reduction rules for β-reduction together with substitution
M [n←N ] and lifting tni are defined as follows:

π1〈M, N〉 →M

π2〈M, N〉 → N

(λM)N →M [1←N ]

m[n←N ] =







m− 1 m > n

tn−1
0 (N) m = n

m m < n

m·[n←N ] = (m− 1)·

(M1 M2)[n←N ] = (M1[n←N ] M2[n←N ])

(λM)[n←N ] = (λM [n + 1←N ])

tni (m) =

{

m + n m > i

m m ≤ i

tni (m·) = (m + n)·

tni (M N) = (tni (M) tni (N))

tni (λM) = (λ tni+1(M))

A typing context, denoted by Γ or ∆, is a finite sequence of formulas. For
typing context Γ its length is denoted by |Γ | and the conjunction of all its
formulas, in the given order and associated to the left, is denoted by ∧Γ . Our
typing system for lambda terms is given in Figure 6. Notice that it is impossible
to type any term in an empty context, because that would require us to abstract
over a marked index, which is not allowed. Let > denote a ⊃ a, for some atom
a. Notice that whenever Γ `M : A and M ′ is obtained from M by removing all
markings, then >, Γ `M ′ : A

Natural deduction to deep inference. We define a function
D

from λ-terms
to deep inference proof terms. We write Rn for n > 0 to denote R sequentially
composed with itself n times. An expression R0 . T or T . R0 denotes just T .

m·

D
=

{

id m = 1

w
m−1
1 m > 1

m
D

= w
m−1
1 . w2

λM
D

= i . (id ⊃ M
D
)

MN
D

= c . (M
D
∧ N

D
) . e

πnM
D

= M
D
. wn

〈M, N〉
D

= c . (M
D
∧ N

D
)



It is straightforward to check that the embedding preserves typing, so we
omit the proof, even though it is very instructive:

Theorem 1 (the embedding preserves typing). If Γ `M : A then ∧Γ
M

D−−→ A.

We now come to the main theorem: System Beta can simulate β-reduction.
The proof is of course similar to the proof of a similar result for Curien’s com-
binators in [2]. We write idn(R) for (. . . (R ∧ id) . . . ∧ id

︸ ︷︷ ︸

n times

).

Theorem 2 (the embedding preserves reduction).
(i) If M �β N then M

D
� N

D
.

(ii) idn−1(c . (id ∧ N
D
)) . M

D
� M [n←N ]

D

(iii) idi(w
n
1 ) . M

D
� tni (M)

D

Proof. The first claim follows from the following diagram, which relies on (ii).
A similar diagram works for the projection–pairing reduction.

(λM)N
D

β

c . (i . (id ⊃ M
D
) ∧ N

D
) . e

β⊃
′

c . (id ∧ N
D
) . M

D

(ii)

M [1←N ]
D M [1←N ]

D

We now prove (ii), by induction on M . We see the cases for an index, an
application, and an abstraction. The cases for a marked index, for pairing and
for projection are straightforward.

idn−1(c . (id ∧ N
D
)) . m

D
= idn−1(c . (id ∧ N

D
)) . w

m−1
1 . w2

�







w
n−1
1 . c . (id ∧ N

D
) . wm−n

1 . w2

� w
m−2
1 . w2 = m− 1

D
= m[n←N ]

D

m > n

w
n−1
1 . c . (id ∧ N

D
) . w2

� w
n−1
1 . N

D

(iii)

� tn−1
0 (N)

D

= m[n←N ]
D

m = n

w
m−1
1 . idn−m(c . (id ∧ N

D
)) . w2

� w
m−1
1 . w2 = m

D
= m[n←N ]

D

m < n



idn−1(c . (id ∧ N
D
)) . M1M2

D
= idn−1(. . . ) . c . (M1

D

∧ M2
D
) . e

� c . (idn−1(. . . ) . M1
D

∧ idn−1(. . . ) . M2
D
) . e

� c . (M1[n←N ]
D

∧ M2[n←N ]
D

) . e

= M1[n←N ]M2[n←N ]
D

= (M1M2)[n←N ]
D

idn−1(. . . ) . λM
D

= idn−1(. . . ) . i . (id ⊃ M
D
)

� i . (id ⊃ idn(. . . )) . (id ⊃ M
D
)

� i . (id ⊃ idn(. . . ) . M
D
)

� i . (id ⊃ M [n + 1←N
D

)

= λ(M [n + 1←N ])
D

= (λM)[n←N ]
D

We now prove (iii), again by induction on M . We again see the cases for an
index, an application and an abstraction, the cases for a marked index, a pairing
and a projection are straightforward.

idi(w
n
1 ) . m

D
= (. . . (wn

1 ∧ id) . . . ∧ id
︸ ︷︷ ︸

i times

) . w
m−1
1 . w2 �

{

w
m−1
1 . w2 = m

D
= tni (m)

D

m ≤ i

w
m−1+n
1 . w2 = m + n

D
= tni (m)

D

m > i
.

idi(w
n
1 ) . M1M2

D
= idi(w

n
1 ) . (c . (M1

D

∧ M2
D
) . e)

� c . (idi(w
n
1 ) . M1

D

∧ idi(w
n
1 ) . M2

D
) . e

� c . (tni M1
D

∧ tni M2
D

) . e

= tni M1
D

tni M2
D

= tni (M1M2)
D

.

idi(w
n
1 ) . λN

D
= idi(w

n
1 ) . (i . (id ⊃ N

D
))

� i . (id ⊃ idi+1(w
n
1 ) . N

D
)

� i . (id ⊃ tni+1N
D

) = λtni+1N
D

= tni (λN)
D

.

ut

Definition 1. Let a proof term T be essentially in normal form if each reduction
sequence in system Beta starting from T only contains instances of the rules
R . id→ R, id . R→ R, id ∧ id→ id and id ⊃ id→ id.



Proposition 4 (the embedding essentially preserves normal form). If M is in
normal form then M

D
is essentially in normal form.

Proof. By checking the reduction rules we first observe that, when given two
terms R, T which are essentially in normal form, then also the terms R ⊃ T ,
R ∧ T , i . (R ⊃ T ) and c . (R ∧ T ) are essentially in normal form. We prove our
proposition by induction on M . Translations of indices are clearly in normal
form, and our observation takes care of abstractions and pairings, so we are left
with applications and projections. Let M be an application M1M2. Then M1

can not be an abstraction, so it has to be either an index, a projection, a pairing
or an application. Say it is an application N1N2. Then M

D
= c . (M1

D

∧ M2
D
) . e

with M1
D

= c . (N1
D

∧ N2
D
) . e. By induction hypothesis M1

D
is essentially in

normal form, so can only reduce to terms of the form c . U . e or c . e. But then
all reductions possible in a reduction sequence starting from M

D
are those that

are either in a reduction sequence starting from M1
D

or M2
D

and thus M
D

is
essentially in normal form. The other cases are similar.

Deep inference to natural deduction. We define a function
N

from deep
inference proof terms to natural deduction proof terms, i.e. lambda terms. We
give a definition using named lambda terms. For a given deep inference proof
term the function yields a lambda term with exactly one free variable, named
x. The translation from that into a name-free lambda term is as usual, except
that exactly those indices that come from occurrences of x are marked.

id
N

= x

wn
N

= πnx

c
N

= 〈x, x〉
i
N

= λy.〈x, y〉
e

N
= π1xπ2x

R . T
N

= T
N
[x←R

N
]

R ∧ T
N

= 〈R
N
[x← π1x], T

N
[x← π2x]〉

R ⊃ T
N

= λy.T
N
[x← (xR

N
[x← y])] (fresh y)

Also the embedding in this direction preserves typing. Again it is straight-
forward to check and we have to omit the proof for space reasons.

Theorem 3 (the embedding preserves typing). If A
R
−→ B then A ` R

N
: B.

Remark 2. The embedding does not preserve normal form. Consider the normal
form i . (id ⊃ w1) which is mapped to λz.π1(λy〈x, y〉z) which is not in normal
form. The embedding does not preserve reduction. Consider the term w1 . i which
reduces to i . (id ⊃ (w1 ∧ id)) but w1 . i

N
= λy.〈π1x, y〉 is normal. The embedding

does not preserve β-convertibility. Consider id ∧ id
N

= 〈π1x, π2x〉 and id
N

= x.
However, if R � T then R

N
and T

N
are convertible in lambda calculus with

extensionality and surjective pairing.

Now we can use the two embeddings and their preservation of types to show
the following theorem:

Theorem 4. For each typed term there is a term in normal form with the same
type.



Proof. If a term R is typeable A
R
−→ B then by Theorem 3 A ` R

N
: B and by

weak normalisation and subject reduction of the typed lambda calculus R
N

has a
normal form M with A `M : B. Now M

D
is essentially normal by Proposition 4

and typeable A
M

D−−→ B by Theorem 1. Reducing M
D

in the canonical system
formed by the four rules which collapse and remove identity we obtain a term T

in normal form with A
T
−→ B.

Of course, while this is weak normalisation for some system, it is not weak
normalisation for System Beta, since System Beta cannot simulate the effect of
translating into the lambda calculus and back. So the problem now is to prove
weak normalisation either directly or maybe by using a different embedding into
lambda terms.

4 Discussion

Curien’s combinators. We first explain the difference between our combinators
and the categorical combinators of Curien. Both systems are orientations of a
subset of a defining set of equations of a cartesian closed category, see Lam-
bek and Scott [8]. A cartesian closed category (without terminal object) is a
category with binary products and exponentials, which correspond to conjunc-
tion and implication, respectively. Both of these structures may be defined using
an adjunction. As explained in MacLane [9], an adjunction may be specified in
many different ways, leading to different presentations of a cartesian closed cat-
egory. Curien’s system corresponds to the specification based on one functor, a
mapping of arrows, and the counit. Our system corresponds to the more sym-
metric specification of an adjunction based on two functors and unit and counit.
Curien’s definition of a cartesian closed category is the one typically found in
textbooks, such as [8].

The primitives for both systems are summarized in Figure 7. Each of the
two rows represents an adjunction, and each column a collection of primitives.
Our system takes the functors ∧ and ⊃ as primitive, while Curien takes the
mappings 〈−,−〉 and Λ. For each adjunction we take both unit and counit, while
Curien treats only the counit as a primitive. Of course, both systems include ∆

implicitly. The terms of Curien’s system are thus built from id, w1, w2, e using
arrow composition, and two constructors 〈−,−〉 and Λ. By the equivalence of the
different presentations of an adjunction, we could define Curien’s constructors
as

Λ(R) = A
i

B ⊃ (A ∧ B)
id⊃R

B ⊃ C and

〈R, T 〉 = A
c

A ∧ A
R∧T

B ∧ C .

However, since we only have a subset of the defining equations of the adjunc-
tions this will not lead to an embedding of Curien’s system (not even the
one called CCLβ since it contains a bit of surjective pairing). In particular
Beta lacks naturality for the counit e, a part of naturality for the unit i as
in i . (id ⊃ (R ∧ T )) = i . (T ⊃ (R ∧ id)), and the equations c.(w1 ∧ w2) = id and



left adjoint functor

right adjoint functor
Hom-bijection

unit

counit

∆ : f 7→ (f, f)

∧ : (f, g) 7→ f ∧ g

(A,A)
(f,g)

(B, C)

A
〈f,g〉

B ∧ C

c : A→ A ∧ A

(w1, w2) :
(A ∧ B, A ∧ B)→ (A, B)

− ∧ A : f 7→ f ∧ id

A ⊃− : f 7→ id ⊃ f

B ∧ A
f

C

B
Λ(f)

A ⊃ C

i : B → A ⊃ (B ∧ A)

e : (A ⊃ B) ∧ A→ B

Fig. 7. Primitives of both systems

i.(id ⊃ e) = id. Orienting and adding these equations would allow simulation of a
lambda calculus with surjective pairing and extensionality and give equational
equivalence with Curien’s system CCLβηSP.

Future work. Adding extensionality is an obvious route for further research.
Adding full naturality for i and e is another interesting route: note that our
embedding of the lambda calculus stays in the strictly positive fragment of proof
terms, the fragment where the left-hand side of an implication is always the term
id. System Beta never leaves the strictly positive fragment. Full naturality for i

and e would allow us to leave that fragment. This gives us a lot of freedom. In
explicit substitution calculi when a beta-redex is reduced a substitution arises
from it, and then this substitution can be carried out indepently from other
beta-redexes. In a system with full naturality a substitution could be carried out
indepently even from the very beta-redex that it arises from. It would also be
interesting to use the functor ∧ to more economically embed lambda terms than
what is possible with Curien’s combinators: by distributing to each subterm not
the entire environment, but only those variables of the environment that actually
occur. This would correspond to embedding a natural deduction system with
multiplicative context treatment, and it would require some kind of exchange
combinator, which shuffles around the channels corresponding to the variables.
It would also be interesting to study flow graphs in the sense of [6] for our proof
terms. It is easy to define them, and their acyclicity seems to be the key to a proof
of normalisation. Our proof terms also give rise to interaction-style combinators,
similar in spirit to those used for optimal reduction, but different because based
on function composition instead of function application. An extension with more
connectives would be interesting. Notice that the rules to add for disjunction are
in perfect duality with those for conjunction:

A
∨I

A ∨ B

B
∨I

A ∨ B

A ∨ A
∨E

A
.



We enjoy this improvement over the situation in natural deduction, where we
have essentially the same introduction rules, but the following elimination rule:

[A] [B]

A ∨ B C C

C

.

And finally, classical logic would be interesting. A sensible place would be to
start with a system which can simulate reduction in the λµ-calculus [10].
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