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Abstract

Training a system to recognize handwritten words is a
task that requires a large amount of data with their correct
transcription. However, the creation of such a training set,
including the generation of the ground truth, is tedious and
costly. One way of reducing the high cost of labeled train-
ing data acquisition is to exploit unlabeled data, which can
be gathered easily. Making use of both labeled and unla-
beled data is known as semi-supervised learning. One of the
most general versions of semi-supervised learning is self-
training, where a recognizer iteratively retrains itself on its
own output on new, unlabeled data. In this paper we pro-
pose to apply semi-supervised learning, and in particular
self-training, to the problem of cursive, handwritten word
recognition. The special focus of the paper is on retraining
rules that define what data are actually being used in the
retraining phase. In a series of experiments it is shown that
the performance of a neural network based recognizer can
be significantly improved through the use of unlabeled data
and self-training if appropriate retraining rules are applied.

1 Introduction

The automatic recognition of handwritten text – start-
ing from single letters and digits to sequences of letters in
words, text lines and whole sentences - has been a focus
of intensive research for several decades [1, 10]. Yet the
problem is far from being solved, especially in the field of
unconstrained handwritten word and sentence recognition.

Several types of recognizers for handwritten text have
been developed, all of which need a large amount of written
text and the corresponding ground truth for training. Cre-
ating this ground truth, however, is a costly and tedious
task since it needs to be done by humans. As handwritten
texts are ubiquitously available, one can raise the question

weather it is possible to enhance an unconstrained hand-
writing recognition system by using texts without ground
truth in the training phase. Making use of both labeled and
unlabeled data for classifier training is also known as semi-
supervised learning [9]. However, almost no related work
has been reported for using unlabeled data in handwriting
recognition [5].

Most work on semi-supervised learning deals with the
standard classification scenario, where a mapping of single
points in a feature space (patterns) to class labels is being
computed [8, 9, 14]. However, in handwritten word and
sentence recognition, a more general problem is consid-
ered in the sense that a sequence of feature vectors is to be
mapped to a sequence of classes, i.e. a sequence of words
or, as described in this paper, a sequence of letters. Never-
theless, basic semi-supervised learning frameworks exists,
viz. self-training and co-training [4, 7], which are general
enough to cope with sequential data. In self-training, recog-
nizers decode a large set of unlabeled data and use the most
confidently recognized patterns to create a new training set.
A single recognizer is iteratively retrained by enlarging the
original training set with this new set.

In contrast to [5], where the adaptation of a recognition
system to a single person’s writing style is performed, we
are interested in the applicability of semi-supervised learn-
ing to general unconstrained handwriting recognition in this
paper. We evaluate the impact of different forms of self-
training on the recognition accuracy for single word recog-
nition. The recognizer used in this paper is a combination
of ten parallel neural networks [2], specifically designed for
sequential data, that act as a single recognition system from
which a recognition confidence can be deduced. Three de-
terministic, one probabilistic and one oracle retraining rule,
all based on the recognition confidence, have been tested
and compared. A significant increase in the recognition ac-
curacy can be reported for all but one of the retraining rules.

The rest of the paper is structured as follows. In Sec-
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tion 2 the concept of self-training as well as the different re-
training rules are described. Section 3 introduces the neural
network based handwritten word recognizer. Experimental
results are presented in Section 4. Finally, Section 5 con-
cludes the paper.

2 Self-Training

2.1 Overview

The basic idea of semi-supervised learning is to enhance
a recognizer’s accuracy by using both labeled and unla-
beled data for training. Handwritten words, text lines, and
sentences, however, are usually represented as sequences
of feature vectors, rather than by individual feature vec-
tors. This is in contrast with most of the scenarios where
semi-supervised learning was used in the past. Neverthe-
less, there exist two frameworks that are general enough
to deal with sequences of feature vectors, rather than sin-
gle vectors. These are co-training, introduced in [4], and
self-training, which goes back as far as [6] and was put in
context to co-learning in [7].

In the current paper we focus on self-training. It is based
on the idea that a recognizer is retrained on its own most
confident output produced from unlabeled data. First, a con-
ventional supervised training on the labeled set initializes
the recognizer. Afterwards, several self-training iterations
are performed to incorporate the unlabeled data until some
stop criterion is met, e.g. the converging of the recognition
accuracy. In each of the self-training iterations, the unla-
beled set is decoded. Some elements of that decoding are
then used for retraining the recognizer.

Self-training as introduced in [7] uses only the most con-
fidently recognized element to retrain the recognizer. In
this paper we extend this idea. A conservative approach
is to ensure that as least incorrectly labeled data as possi-
ble are used for retraining. However, if retraining is done
with only those elements whose correctness can nearly be
guaranteed, the retraining set does not change significantly
and the classifier may remain nearly the same. Enlarging
the retraining set, on the other hand, is only possible at the
cost of increasing noise, i.e. adding mislabeled words to the
training set. With only few correctly recognized words and
large amounts of possible misrecognitions, the challenge of
successful self-training lies in finding the optimal tradeoff
between data quality and data quantity for retraining.

2.2 Retraining Rules

We investigate three deterministic, one probabilistic, and
one oracle rule to select the elements used for retraining.
To estimate the quality of the recognition output, additional
information about the recognition is needed that indicates

how confident the recognizer is. The retraining rules com-
pared in this paper are based on this confidence. To com-
pute the confidence measure, an independent validation set
is used to transform a given confidence c into a correctness
probability pvalidation(c) value. It indicates the probability of
a word being correct if it was recognized with this given
confidence c (for more details see Section 3.3).

The three deterministic retraining rules compute a con-
fidence threshold each and select all elements recognized
with a confidence equal to or above that threshold. Addi-
tionally, they select the whole original training set for re-
training. The conservative deterministic retraining rule tries
to ensure that no missclassified samples are included in the
set used for retraining. It places its associated confidence
threshold thigh to the lowest value so that pvalidation(thigh) =
1. Since this is the highest threshold considered, it is
termed High Confidence retraining rule. To obtain a larger
retraining set, the Medium Confidence retraining rule se-
lects all words that are more likely to be correct than
wrong by placing its threshold tmed at the lowest value with
pvalidation(tmed) ≥ 0.5. As the third deterministic and most
relaxed rule, the Low Confidence retraining rule selects all
words for retraining, regardless of their recognition confi-
dence.

To ensure a large retraining set as well as some level of
data quality, a probabilistic retraining rule is additionally in-
troduced. The Weighted Random retraining rule randomly
samples elements with replacement, where the probability
of an element being chosen increases with its recognition
confidence. Furthermore, elements from the original train-
ing set are also sampled with replacement and added to the
retraining set.

Finally, the Oracle retraining rule selects all correctly
recognized words together with the original training set for
retraining. This rule reflects the ideal case and is used to ob-
tain a theoretical upper bound on the system’s performance.

3 Recognition System

3.1 Preprocessing

To transform the word images into feature sequences that
can be fed into the recognizer for training and testing, sev-
eral preprocessing steps are applied. The words used in the
experiments come from the IAM database [13]. They are
extracted from pages of written texts, which were scanned
and separated into individual text lines. After binarizing the
image with a threshold on the grey scale value, the slant
and skew of each textline was corrected and the width and
height were normalized. For details on these steps, we re-
fer to [12]. Next, text lines are split into individual words.
Then features are extracted. For this purpose, each word
was transformed into a sequence of feature vectors with a
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horizontally sliding window. A window with a width of one
pixel was used to extract nine geometric features at each
position, three global and six local ones. The global fea-
tures are the 0th, 1st and 2nd moment of the black pixel’s
distribution within this window. The local features are the
position of the topmost and bottommost black pixel, the in-
clination of the top and bottom contour of the word at that
position, the number of vertical black/white transitions and
the average grey scale value between the topmost and bot-
tommost black pixel. Once again, we refer to [12] for more
details.

3.2 Bidirectional Long Short-Term Mem-
ory Neural Network

The recognizer used in this paper is a recently devel-
oped recurrent neural network, termed bidirectional long
short-term memory (BLSTM) neural network [2]. Each
hidden layer is made up of so called long short-term mem-
ory blocks instead of simple nodes. These memory blocks
are designed specifically to address the vanishing gradient
problem which describes the exponential increase or decay
of values as they cycle through recurrent network layers.
This is done by nodes that control the information flow in
and out of each memory block. For details about BLSTM
networks, we refer to [2, 3].

The network is bidirectional, i.e. a sequence is fed into
the network in both the forward and the backward mode.
The input layers with one node for each feature is each con-
nected to separate, recurrent hidden layer. Both hidden lay-
ers are in turn connected to a single output layer. One hid-
den layer deal with the forward sequence, the other hidden
layer with the backward sequence. At each position p of the
input sequence of length l, the output layer sums up the val-
ues coming from the hidden layer that has processed posi-
tions 1 to p and the hidden layer that has processed position
l down to p.

The output layer contains one node for each possible
character in the sequence plus a special ε node, to indicate
“no character”. At each position, the output activations of
the nodes are normalized so that they sum up to 1 and are
treated as probabilities that the node’s corresponding char-
acter can occur at this position. In a subsequent step only
the nodes with the highest probability are considered while
the others are discarded. This sequence of one output acti-
vation at each time step is further considered. Eliminating
repeated activations of the same node and activations of the
ε node (in that order), yield the desired character sequence.

3.3 Confidences

To apply the retraining rules given in Section 2, a reli-
able confidence measure is needed. A simple approach uses

the intensity of the output activations as a confidence mea-
sure. If the normalized output activations at each timestep
are interpreted as a probability for each letter, the product of
the most active ones over the whole sequence can be seen
as the recognition likelihood for that sequence. However,
initial experiments have shown that this approach does not
result in a good confidence measure.

To obtain better results, we took an alternative ap-
proach. Ten neural networks, initialized with different ran-
dom weights were trained separately in each step. For each
sequence, the ten networks produce ten outputs. A simple
count of how many networks agree gives a preliminary con-
fidence value n for that output y. To break a tie in the voting,
the network with the best performance on an independent
validation set is used. In step two, the recognition accuracy
on the validation set with a preliminary confidence value
n is computed separately for all values of n and stored as
p(n). In the third step, the output itself is additionally taken
into account. The recognition accuracy for each different
output y and each value of n is computed on the validation
set and stored as p(y, n) if enough samples exist to estimate
it robustly. Finally, the recognition’s confidence value of the
word’s output is set to p(y, n) if that value exists, otherwise
to p(n). For more details on these confidence values, we
refer to [11].

4 Experiments

4.1 Setup

To evaluate the applicability of self-training in hand-
written word recognition, several test runs with different
settings were conducted. The words used are the 4000
most frequently occurring words from the IAM Handwrit-
ing Database [13]. The database is split up in a test set
(5342 words), a validation set (5590 words), and a work
set (38127 words) with different writers each1. To simulate
the existence of few labeled data and large amounts of unla-
beled data, the work set was randomly split up into a labeled
set to be used for training the initial recognizer and an un-
labeled set to be used for retraining. Clearly, the label of
each word in the unlabeled set is known, but it was ignored
during th experiments. All retraining rules were tested with
2000, 4000, 6000, 8000, and 10000 labeled words.

To initialize the networks, they were trained on the la-
beled part of the working set. In each self-training itera-
tion, the networks decoded a) the validation set from which
the confidence mapping was computed, b) the unlabeled set
from which the new training sets were created and c) the
test set to compute the recognition accuracy. The new train-
ing sets were then used to retrain each network. For all de-

1The splitting has be done according to the standard writer independent
recognition task http://www.iam.unibe.ch/fki/databases
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terministic retraining rules, the retraining sets were exactly
the same for all ten networks in each step, while in case
of the probabilistic retraining rule Weighted Random the re-
training sets differed. Retraining was bounded to 10 back-
propagation iterations to keep the computation time within
reasonable bounds.

4.2 Results

Self-training has been performed for 15 iterations. In a
single test run, the same retraining rule has been applied
constantly. Furthermore, one test run for each rule and each
size of labeled data has been conducted. Each network de-
coded the test set after each iteration separately. The av-
eraged label accuracy after each iteration can be seen in
Fig. 1. The average accuracy of neural networks that are
trained on the entire labeled workset is 80.32% and is indi-
cated by the horizontal line in Fig. 1, (b)-(e). The test set
label accuracy is the average of each word’s label accuracy,
which is given by the number of correctly recognized letters
minus the number of added and missing letters divided by
the number of letters in the word’s ground truth.

First of all, it can be seen that the initial as well as the
asymptotic accuracies increase with the size of the labeled
set. Secondly, the High Confidence retraining rule did not
achieve a constant increase and at some points even de-
creased the recognition accuracy. The other retraining rules
increased the accuracy substantially during the first few it-
erations and stabilized on a significantly higher level than
the initial accuracy2. The Medium Threshold retraining rule
performed better than the High Confidence retraining rule,
but still not as good as the Low Confidence retraining rule.
This behavior can be explained with the number of elements
used for retraining. The lower the confidence threshold, the
more elements lie above that threshold and are chosen for
retraining. The High Confidence retraining rule added in the
first iteration around 1,000 elements to the new training set
and even less additional elements in the following iterations.
The Medium Threshold initially added between 10,000 and
14,000 elements to the retraining set and later on much less
(between 500 and 1,000 elements). The very few elements
above the High Confidence threshold barely make any dif-
ference to the original training set and exhaustive retraining
can then lead to overfitting. The same argument, but to a
lesser degree, holds for the Medium Confidence retraining
rule.

The Weighted Random retraining rule ensures that the
retraining set is sufficiently large and that good data is pre-
ferred for retraining. The resulting curves follow closely
the form of the curves of the Oracle retraining rule. In all
five cases, the Weighted Random retraining rule reached the
best recognition accuracy among all non-oracle retraining

2All results are statistically significant on the α = 0.05 level.
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Figure 1. The averaged accuracies of all ten
networks on the test set for each self-training
iteration.
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rules after all 15 iterations, except for the case of 10,000
labeled words (Fig. 1(e)) where the difference to the best
one is only 0.2%. Among the deterministic retraining rules,
the Low Confidence threshold performed best. However,
the Medium Threshold retraining rule kept on improving
the accuracy for more iterations than the Low Confidence
retraining rule which started to decline after few iterations.
The Oracle retraining rule uses much less elements than the
Low Threshold rule but overtakes it after a few iterations or
comes very close. Their difference in Fig. 1(e) is not sta-
tistically significant after the 8th iteration. It occurs that,
initially, data quantity is most important for self-training,
while data quality gains more impact the more self-training
iterations are performed.

5 Conclusion

To investigate semi-supervised learning for handwriting
recognition, we split a work set randomly into a large un-
labeled set and a small labeled set that was used to initially
train the neural network recognizer. Then we performed
fifteen self-training iterations with five different retraining
rules on five different sizes of the labeled set. In each self-
training iteration, the networks decode the set of unlabeled
data, and assign a pseudo-label and a confidence to the out-
put. Depending on the retraining rule, certain recognized
words from the unlabeled set are added to the original train-
ing set for retraining.

In this paper we demonstrated that semi-supervised
learning, here in the form of self-learning, can be success-
fully applied to the task of handwriting recognition and
made evident that it is possible to substantially increase the
recognition accuracy with unlabeled data. Furthermore, we
introduced different retraining rules to go beyond the idea
of retraining only with the best elements. It turned out that
during the first self-training iterations, data quantity is more
important than quality, from which we draw the conclusion
that in this setup and network architecture some implicit
form of unsupervised learning takes place.

In future work, we will experiment with dynamically
changing retraining rules to further exploit the observation
that the impact shifts from data quantity to quality in the
course of the iterations. Another line of research will in-
clude self-training with Hidden Markov Models (HMM) as
well as co-training, where two different recognizers retrain
each other. Furthermore, we may consider extending single
word recognition to text line recognition.

Acknowledgments

This work has been supported by the Swiss National
Center of Competence in Research (NCCR) on Interactive
Multimodal Information Management (IM2).

References

[1] Alessandro Vinciarelli. A Survey On Off-Line Cursive
Word Recognition. Pattern Recognition, 35(7):1433–1446,
2002.

[2] Alex Graves, Marcus Liwicki, Santiago Fernández, Ro-
man Bertolami, Horst Bunke, and Jürgen Schmidhuber. A
Novel Connectionist System for Unconstrained Handwrit-
ing Recognition. IEEE Transaction on Pattern Analysis and
Machine Intelligence, Accepted for publication.

[3] Alex Graves, Santiago Fernández, Faustino Gomez, and
Jürgen Schmidhuber. Connectionist Temporal Classifica-
tion: Labelling Unsegmented Sequential Data with Recur-
rent Neural Networks. In 23rd Int’l Conf. on Machine
Learning, pages 369–376, 2006.

[4] Avrim Blum and Tom Mitchell. Combining Labeled and Un-
labeled Data with Co-Training. In COLT’ 98: Proc. of the
11th annual Conference on Computational Learning The-
ory, pages 92–100, New York, NY, USA, 1998. ACM.

[5] Gregory R. Ball and Sagur Srihari. Prototype Integration
in Off-Line Handwriting Recognition Adaptation. In Proc.
Int’l. Conf. on Frontiers in Handwriting Recognition, pages
529–534, 2008.

[6] H. J. Scudder. Probability of Error of Some Adaptive
Pattern-Recognition Machines. IEEE Transaction on infor-
mation Theory, 11:363–371, 1965.

[7] Kamal Nigam and Rayid Ghani. Analyzing the Effective-
ness and Applicability of Co-Training. In 9th Int’l Conf.
on Information and Knowledge Management CIKM, pages
86–93, 2000.

[8] Matthias Seeger. Learning with Labeled and Unlabeled
Data. Technical report, University of Edinburgh, 5 Forest
Hill, Edinburgh, EH1 2QL, 2002.

[9] Olivier Chapelle, Bernhard Schölkopf, and Alexander Zien.
Semi-Supervised Learning. MIT Press, Cambridge, MA,
2006.
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