
Querying Runtime Information in the IDE

David Röthlisberger
Software Composition Group, University of Bern, Switzerland

roethlis@iam.unibe.ch

Abstract

Code queries focus mainly on the static structure of a
system. To comprehend the dynamic behavior of a system
however, a software engineer needs to be able to reason
about the dynamics of this system, for instance by querying
a database of dynamic information. Such a querying mech-
anism should be directly available in the IDE where the de-
velopers implements, navigates and reasons about the soft-
ware system. We propose (i) concepts to gather dynamic
information, (ii) the means to query this information, and
(iii) tools and techniques to integrate querying of dynamic
information in the IDE, including the presentation of results
generated by queries.

Keywords: querying techniques, dynamic analysis, de-
velopment environments, partial behavioral reflection, pro-
gram comprehension

1 Introduction

To maintain a software system, developers need to gain
an understanding of this system. Querying mechanisms
help developers to ask questions about how systems are im-
plemented and structured and about how different entities
(e.g., classes) are related to each other. However, these
querying tools are often limited to the static structure of
a system, (e.g., methods, classes or static relationships be-
tween them), but do not take into account dynamic behavior
of a system (e.g., message passing, dynamic dependencies
between objects) [6].

Object-oriented language characteristics such as inher-
itance and polymorphism make it difficult to understand
an application by purely asking questions about the static
structure of a system [1, 4, 10]. It is even more diffi-
cult to gain an understanding of programs implemented in
dynamically-typed languages such as Smalltalk or Ruby, as
there is no explicit type information encoded in the source
code. In these situations it is crucial to be able to reason
about the dynamics of a program by means of querying
techniques. Other researches have already recognized the

value of combining static and dynamic views for program
comprehension [4, 9, 10].

Nowadays developers use elaborated IDEs (e.g., Eclipse
[5]) in their daily work to gain an understanding of soft-
ware systems by navigating them. This increases the need
to seamlessly integrate querying tools in the IDE so that a
developer can directly pose questions about the system un-
der study. In this paper we emphasize that query tools also
need to cover dynamic information about programs and that
these tools need to be seamlessly integrated in the IDE.

We identify three key research questions to achieve this
goal. In the rest of the paper we address these questions:

• How to efficiently gather dynamic information from
within the IDE? (Section 2)

• How do we query collected dynamic information?
(Section 3)

• How can we integrate these query tools and techniques
into the IDE? (Section 4)

2 Dynamic Information of Interest

A developer trying to understand a software system
wants to ask questions about this system. In the following,
we describe two typical questions a developer needs to get
answered to better understand the subject system. We chose
a web-based Wiki application as an exemplary system to
illustrate concrete scenarios.

Class collaborators. Suppose the class Page of a
Wiki application is hard to understand for a developer, in
particular how this class is dependent on other parts of the
system. For instance, she wants to know whether Page is
communicating at runtime with the presentation layer of
the Wiki, how the Wiki syntax of a page is parsed in order
to correctly layout the text for the web, or how various
authors of the very same page are handled by the Page
class. Knowing all other parts of the system (e.g., other
classes) with which Page is collaborating at runtime would
clearly help the developer finding answers to all these

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Bern Open Repository and Information System (BORIS)

https://core.ac.uk/display/33065585?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


questions more efficiently and more focused.

Frequent communication paths. The developer also
discovers the existence of a performance bottleneck and
hence wonders where so much communication is occurring
in the Wiki application, i.e., which methods get invoked
most often. These methods can benefit most when they get
optimized to perform their tasks more efficiently. The de-
veloper thus wants to know for example the ten methods
that get most frequently executed in a specific feature be-
ing slow to learn whether the execution performance can be
improved by optimizing any of these ten methods.

Querying techniques integrated in the IDE allow the de-
veloper to find answers to these two problems at hand di-
rectly where she works with the source code of this Wiki ap-
plication. A prerequisite to successfully run such queries is
of course the availability of dynamic information about the
Wiki application under study. We describe shortly a work-
ing mechanism to gather dynamic information from within
the IDE that has already been verified by other works [3, 7].

Collecting dynamic information. Analyzing the run-
time behavior of applications, e.g., by using tracing tools, is
time-consuming and generates large amount of data. This
makes these tools inappropriate for integration in IDEs, as
developers want immediate benefit from the results of anal-
yses. Partial behavioral reflection overcomes these prob-
lems as it enables us to select in a very fine-grained manner
on what dynamic parts of a system we want to reflect upon.

To answer these questions mentioned above we basically
need to know what kind of messages get sent to which re-
ceivers at runtime. To find out to which other classes Page
communicates, it is enough to just dynamically observe the
Page class. Using partial behavioral reflection we are capa-
ble to define that we are only interested in reasoning about
runtime events occurring in Page and only in those events
that send messages to other objects. We hence very pre-
cisely restrict the amount of resulting dynamic information
already before any analysis takes place.

Answering the second question, i.e., finding out the most
frequently invoked methods, requires more dynamic infor-
mation. In this case, we observe the whole Wiki package,
but ignore invocations of system class methods. Again we
are only interested in message send events, but not for in-
stance in variable accesses.

Partial behavioral reflection is a suitable concept to limit
the amounts of data being gathered dynamically in order to
be able to directly collect the data from within the IDE with-
out tremendously impeding neither the performance of the
IDE nor of the executing application. A deeper treatment of
the approach to partial behavioral reflection we are apply-
ing is given in the work of Denker [2], which was used to
annotate feature execution [3] or to enrich the source code
in the IDE with dynamic information [7] .

methods
actualClass

Class
*1 messages
varAccesses
actualMethod

Method

references
occurrence
actualNode

Node

MessageVarAccess

actualClass
actualMethod
occurrence

Reference
1*

1
*

classes
actualPackage

Package *1

Figure 1. Schema of how dynamic data is
stored in a database.

3 Querying Dynamic Information

In the preceding Section 2 we described two tasks to be
solved by querying dynamic information. The dynamic in-
formation gathered with partial behavioral reflection gets
stored in a database. The data in the database can, for in-
stance, be structured as shown in Figure 1. A meta-modeled
package holds a list of (meta-modeled) classes in it, each
class can navigate to all methods that have been executed
at runtime. Each method can navigate to all messages sent
and all variables accessed in it. Message sends and variables
are nodes (i.e., method body operations) and each node has
a reference to a class (in case of a variable access and a
message send) and to an actual method (only in case of a
message send). Furthermore, we store the number of occur-
rences of a given event, e.g., of a specific variable access of
a certain type.

We are now formulating queries to be sent to this
database to find answers to the two questions we raised
about the Wiki system. We postulate an SQL-like query
language that is simple to use and understand.

Class collaborators. To identify all collaborators of
the class Page we simply submit the query SHOW
collaborators OF Page to the database. The answer to this
query is a collection of classes dynamically collaborating
with Page. All collaborators stored in the database are in-
cluded in this result, but we can restrict the scope of the re-
sult to some particular features of the Wiki by enumerating
the name of those features in a LIMIT clause of the query.
Moreover, the query language also allows us to ask for col-
laborating methods instead of collaborating classes and also
to ask for all collaboration occurring in one specific method
of a class. The query answering for instance all methods
that are invoked from within the method Page.text has this
form: SHOW collaboratingMethods OF Page.text.

Frequent communication paths. Finding the most fre-
quently invoked methods in a package is similar. The query

2



Query Actions for collaboratorsSearch bar to submit queries

Smart groups Collaborators Method protocols of OBClassNode
Methods of OBClassNodeSelected collaborator,

OBClassNode

Figure 2. Smart Group showing class collaborators

answering the ten most invoked methods in the Wiki pack-
age looks like this: SHOW method invocations IN Wiki
ORDER BY frequency LIMIT 10. Instead of covering a

whole package, we can also ask for the methods most fre-
quently invoked from within a specific class or even from
within a single method. Furthermore, it is also possible to
focus on the senders of those invoked methods to reveal who
is invoking particular methods most frequently. The fol-
lowing query answers all senders of the Page.text method:
SHOW senders OF Page.text.

Evaluating the method invocation query simply means
traversing the object tree (modeled as shown in Figure 1)
from a package, an instance of Package, down to all refer-
ences by going over all classes and methods in this package.
In Smalltalk, such an object graph traversal can be defined
using just a few lines of code.

All these queries can certainly only give results about
those parts of the application that have been executed. Parts
not being covered by any execution or by any data gathering
mechanism are simply invisible for the queries. Querying
thus only leads to results if the application under study has
been executed. The developer can tag specific executions
with a name, e.g., the name of the feature being executed.
Queries can reason about these tags to e.g., limit the scope
of the results to specific runs of a system.

In Section 4 we elaborate how a developer can actually
trigger the execution of such a query from within the IDE.
It is crucial in order to effectively integrate querying of dy-
namic information in the development process, e.g., to com-
prehend a software system, that the developer can rely on
exhaustive tool support to submit those queries and to navi-

gate their results. In the next section, we study a concept to
integrate querying techniques in the IDE.

4 Integrating Query Tools in the IDE

As an IDE to integrate query tools we have chosen the
Hermion browser in Squeak Smalltalk [8]. Hermion already
incorporates tools to dynamically observe applications be-
ing developed in this IDE [7].

We consider it crucial that query tools we intend to inte-
grate should complement or enhance the existing IDE tools.
This means querying of dynamic information should not
just be a tool somewhere available in the IDE, rather it
should be tightly and seamlessly integrated in existing con-
cepts and mind sets applied in the IDE. The Squeak IDE is
basically a class browser with four columns used to navi-
gate the source code (see Figure 2). These columns hold
entities in the following order: packages, classes, method
categories, methods. Below these four columns there is a
text area to create or modify classes and methods. Every
element in any column provides several actions to be trig-
gered, e.g., to create, browse or search some entities.

We propose three extensions to integrate querying tools
into this IDE that can easily be ported to other IDEs as well:

• A search bar in the browser to submit textual queries

• New categories for source entities, holding the results
of submitted queries, called smart groups

• New actions for elements (e.g., classes, methods, de-
pendencies between them) to submit specific queries

3



We now look in more detail at these three extensions:
Search bar. The search bar, basically a text field, ex-

pects a textual query. Such a query is for instance SHOW
collaborators OF Page to see all classes with which Page
communicates dynamically. Another query is SHOW
method invocations IN Wiki, giving us a list of all meth-
ods being invoked in the Wiki package. The results of
the queries are then presented in smart groups to catego-
rize them (e.g., all collaborator queries are stored in the
same group). These groups are permanently accessible, this
means results of queries get stored, but dynamically updated
if they change over time, e.g., because more information has
been gathered about the running system.

Smart groups. Smart groups are a categorizing mech-
anisms orthogonal to the standard categorization applied
in Squeak Smalltalk which is based on (static) packages.
Smart groups are displayed in the same column as pack-
ages (i.e., the first column), a switch allows us to go from
one category mechanism to the other. A smart group holds
results of queries and makes these results permanently ac-
cessible. The result of a query searching for class collabora-
tors of the class OBColumn is displayed in the other three
columns, i.e., in the second column holds the classes col-
laborating with OBColumn, the next column the method
protocols and the last column the methods of the selected
collaborating class (see Figure 2). Like this the results of
queries can be browsed in the same manner as the static
source code of the application, so that the same tools and
actions used there can also be used to browse query results.

Query actions. As it is tedious to enter textual queries,
we provide actions that can be executed on a selected ele-
ment, e.g., a class. There is an action called ‘dynamic col-
laborators’ that just executes the collaborators query and
jumps to the installed smart group. Or when looking at
such a resulting collaborator there is the action ‘analyze col-
laboration’ which gives the developer a list of all methods
in which a collaboration to the selected class is occurring.
Similarly we can study in detail a method invocation to lo-
cate all methods in which such an invocation actually occurs
at runtime. The action for this is called ‘analyze method in-
vocation’.

5 Discussion and Conclusion

In this paper we argue for querying dynamic information
and integrating these querying techniques in the IDE.

A key issue of any dynamic analysis technique is effi-
ciency. We experimented with medium-sized applications,
observed parts of them dynamically using partial behavioral
reflection and ran some benchmarks. The preliminary re-
sults reveal that there is a measurable slowdown between
factor 2 and 4 for every application we analyzed when the
core packages are fully covered and when both message

sending and variable accessing is being observed. However,
the applications were still usable and reasonably reactive.

A second issue we evaluated is the usability of the query-
ing tools, e.g., whether they indeed leverage program com-
prehension for the developer. We conducted a small ex-
periment with some Squeak developers and asked them to
answer a questionnaire. The preliminary feedback says that
querying dynamic information is a very handy and useful
feature that developers missed up to now. The developers
in particular consider the effect on program comprehension
as important to them in their daily work. Otherwise hidden
dynamic information proves useful to more efficiently and
also more thoroughly understand a software.

Other aspects we need to study further are the query lan-
guage to be used or the optimization of the data gathering
and of the database structure with respect to queries most
frequently submitted. This we leave as future work.

Acknowledgments. We gratefully acknowledge the financial
support of the Swiss National Science Foundation for the project
“Analyzing, capturing and taming software change” (SNF Project
No. 200020-113342, Oct. 2006 - Sept. 2008).

References

[1] S. Demeyer, S. Ducasse, K. Mens, A. Trifu, and R. Vasa. Re-
port of the ECOOP’03 workshop on object-oriented reengi-
neering, 2003.

[2] M. Denker, S. Ducasse, A. Lienhard, and P. Marschall. Sub-
method reflection. Journal of Object Technology, 6(9):231–
251, Oct. 2007.

[3] M. Denker, O. Greevy, and O. Nierstrasz. Supporting fea-
ture analysis with runtime annotations. In Proceedings of
the 3rd International Workshop on Program Comprehension
through Dynamic Analysis, pages 29–33, 2007.

[4] A. Dunsmore, M. Roper, and M. Wood. Object-oriented
inspection in the face of delocalisation. In Proceedings of
ICSE ’00 (22nd International Conference on Software Engi-
neering), pages 467–476. ACM Press, 2000.

[5] Eclipse Platform: Technical Overview, 2003. http://www.-
eclipse.org/whitepapers/eclipse-overview.pdf.

[6] D. Janzen and K. de Volder. Navigating and querying code
without getting lost. In AOSD’03: Proceedings of the 2nd
International Conference on Aspect-oriented Software De-
velopment, pages 178–187, 2003. ACM.

[7] D. Röthlisberger, O. Greevy, and O. Nierstrasz. Exploit-
ing runtime information in the ide. In Proceedings of the
2008 International Conference on Program Comprehension
(ICPC 2008), 2008. To appear.

[8] Squeak home page. http://www.squeak.org/.
[9] T. Systä. On the relationships between static and dynamic

models in reverse engineering java software. In Working
Conference on Reverse Engineering (WCRE99), pages 304–
313, Oct. 1999.

[10] N. Wilde and R. Huitt. Maintenance support for object-
oriented programs. IEEE Transactions on Software Engi-
neering, SE-18(12):1038–1044, Dec. 1992.

4


