
Driving the refactoring of Java Enterprise Applications by evaluating the distance
between application elements

Fabrizio Perin

Software Composition Group
University of Bern, Switzerland
http://scg.unibe.ch

Abstract—Java Enterprise Applications (JEAs) are complex
systems composed using various technologies that in turn rely
on languages other than Java, such as XML or SQL. Given the
complexity of these applications, the need to reverse engineer
them in order to support further development becomes critical.
In this paper we show how it is possible to split a system into
layers and how is possible to interpret the distance between
application elements in order to support the refactoring of
JEAs. The purpose of this paper is to explore ways to provide
suggestions about the refactoring operations to perform on the
code by evaluating the distance between layers and elements
belonging those layers. We split JEAs into layers by considering
the kinds and the purposes of the elements composing the
application. We measure distance between elements by using
the notion of the shortest path in a graph. Also we present
how to enrich the interpretation of the distance value with
enterprise pattern detection in order to refine the suggestion
about modifications to perform on the code.

Keywords-Reverse engineering; Java Enterprise; Architec-
ture.

I. INTRODUCTION

Since Java 2 Platform Enterprise Edition (J2EE) was
introduced in 1999 it has become one of the standard
technologies for enterprise application development. J2EE
applications are complex systems composed using various
technologies that in turn rely on languages other than Java,
such as XML or SQL. In order to perform different kinds
of analyses on JEAs it is important to collect information
from all sources and put it together in a model that can
include everything relevant. In this paper we focus our
attention on analyzing the structure of JEAs. As known
from the literature [1], [2], [3], [4] JEAs, by their very
nature, can be split into layers. Each layer can differ from
the others in the type of the elements that it contains or in
the task that those elements have been created to perform.
Evaluating the distance between different layers and between
elements belonging those layers we can reveal violations
of the application’s architecture that should be modified in
order to improve readability and maintainability.

In this paper we propose a technique to drive this refac-
toring. We describe the layering scheme that we adopt,
the index that we use to identify architectural violations

and how we can modify the interpretation of that index
using enterprise pattern detection. We plan to implement
our proposal in Moose [5], a software analysis platform,
in order to exploit our existing infrastructure for static and
dynamic analysis. Moose is a reengineering environment that
provide several services including a language independent
meta-model. On top of Moose have been build several tools
that provide different services like: static analysis, dynamic
analysis, software visualization, evolution analysis.

II. LAYERING

Java Enterprise Applications are complex software sys-
tems composed of different elements. Because those ele-
ments have different purposes and behaviors JEAs can be
split into layers [1]. Comparing different types of layering
schemes [1], [2], [3], [4] we split the applications into 4
layers: Presentation, Service, Business and Data layer. Every
element belonging to a layer has a specific purpose and they
work together to solve the user’s problems. The Presentation
layer contains all elements concerning the front-end of the
application such as a rich UI or an HTML browser interface.
The Service layer is part of the Business layer and contains
all those elements that define the set of available operations
and manage the communications between the Presentation
layer and the domain logic classes. The Business layer
includes all classes that implement and model the domain
logic. The Data layer contains all classes that access the
database and map the data into objects that can be used by
the application. In Figure 1 illustrates the layering system
that we adopt. The large external rectangles represent the
layers.

When implementing a service it is always important to
create a complete structure that involves all layers. There
are two main reasons for this: the first, and most important
one, is related to code understanding and the second to
maintainability. If, for some reason, a service does not
need to process some data, an element belonging to the
Presentation layer can invoke directly an element in the Data
layer. However in this way whoever will read the code will
miss the domain model related to that particular service.
So it becomes much more difficult to understand the code.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Bern Open Repository and Information System (BORIS)

https://core.ac.uk/display/33065557?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://scg.unibe.ch


It is also important go through all layers for reasons of
maintainability. If at the beginning of development it is not
necessary to process some data, it could became necessary
afterward and it is usually tricky to modify the structure of
the code preserving understandability.

Service 
Layer

Business 
Layer

BData 
Layer

Presentation 
Layer A

Service 
Layer

Business 
Layer

BData 
Layer

Presentation 
Layer A

RIGHT WRONG

Figure 1. Layering scheme and basic invocation chian.

III. DISTANCE BETWEEN ELEMENTS

We use value of the distance between JEA’s elements
to identify violations in the architecture. We compute the
distance between elements using the notion of the shortest
path in a graph. We can therefore use graph theory to solve
our problem [6]. In the following we summarize the idea of
distance used to solve the shortest path problem.

We have a weighted, directed graph G = 〈V,E〉, with a
weight function ω : E → R mapping edges to real-valued
weights. The weight of a path p = 〈υ0, υ1, υ2, . . . , υn〉 is
the sum of all weights of its edges:

ω(p) =
k∑

i=1

ω(υi−1, υi) (1)

The shortest path weight from u to υ is defined as:

δ(u, υ) =

 min{ω(p) : u υ} if there is a path
from u and υ,

∞ otherwise
(2)

Every edge in the graph has a weight that is necessary
to find which is the shortest path between two elements. In
our case we want to assign to each of them the weight 1. It
is possible to calculate the minimum number of invocations
from one method to another using Dijkstra’s algorithm. We

define the distance between two elements as the shortest
path between those two elements.

We will define threshold values to determine which dis-
tance is correct and which is not. To simplify the concept
in this work, even if the Presentation layer could contain
HTML or JS Pages as well as GUI elements in any language,
in the following we will consider an element contained in
this layer as a class with methods.

The basic distance to calculate is the distance between
different methods. The distances between classes and layers
are derived from the distance between methods, therefore
it is not necessary to apply the algorithm used to calculate
distances on those methods, it is just necessary to regroup
the methods of a path as part of a class or a layer.

In Figure 1 on the left we show the basic invocation chain
that implements a normal user request. This chain contains
classes and the smallest squares are methods or a generic
JSP or HTML page. In Figure 1 on the right we also show
what we consider to be a wrong invocation chain. In fact in
this case the element A belonging to the Presentation layer
invokes directly the method B belonging to the Data layer.

The distance between classes and layers is important to
calculate because we cannot be sure that everything is fine
just looking at the distance between methods. If the distance
between methods has an acceptable value this doesn’t means
that every layer is touched in the implementation.

We will present in the following some examples that
cover some normal cases that can be found in a normal
implementation of an enterprise application. It is important
to underline that the real threshold values to adopt to evaluate
the code are still to be decided and they will be defined
by analyzing some huge industrial case studies with a
number of classes up to 1800. Below we exemplify our idea
considering as right a distance value between two elements
belonging the Presentation and the Data layer equals to 3.

Example 1: In Figure 1 on the left: The distance between
method A and method B is 3 as well as the distance
between the class that contains A and the class that contains
B and the distance between the Presentation layer and
the Data layer. We consider this situation a basic right
implementation where all layers are touched. If instead we
consider two classes, the first belonging to the Presentation
layer and the second belongs to the Data layer, then if the
distance between those classes is 1 it means that there is
a direct invocation from the Presentation layer to the Data
layer. This is the most basic and recurrent case of wrong
implementation.

Example 2: In Figure 2 are shown a couple of correct paths.
On the left side the distance between method A and method
B is 4, instead the distance between the class that contains A
and the class that contains B as well as the distance between
the Presentation layer and the Data layer is 3. From those

2



Sample 1

Service 
Layer

Business 
Layer

BData 
Layer

Presentation 
Layer A

Service 
Layer

Business 
Layer

BData 
Layer

Presentation 
Layer A

Sample 2

Figure 2. Layering scheme and basic invocation chian.

values we can see that all layers have been touched and
that in a class there is an internal invocation because of
the difference between the distance between methods and
the distance between classes. On the right in Figure 2 all
distance values are the same and equal to 4. Also in this case
we can see that everything seems fine. What is important in
a situation like this is that the number of invocations is not
too high. A too high value is a symptom of complexity, so
maybe that service implementation could be simplified.

Example 3: In Figure 3 on the left the distance between
method A and method B is 3 so we consider it right. On
the other hand the distance between their classes is just 2
as well as the distance between the Presentation layer and
the Data layer. What is missing is a representation of the
domain logic. On the right in Figure 3 the distance between
A and B and the distance between the classes that contain
them is 4 so it is right but the distance between layers is 2.
What is missing is an entry point for that specific service
because method A accesses directly a method belonging to
the Business layer.

IV. DISTANCE AND ENTERPRISE PATTERNS

There is a large body of development patterns gathered
by the engineering community. There are patterns for en-
terprise applications [1] in general and patterns for J2EE
[4] in particular. The description of design patterns provides
information about the structure, the participant’s roles, the
interaction between participants and, above all, the intent for
which they should be used. Our intent is to mix the value of
the distance between elements and data source architectural

patterns [1] tuning the results obtained by just looking for
the distance index.

By being able to identify data source architectural patterns
in the applications it is possible to provide more specific
suggestions on the operation to accomplish during the refac-
toring. It is also possible to identify potential errors in a
correct invocation sequence or vice versa.

Sample 1

Service 
Layer

Business 
Layer

Presentation 
Layer A

BData 
Layer

Presentation 
Layer A

Service 
Layer

Business 
Layer

Sample 2

Data 
Layer

B

Figure 3. Layering scheme and basic invocation chian.

For example in Figure 1 on the right is shown a wrong
invocation where the distance between A and B is 1. In this
case the business logic is missing as well as the invocation
to the Service layer that define the services available in
the system. A standard modification to the code will be
to implement one class belonging to the Business layer
and another belonging to the Service layer. Supposing now
that the class that contains B implements the pattern Active
Record [1]. By it own definition, this pattern should contain
some domain logic. So the modification to enact is not just
to implement the missing classes in the Business and the
Data layer but also to move the domain logic in the new
class down to the Business layer.

V. RELATED WORKS

Some effort has been already spent in the context of
architectural conformance checking [7], [8], [9]. In particular
[9] extracting information from source code and byte code in
Java and C++ and storing this information in a database that
models all information that can be extracted from the code.
From this information it is possible to perform different kind
of analyses like checking illegal relationships within layers.

3



There are some differences between our work and [9]. We
plan to apply our idea to an enterprise system that contains
not only Java but also other languages such as XML, JS
or SQL. The information harvested from the system will
be modeled with FAMIX [10]. Our model will include all
aspects concerning an enterprise application: the FAMIX
meta model will not only contain structural information
but also higher level information such as methods involved
in a transaction. Using Mondrian [11] on the information
contained in the meta model we can generate many different
software visualizations on the code. Our intent is not only
to identify which part of code could contain errors or
inconsistencies but also to suggest possible modifications
for the refactoring.

VI. CONCLUSION

In this paper we summarized our proposal to drive the
refactoring of JEAs by comparing the distance between the
application’s elements to that of the data source architectural
patterns.

In particular we presented the layering scheme that we
adopt to regroup different elements of a JEAs. We also
explore how to apply the concept of method distance to
create an index that can be used to detect the presence of
a wrong application structure. Finally we relate the concept
of distance to the data source architectural patterns in order
to modify the interpretation of the distances. In this case
we propose to compile a catalogue of patterns and distances
together with heuristics to drive the refactoring.

The basic idea is that every service has to be implemented
touching every layer starting from the Presentation one.
The catalog will be able to indicate what is wrong in the
implementation and how the code should be modified in
order to have a right structure. The approach could also be
used to expose code that is too complex, i.e., if the distance
is too high.

We plan to implement our proposal in FAMIX [10] which
already includes a generic meta-model for Object-Oriented
application that can be extended to analyze Enterprise ap-
plications in Java. We want to refine FAMIX by adding
all parts and relations that are necessary to model a JEA.
Based on a consistent meta-model, it is possible to define
a quality model based on metrics and pattern detection. We
will evaluate the performance impact of calculating every
time the distance or cacheing it. Another solution could be
pre-compute all distances between all elements. In this case
the Floyd-Warshall algorithm will fit better.

In order to validate this work we plan to perform experi-
ments using an industrial partner we have been collaborating
with.

Acknowledgments We gratefully acknowledge the financial
support of the Hasler Foundation for the project “Enabling

the evolution of J2EE applications through reverse engineer-
ing and quality assurance” (Project no. 2234, Oct. 2007 –
Sept. 2010). We would also want to thank Tudor Gı̂rba,
Oscar Nierstrasz for their comments on this paper and their
support on this project.

REFERENCES

[1] M. Fowler, Patterns of Enterprise Application Architecture.
Addison Wesley, 2005.

[2] F. Marinescu, Ejb Design Patterns: Advanced Patterns, Pro-
cesses, and Idioms with Poster. New York, NY, USA: John
Wiley & Sons, Inc., 2002.

[3] K. Brown and G. C. et al., Enterprise Java Programming with
IBM Websphere. Addison Wesley, 2001.

[4] D. Alur, J. Crupi, and D. Malks, Core J2EE Patterns: Best
Practices and Design Strategies. Pearson Education, 2001.

[5] O. Nierstrasz, S. Ducasse, and T. Gı̂rba, “The story of Moose:
an agile reengineering environment,” in Proceedings of the
European Software Engineering Conference (ESEC/FSE’05).
New York NY: ACM Press, 2005, pp. 1–10, invited
paper. [Online]. Available: http://scg.unibe.ch/archive/papers/
Nier05cStoryOfMoose.pdf

[6] T. H. Corman, C. E. Leiserson, and R. L. Rivest, Introduction
to Algorithms. MIT Press, 1990.

[7] G. Murphy, D. Notkin, and K. Sullivan, “Software reflexion
models: Bridging the gap between source and high-level mod-
els,” in Proceedings of SIGSOFT ’95, Third ACM SIGSOFT
Symposium on the Foundations of Software Engineering.
ACM Press, 1995, pp. 18–28.

[8] B. Laguë, C. Leduc, A. L. Bon, E. Merlo, and M. Dagenais,
“An analysis framework for understanding layered software
architectures,” in Proceedings IWPC ’98, 1998.

[9] W. Bischofberger, J. Kühl, and S. Löffler, “Sotograph – a
pragmatic approach to source code architecture conformance
checking,” in Software Architecture, ser. LNCS. Springer-
Verlag, 2004, vol. 3047, pp. 1–9.

[10] S. Tichelaar, S. Ducasse, S. Demeyer, and O. Nierstrasz,
“A meta-model for language-independent refactoring,” in
Proceedings of International Symposium on Principles of
Software Evolution (ISPSE ’00). IEEE Computer Society
Press, 2000, pp. 157–167. [Online]. Available: http://scg.
unibe.ch/archive/papers/Tich00bRefactoringMetamodel.pdf

[11] M. Meyer, T. Gı̂rba, and M. Lungu, “Mondrian: An
agile visualization framework,” in ACM Symposium on
Software Visualization (SoftVis’06). New York, NY, USA:
ACM Press, 2006, pp. 135–144. [Online]. Available:
http://scg.unibe.ch/archive/papers/Meye06aMondrian.pdf

4

http://scg.unibe.ch/archive/papers/Nier05cStoryOfMoose.pdf
http://scg.unibe.ch/archive/papers/Nier05cStoryOfMoose.pdf
http://scg.unibe.ch/archive/papers/Tich00bRefactoringMetamodel.pdf
http://scg.unibe.ch/archive/papers/Tich00bRefactoringMetamodel.pdf
http://scg.unibe.ch/archive/papers/Meye06aMondrian.pdf

	Introduction
	Layering
	Distance between elements
	Distance and Enterprise Patterns
	Related Works
	Conclusion
	References

