
Embedding Moose Facilities Directly in IDEs∗

David Röthlisberger
Software Composition Group, University of Bern, Switzerland

roethlis@iam.unibe.ch

Abstract

Moose is a powerful reverse engineering platform, but
its facilities and means to analyze software are separated
from the tools developers typically use to develop and main-
tain their software systems: development environments such
as Eclipse, VisualWorks, or Squeak. In practice, this re-
quires developers to work with two distinct environments,
one to actually develop the software, and another one (e.g.,
Moose) to analyze it. We worked on several different tech-
niques, using both dynamic and static analyzes to provide
software analysis capabilities to developers directly in the
IDE. The immediate availability of analysis tools in an IDE
significantly increases the likelihood that developers inte-
grate software analysis in their daily work, as we discov-
ered by conducting user studies with developers. Finally,
we identified several important aspect of integrating soft-
ware analysis in IDEs that need to be addressed in the future
to increase the adoption of these techniques by developers.

Keywords: software analysis, dynamic analysis, static
analysis, development environments, visualizations

1 Introduction

When performing maintenance or software enhance-
ments, developers typically navigate a system’s source code
in a development environment (IDE) to gain an understand-
ing of how the system functions. Software analysis tools
such as Moose provide advanced analysis facilities such as
visualizations or metrics to provide developers with concise
information about the static structure or the runtime behav-
ior of the subject software system. With these facilities,
developers can often much more efficiently solve mainte-
nance tasks or implement feature enhancements to the sys-
tem. Having available such means is in particular important
for dynamic object-oriented languages making heavily use
of inheritance, polymorphism, and late binding, concepts
that make the static source code hard to understand without
additional aids by visualizations or dynamic analyzes.

∗FAMOOSr (Workshop on FAMIX and Moose in Reengineering), 2008

Unfortunately, the powerful facilities of Moose are sep-
arated from the development environment and embedded in
a completely different environment with different naviga-
tion and browsing metaphors. This separation impedes the
adoption of analysis techniques in practice as their usage
requires developers to spend extraneous time and effort to
gain an understanding for the underlying concepts behind
Moose or any other reverse engineering and software anal-
ysis environment. In addition, using two separate environ-
ments in parallel, i.e., the IDE to develop and maintain the
software system, and the re-engineering platform to analyze
it, might often be too much of a hassle for a developer work-
ing under time pressure.

In this paper, we present an integration of software anal-
ysis techniques such as visualizations, dynamic analysis,
or feature analysis in the IDE. We integrated similar tech-
niques as provided by Moose or CodeCrawler, the most im-
portant difference is their direct and immediate availability
in the IDE, even for techniques relying on dynamic informa-
tion about the software system. Lanza [8] or Kuhn [7] also
propose the integration of visualizations into IDEs (e.g.,
RBCrawler is an extension for Cincom Smalltalk [12]),
however the integrated visualizations typically do not take
into account dynamic information about the subject system.
We have chosen Squeak Smalltalk [6] for the integration
of these techniques, as this IDE is easily extensible. Most
techniques could also be integrated into other IDEs such as
Eclipse as they are not Smalltalk-specific in any way.

Concretely, we embedded three different analysis tech-
niques in the Squeak IDE: (i) traditional visualizations fo-
cusing on static information such as class blueprints or sys-
tem complexity views, (ii) dynamic analysis techniques to
explicitly represent package or class collaborations, and (iii)
explicit feature representations to reason about features di-
rectly in the IDE. In the remaining of this paper we elab-
orate on these three analysis techniques integrated in the
IDE. In Section 2 we describe how they function and how
they are implemented. These techniques have been used
by various developers. We asked these developers to assess
the integrated techniques and report about their feedback in
Section 3. Our work on integrating software analysis facili-

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Bern Open Repository and Information System (BORIS)

https://core.ac.uk/display/33065586?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Figure 1. Class blueprint embedded in the
Squeak IDE.

ties into IDE is still in its infancy, we thus also give insights
in planned future work towards a more complete integration
of software analyses in IDEs in Section 3.

2 Integration of Software Analyzes in IDEs

In this section we briefly introduce three software anal-
ysis techniques we integrated in the Squeak IDE: (i) tradi-
tional visualizations, (ii) visualizations of dynamic informa-
tion to reason about runtime collaborations, and (iii) feature
visualizations to explicitly represent features in the IDE. All
these techniques are tightly embedded in the IDE and fully
interactive, e.g., developers can use it to navigate forth and
back from these enhancements to the traditional IDE tools
such as source code views.

2.1 Traditional Visualizations

We extended the perspectives on static source artifacts
(e.g., classes) in the IDE with appropriate visualization,
similar as RBCrawler [7] or inCode [5]. When the devel-
oper has selected a class, she can now also generate a class
blueprint (see Figure 1), a system complexity view focus-
ing on the class hierarchy of this particular class, or a UML
class diagram directly from within the IDE instead of just
looking at e.g., source code. These visualizations are thus
readily available along the source code view. Typically,
a visualization is interactive in the sense as the developer
can click on nodes to jump to e.g., the class represented by
that node, or context menus available for nodes or edges in
a visualization allow the developer to trigger for instances
searches for references to classes, for implementors of mes-
sage sends, or for readers of instance variables.

We also provide visualizations for packages or for single

methods, e.g., system complexity views focusing on classes
within a package. Many visualizations do encompass dy-
namic information to provide more insights to the devel-
oper into the dynamics of a system. There is for instance a
dynamic class blueprint available which highlights all com-
munication paths that have indeed been used by the system
at runtime. The next section present other techniques to
represent and visualize information solicited with dynamic
analysis.

2.2 Dynamic Information Visualizations

Several IDEs, for instance Eclipse, already provide plu-
gins and tools (e.g., inCode [5]) that allow the developer to
visualize the static structure of a system, e.g., by means of
UML class diagrams. Various tools separated from IDEs vi-
sualize dynamic behavior of software systems, e.g., Jinsight
[1]. But to the best of our knowledge, there is almost no
work done to also reason about software dynamics directly
in the IDE by means of visualizations. The only tool avail-
able in the IDE providing insights in a system’s behavior
is typically the debugger which is focusing on a single ex-
ecution, thus not providing broader insights. However, de-
velopers often want to generally reason about interactions
between specific static entities to for instance reveal how a
class communicates to other classes. To study dynamic in-
teraction we provide a range of collaboration charts. Simi-
lar collaboration charts exist for classes and methods.

Our charts show a compact representation of package,
class or method runtime intercommunication. For classes,
the chart is similar to a UML sequence diagram, although
the order of calls is not preserved, To avoid cluttering the
chart with too much information, we show communication
paths between classes, i.e., message sends occurring in an
instance of a class with an instance of another class as a
receiver, as edges in the chart, the thickness of the edge
represents the relative frequency of this interaction, similar
as in the work of Ducasse et al. [3].

These charts are always dedicated to a specific run of the
subject system that has to be triggered by the developer, ei-
ther by running scripts to exercise behavior or by manually
interacting with the subject application. As soon as dynamic
data is available, the developer can generate the charts by
navigating to static artifacts (e.g., classes) and triggering the
appropriate action, e.g., open class collaboration chart.

2.3 Feature Visualization

To explicitly represent features, i.e., behavioral entities
of a software system, we enhanced the Squeak IDE with a
tool called feature browser to visualize and navigate fea-
tures. We meta-model features with an enhancement to
Moose called Dynamix that allows us to model dynamic be-

2



Figure 2. Schema of the Feature Browser.

havior as described by Greevy [4]. We refer to a feature as
a specific execution of a software system triggered by its
end user, e.g., editing a page in a Wiki application. Our
enhanced IDE gathers automatically the information about
this feature’s execution and generates a feature view. De-
velopers trigger the generation of such a feature view by
tools integrated in the IDE, such as buttons to start and stop
data gathering or to launch the feature view. Such a view
consists of three parts that are depicted in Figure 2.

The Compact Feature Overview (1) enables the devel-
oper to visually compare several features at once. The small
nodes in this feature view represent methods, colored ac-
cording to the feature affinity metric proposed by Greevy
[4]. Entities used in only one feature (colored in blue) can
be quickly distinguished from entities used in several or
even in all features (colored in orange or red). Such a color-
ing scheme allows the developer to immediately grasp simi-
larities between different features or anomalies in a specific
feature and locate erroneous behavior.

The Feature Tree (2) provides the developer a more de-
tailed view on a feature by representing the method call tree
triggered while it was exercised. The root of the tree is the
first, e.g., the “main” method of the feature, child nodes are
methods being invoked by this main method. All nodes in
this tree are colored according to the feature affinity metric.

The Feature Artifact Browser (3) shows all entities used
in a particular feature in a dedicated source browsing envi-
ronment. This browser only shows entities (e.g., packages,
classes, or methods) which are actually used in the selected
feature. Thus the developer can focus on the classes and
methods that are responsible for the feature’s behavior.

2.4 Technical Realization

We briefly describe how we gather dynamic information
to generate collaboration charts and feature views. As we
want to permanently gather dynamic information to pro-
vide the developer with accurate and immediate information
directly in the IDE, we rely on a technique called partial
behavioral reflection (PBR) [11]. PBR, available for Java
[11] and Smalltalk [2], provides very fine-grained means
to select parts of the application about which to gather dy-
namic information. To for instance generate a dynamic
class blueprint we only need to reason about message sends
occurring within a particular class, i.e., which methods in-
vokes which other methods of the same class. PBR allows
us to just gather this particular information, hence limiting
the overhead typically encompassing dynamic analysis. We
developed extensions to the IDE enabling the developer to
choose the parts of a software’s behavior to reason about
to very effectively gather data just about these entities (e.g.,
classes) or operations (e.g., message sends) using PBR.

3 Validation and Future Work

To validate our work we mostly discussed with devel-
opers familiar to the Squeak IDE and asked them to assess
our integration of reverse engineering tools into the IDE by
answering questionnaires. For the validation of the feature
browser we even conducted a full-fledged empirical study,
we refer to [10] for details. In the questionnaires, we par-
ticular asked developers to evaluate the impact of visualiza-
tions such as blueprints, system complexity view, or col-

3



Statement Av.
rating

Impact of static visualizations (system complexity view
UMLs, blueprint) on program comprehension 3.5
Impact of dynamic visualizations on program understanding 3.2
General effect of software analysis in IDE on
program understanding 3.6
Usefulness of software analysis available directly in IDE 4.3

Figure 3. Answers obtained from our ques-
tionnaires

laboration charts on program comprehension, i.e., whether
they could more efficiently or more correctly understand a
subject system. We also asked them how often they used
these visualizations and in what scenarios, and whether they
consider integration of software analysis techniques in the
IDE as worthwhile. An extract of the most important results
from the user feedback is given in Table 3. For the rating
schema we used a Likert scale from ’1’ to ’5’ where ’1’
means ’strongly disagree’ and ’5’ means ’strongly agree’.

Although we consider this developer feedback as prelim-
inary (we want to assess the quality of our work by compre-
hensive empirical studies), we still obtained an interesting
and motivating assessment by consulting developers. Sev-
eral developers also gave us qualitative feedback, such as
feature requests. For instance, they want an overview of the
overall dynamic communication occurring in a system, e.g.,
a map of a software’s dynamics. A drawback of the current
solution is the requirement to specify what is covered by
dynamic analysis (e.g., entities or operations) and the need
to manually run system features to exercise behavior. They
wish the IDE to provide dynamic information in an ubiqui-
tous manner, as it provides views on the static part. Another
area for future work is to integrate more features of Moose
into the IDE, not just visualizations, but also metrics assess-
ing both, the statics and dynamics of software systems. In
particular, we are interested in metrics highlighting crucial
dynamic properties such as memory consumption. We also
plan to not only add our enhancements to the Squeak IDE,
but also to mainstream IDEs such as Eclipse. In particular
visualizations reasoning about system’s dynamics is also in-
teresting in the context of Eclipse.

4 Conclusions

In this paper we argued for a tight and seamless integra-
tion of software analysis in IDEs by reporting on the status
of this integration into the Squeak IDE. We ported several
analysis techniques of Moose such as visualizations (class
blueprints, system complexity view) and integrated them in
Squeak or developed new means, in particular to reason

about software dynamics, such as collaboration charts or
feature views (based on the Dynamix meta-model available
in Moose). We validated our work by asking developers and
provided an outlook on future work to extend and enhance
the integration of software analysis in IDEs.

Acknowledgments. We gratefully acknowledge the financial
support of the Swiss National Science Foundation for the project
“Analyzing, capturing and taming software change” (SNF Project
No. 200020-113342, Oct. 2006 - Sept. 2008).

References

[1] W. De Pauw, R. Helm, D. Kimelman, and J. Vlissides. Vi-
sualizing the behavior of object-oriented systems. In Pro-
ceedings of International Conference on Object-Oriented
Programming Systems, Languages, and Applications (OOP-
SLA’93), pages 326–337, Oct. 1993.

[2] M. Denker, S. Ducasse, A. Lienhard, and P. Marschall. Sub-
method reflection. In Proceedings of TOOLS Europe 2007,
volume 6, pages 231–251. ETH, Oct. 2007.

[3] S. Ducasse, M. Lanza, and R. Bertuli. High-level polymetric
views of condensed run-time information. In Proceedings
of 8th European Conference on Software Maintenance and
Reengineering (CSMR’04), pages 309–318, Los Alamitos
CA, 2004. IEEE Computer Society Press.

[4] O. Greevy. Enriching Reverse Engineering with Feature
Analysis. PhD thesis, University of Berne, May 2007.

[5] inCode — eclipse plugin for code analysis.
http://www.intooitus.com/inCode.html.

[6] D. Ingalls, T. Kaehler, J. Maloney, S. Wallace, and A. Kay.
Back to the future: The story of Squeak, a practical
Smalltalk written in itself. In Proceedings of the 12th
ACM SIGPLAN conference on Object-oriented program-
ming, systems, languages, and applications (OOPSLA’97),
pages 318–326. ACM Press, Nov. 1997.

[7] A. Kuhn. Rbcrawler — a visual navigation system for
Smalltalk’s Refactoring Browser. European Smalltalk User
Group Innovation Technology Award, Aug. 2007.

[8] M. Lanza. Program visualization support for highly itera-
tive development environments. In Proceedings of VisSoft
2003 (2nd International Workshop on Visualizing Software
for Understanding and Analysis), pages 62–67. IEEE, 2003.

[9] B. A. Myers, D. A. Weitzman, A. J. Ko, and D. H. Chau.
Answering why and why not questions in user interfaces. In
CHI ’06: Proceedings of the SIGCHI conference on Human
Factors in computing systems, pages 397–406, New York,
NY, USA, 2006. ACM Press.

[10] D. Röthlisberger, O. Greevy, and O. Nierstrasz. Feature
driven browsing. In Proceedings of the 2007 International
Conference on Dynamic Languages (ICDL 2007), pages 79–
100. ACM Digital Library, 2007.

[11] É. Tanter, J. Noyé, D. Caromel, and P. Cointe. Partial behav-
ioral reflection: Spatial and temporal selection of reification.
In Proceedings of OOPSLA ’03, ACM SIGPLAN Notices,
pages 27–46, nov 2003.

[12] Cincom Smalltalk, Sept. 2003.
http://www.cincom.com/scripts/smalltalk.dll/.

4


