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1 Introduction

An important aspect in the analysis of univariate data isrgrice about qualitative characteristica
of their distribution functionF’ or density f, such as the number and location of monotone or
convex regions, local extrema or inflection points. Thisieshas been addressed in the literature
using a variety of methods. Silverman (1981), Mammen etl&@92), Minnotte and Scott (1993),
Fisher et al. (1994), Minnotte (1997), Cheng and Hall (198®J Chaudhuri and Marron (1999,
2000) use kernel density estimates. Excess masses arefirelags are employed by Hartigan
and Hartigan (1985), Hartigan (1987), Miller and Sawit¢k991), Polonik (1995) and Cheng
and Hall (1998). Good and Gaskins (1980) and Walther (208& yuaximum likelihood methods,
whereas Davies and Kovac (2004) employ the taut string ndetindhe present paper, a qualitative
analysis of a density means simultaneous confidence statements about regionsreése and
decrease as well as local extrema. Such simultaneous nietefeas been treated in the literature
only sparingly. Also, the methods available so far provids @pproximate significance levels as

the sample size tends to infinity and rely on certain regylaonditions abouy .

In this paper we introduce and analyze a procedure that geevsimultaneous confidence
statements with guaranteed given significance level foitrarlp sample size. The approach is
similar to Dimbgen (2002), who used local rank tests in thetext of nonparametric regres-
sion, or Chaudhuri and Marron’s (1999, 2000) SiZer, wheraddeestimators with a broad range
of bandwidths are combined. Here we utilize test statidtigsed on local order statistics and
spacings. The use of spacings for nonparametric infereboatalensities has a long history.
For instance, Pyke (1965) describes various goodness-eists based on spacings, and Roeder
(1992) uses such tests for inference about normal mixtu@mfidence bands for an antitonic
density on[0, co) via uniform order statistics and spacings have been caretilby Hengartner

and Stark (1995) and Dumbgen (1998).

In Section[2 we define local spacings and related test statigthich indicate isotonic or
antitonic trends off on certain intervals. Then a deterministic inequality (Fsition[1) relates
the joint distribution of all these test statistics in geid¢o the distribution in the special case of
a uniform density. This enables us to define a multiple testialmonotonicity properties of.
Roughly speaking, we consider all intervals whose endpairnt observations. The rationale for
using and combining statistics corresponding to such @ ladlection of (random) intervals is
that the power for detecting an increase or decreagei®maximized when the tested interval is

close to an interval on whiclf has such a trend. In that context we also discuss two imgortan



differences to Chaudhuri and Marron’s SiZer map.

In Sectiori B we describe a particular way of calibrating amulgining the single test statistics.
Optimality results in Sectidn 4 show that in many relevanutations, the resulting multiscale test is
asymptotically as powerful in the minimax sense as any ghaeecan essentially be for detecting
increases and decreasesfobn small intervals as well as on large intervals. Thus neithe
guaranteed confidence level nor the consideration of mameyvelds simultaneously results in a
substantial loss of power. In addition we prove that our pdoge is able to detect and localize an

arbitrary number of local extrema under weak assumptiorth@strength of these effects.

In Sectiori’b we consider a densjfyon (0, co) and modify our multiple test in order to analyze
monotonicity properties of the failure rafe/(1 — F)). It is well-known that spacings are a useful
object in this context; see e.g. Proschan and Pyke (196@keBand Doksum (1969) and Barlow
and Doksum (1972). While these authors use global tessistati Gijbels and Heckman (2004)
localize, standardize and combine such tests, albeit witbalibrating the various scales. Hall and
Van Keilegom (2002) use resampling from an appropriatelipted null distribution in order
to achieve better sensitivity to detecting local effecthjol leads to an asymptotically valid test
procedure without explicit information about the locatimfithese effects. Walther (2001) uses a

multiscale maximum likelihood analysis to detect locakets.

Sectior(6 illustrates the multiscale procedures with twanggles and introduces a graphical
display. In Sectionl7 we derive auxiliary results about vaéeg maxima and moduli of continuity
of stochastic processes. These results generalize Thdbleof Dimbgen and Spokoiny (2001)

and are of independent interest. Further proofs and teehaiguments are deferred to Secfion 8.

To fix notation for the sequel, suppose thatYs, ..., Y,, are independent random variables
with unknown distribution functiorf” and (Lebesgue) densitfyon the real line. In order to infer
properties off from these data we consider the corresponding order gtafi§f) < Y5 < --- <
Y(m)- In some applications]” is known to be supported by an interval co), (—oo, b] or [a, b],
where—co < a < b < oo. In that case we add the poiliy) := a or Y(,,, 1) := b or both to
our ordered sample, respectively. This yields a data vextes (X(i))?jol with real components
Xy < Xy < < X(ny1), Wheren € {m —2,m — 1,m}. For0 < j < k < n+ 1 with
k—j > 1, the conditional joint distribution X , 1), ..., X(x—1), given X ;) and X;, coincides
with the joint distribution of the order statistics bf— j — 1 independent random variables with

density
W € Iy} f ()
F(X()) — F(X¢;)

fin(z) =
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whereZ;;, stands for the interval

Lik = (X() Xk))-

Thus (X(j+,-))f:_g is useful in order to infer properties gfonZ;,. The multiple tests to follow

are based on all such tuples.

2 Local spacings and monotonicity properties off

Let us consider one particular interv&}, and condition on its endpoints. In order to test whether

f is non-increasing or non-decreasingBn we introduce the local order statistics

Xy = XG5 . _ .
X(i; k) T v~ v o J <1< ]{77
’ Xy — Xi)
and the test statistic o
i=j+1

where
B(x) = {x € (0,1)}(2z —1).

This particular test statisti€’;, (X ) appears as a locally most powerful test statistic for thé nul
hypothesis A < 0” versus “A > 0" in the parametric model, where
Wz eZiy} $—X(j) 1
fir@) = —LZ (1 4+ N —-T——2])).
’ Xk —Xm( (X<k> - X() )

Elementary algebra yields an alternative representafieuiosingle test statistics:

k .
] i—j—1/2

(2.1) ZELX):‘%k_j%g;f%__zfj_J(X@MO_XOA%M>

ThusTj;(X) is a weighted average of the local spacitgs ; ) — X(i—1,k), J < i < k.

Suppose thaf is constant ot ;. Then the random variablg;;, (X)) is distributed (condition-

ally) as

(2.2) B(U;)

k—j—1
i=1

with independent random variablés having uniform distribution or0, 1]. Note that the latter
random variable has mean zero and variafice- j — 1)/3. However, if f is non-decreasing or

non-increasing off;;, thenT};(X) tends to be positive or negative, respectively. The folimyvi

proposition provides a more general statement, which igdlgeo our multiple test.



Proposition 1 DefineU = (U(i))?jol with componentdJ ;) := Fy(X;)), whereF, is the dis-
tribution function corresponding to the densfy/, 1. ThenUy, ..., U, are distributed as the
order statistics of. independent random variables having uniform distributior{0, 1], while
U(O) =0 andU(nH) = 1. Moreover, for arbitrary integefs< j < k <n-+1withk —j > 1,

> T;,(U) if fis non-decreasing dbjy,,
< T;,(U) if f is non-increasing ofy,.

Tj(X){

This Proposition suggests the following multiple test: Sage that for a given level € (0,1)

we know constants;,(«) such that
(2.3) ]P’{\Tjk(U)! <cpla)forall0<j<k<n+1,k—j> 1} >1-a.

Let

D(a) = {zjk AT (X) > cjk(a)}.
Then one can claim with confidente- « that f must have an increase on every intervabin(«),
and it must have a decrease on every intervdir(«). In other words, with confidence— o we
may claim that for everf € D*(a) and for every version of there exist points:, y € Z with

x <yand+(f(y) — f(z)) > 0.

Combining the two familiesD* («) properly allows to detect and localize local extrema as
well: Suppose for instance that, I, . .., I, € D («) andDy, Do, ..., Dy, € D~ («) such that
L <D <Ihb<Dy<---<I, < D,,where the inequalities are to be understood elementwise.
Under the weak assumption thais continuous, one can conclude with confidemce « that f

has at leastn different local maxima aneh — 1 different local minima.

Note that our multiscale test allows to combine test stesi§i;;, (X)) with arbitrary ‘scalesk—
j. This is an advantage over Chaudhuri and Marron’s (199908 er map, where statements
aboutmultiple increases and decreases are available only at a common idémdwhis is due to
the fact that these authors use kernels with unbounded dugupd rely on a particular variation
reducing property of the gaussian kernel which holds ontyafoarbitrary but global bandwidth.
Another consequence of the kernel's unbounded supporaiddbalizing trends of itself is not

possible.

3 Combining the single test statistics

It remains to define constants(«) satisfying [2.8). Note first thal;,(U) has mean zero

and standard deviatiofy (k — j — 1)/3. Motivated by recent results of Dimbgen and Spokoiny
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(2001) about multiscale testing in gaussian white noiseaisode consider the test statistic

3 k—7
To(X) = J— o Ty (X)| - T ,
(X) O§j<k§r2?-}1(:k—j>l( k—j—l| #(X)] <n—|—1>)

wherel'(0) := (2log(e/8))'/2. This particular additive calibration for various scalesiecessary

for the optimality results to follow. Without the terf{((k—;)/(n+1)), the null distribution would
be dominated by small scales, as there are many more lotatadistics on small scales than on
large scales, with a corresponding loss of power at largkescal’ he next theorem states that
our particular test statisti€,, (U ) converges in distribution. Unless stated differently,ragiotic

statements in this paper referio— oo.

Theorem 2
| Z (u,v)|
T, U) —, T(W) := su ——= —T(v—u)l,
) = TOW) = swp_ (= ~T (- w)
where

Z(u,v) = 31/ /Uﬁ(x_u> aw (zx),

” v—u

andW is a standard Brownian motion ¢ 1]. Moreover,0 < T < oo almost surely.

Consequently, if, () denotes th¢1l — «)—quantile of£(7,,(U)), thenk,(a) = O(1), and

the constants

cik(a) = k_§_1<F(zli> +f{n(o¢))

satisfy requiremenit(2.3). For explicit applications wenid use the limiting distribution in The-

orem[2 but rely on Monte-Carlo simulations'Bf(U ) which are implemented easily.

4 Power considerations

Throughout this section we focus on the detection of in@ead f by means oD («). Analo-
gous results hold true for decreasesf@ndD~ («).
For any bounded open intervAlC R we quantify the isotonicity of on I by

zyel 1 x<y Yy—x
= inf} f'(z) if fis differentiable onl.
S

Now we analyze the difficulty of detecting intervalwith inf; f/ > 0. An appropriate measure

of this difficulty turns out to be
H(f 1) = i]gff’- \I?/\/F(I),
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where|I| denotes the length af. Note that this quantity is affine equivariant in the sensg th
it does not change whefi and I are replaced by ' f(c=1(- — pu)) and{u + oz : z € I},

respectively, withu € R, o > 0. For given numbers € (0, 1] andn € R, we define

F(I,6,n) = {f:F(I) =0, H(f,I) 277}

and

F(,m) = U F(I,8,7m).

bounded intervals I

Note thatf(x) > inf; f/ - (x — inf(I)) on I, so thatF (I) > inf; f’ - |I|?/2. Hence

4.1) H(f, 1) < 2/F(D).

ThusF(I,6,n) and.F(8,n) are nonvoid if, and only ify < 2v/6.

Theorem 3 Let4, € (0,1] and0 < ¢, < v/24 < C,.

(a) Let I,, be a bounded interval anfid a density inF (In, O, Cnr/log(e/dn) /n). Then

Py, (D+(a) contains an interval C In> — 1,

provided tha{C,, — v/24) \/log(e/d,) — oc.

(b) Let ¢,,(X) be any test with levek € (0, 1) under the null hypothesis thX is drawn from a

nonincreasing density. (fogn)?/n < 4, — 0, then

inf Efpn(X) < a+o(1),
fef(én,cn log(e/&n)/n)

provided thai(v/24 — ¢;,) v/log(e/d,) — co.

(c) Let I,, be any interval andl,, some number if0, 2\/nd,]|. If ¢,(X) is any test with level
a € (0,1) under the null hypothesis that the density is nonincreasinh,, then
inf Efpn(X) — 1
FEF (In,6n,bn//n)

implies thath,, — oo andnd,, — oc.

Analogous results hold true for detecting a decreasg. oTheorem [B establishes that our
multiscale statistic is optimal in the asymptotic minimanse for detecting an increase on an
unknown interval, both in the case of an increase occuring small scale, \, 0) and when

the increase occurs on a large scéie (nf 6,, > 0).
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In the case of small scales, a comparison of (a) and (b) shuatghere is a cut-off for the
quantity H (f, I) at/24log(e/d,)/n: If one replaces the fact@r with 24 + ¢, with €, ~\, 0 suf-
ficiently slowly, then the multiscale test will detect anddtize such an increase with asymptotic
power one, whereas in the case— ¢, no procedure can detect such an increase with nontrivial

asymptotic power.

In the case of large scales, one may repl&cel,,, §,,C, log(e/én)/n) in (a) with the
family F (In, Ons C‘n/\/ﬁ>, whereC,, — co. Then a comparison of (a) and (c) shows again our
multiscale test to be optimal, even in comparison to testeyus priori knowledge of the location
and scale of the potential increase. Hence searching oegradiv(large and small) scales does
not incur a serious drawback. In the case of small scalesn@)c) together show that ignoring

prior information about the location of the potential inese leads to a penalty factor of order

o(+/108(¢/5,)) = of/Iogm).

Example 1. Let us first illustrate the theorem in the special case of alfoantinuous density

and a sequence of intervals converging to a given point,, where we use the abbreviation
pn = log(n)/n.

Example la. Let f be continuously differentiable in a neighborhoodzgfsuch thatf(z,) > 0
and f'(z,) > 0. If |I,] = anf,l/?’ with D,, — D > 0, thené, := F(I,) is equal to
Dy f(zo)py (1 + o(1)) andinf;, ' = f'(zo) + o(1). Hence the quantityZ(f, I,) may be
written asDy/® £/ (x0) f (z0) ~1/2p/ 2 (1+ 0(1)), while \/2410g(e/5,,) /n = 8/2p/* + o(1). Con-

sequently, the conclusion of Theoréim 3 (a) is correct if

1/3

D, \, (8f(330)/f/(330)2)

sufficiently slowly.

Example 1b.Let f be differentiable orfz,,, oo) with f(z,) = 0 andf’(x,+h) = vh*"1(140(1))
ash \, 0, wherey,x > 0. If I, = [xo+Clp,1/(“+1),xo+Cgp,1/(“+1)] with 0 < Cy < Oy,
then the conclusion of Theorem 3 (a) is correct, provideditia(C;~*, C5~ 1) andCy/C, are

sufficiently large.

Example 1c.Let f be twice continuously differentiable in a neighborhood péuch thatf (z,) >

0, f'(xzo) = 0and+f"(z,) # 0. Now take the two intervalf.,(f) = |z, — Cgp}/S, Ty — Clp}/S

and[ﬁf) = [aco + Clp}/‘r’,xo + Cgp,lﬁ] with 0 < Cy < Cy. If Cy andCy/C4 are sufficiently



large, then it follows from Theorefd 3 (a) and its extensiototally decreasing densities that
P(D* contains somd ¢ I andDT contains someg ¢ 1)) — 1.

Thus our multiscale procedure will detect the presence e@itlbde with asymptotic probability
one and furthermore localize it with precisial, ((log(n)/n)'/?). Up to the logarithmic factor,

this is the optimal rate for estimating the mode (cf. Haskiirk079).

Example 2. Now let I be a fixed bounded interval, and consider a sequence of @snsjtsuch
thatsup,c; | fn(z) — fo| — 0 for some constanf, > 0. Here the conclusion of Theordr 3 (a) is

correct, provided that

\/ﬁ-ir}ff,g — 00.

The next theorem is about the simultaneous detection of@lenereases of .

Theorem 4 Let f = f,, and letZ,, be a collection of non-overlapping bounded intervals shah t

for eachl € 7,,
(4.2) H(fn, 1) 2 C(Vlog(e/Fu(D)) +bn) /v/n
with constant$) < b,, — oo andC > +/24. Then
Py, (for eachl € Z,,, D" () contains an interval C I ) — 1
in each of the following three settings, whére:= minyez, F,(I):
() C > 34.
(i) C > 2v24 and né,/log(e#I,) — oo.

(i) C =+/24 and né,/log(e#I,) — oo, log #I, = o(b2).

It will be shown in Sectiori18 thaf(4.2) entails),, > (C?/4 + o(1))logn. In particular,
#T,, = o(n). Moreover, Theorerl3 (a) follows from Theoréin 4 by consitgsetting (iii) with
7, consisting of a single intervdl,.

A comparison with Theoreiinl 3 (a) shows that the price for theutaneous detection of an

increasing number of increases or decreases is esseatjaiigntial increase of the constar4.



The proof of Theorerml4 rests on an inequality involving tHefeing auxiliary functions: For
ce[—-2,2]andu € [0,1] let
ge(u) == 1+c(u—1/2).

This defines a probability density ¢, 1] with distribution function

Ge(u) == u—cu(l —u)/2.

Proposition 5 DefineU = (U(i))?jol as in Propositionl1. For arbitrary integdrs< j < k <

n+ 1 withk — j > 1 it follows frominfz,, f' > 0 that

k-1 _ H(f,Zjx)
. g -1 .. = .
Ti(X) > i:j+1ﬁ(GS W) with S F(Zjk)

Moreover, for any fixed € [—2,2] andU ~ Unif]0, 1],
EB(G.'(U)) = ¢/6, Var(B(G:(U) < 1/3,

while

Eexp(t8(G,1(U))) < exp(ct/6+t°/6) forallt € R.
5 Monotonicity of the failure rate of f

To investigate local monotonicity properties of the fadluatef /(1 — F'), such as the presence of

a ‘burn-in’ period or a ‘wear-out’ period, we consider

7 n+1
W, = ZDk/ZDk, i=0,... 041,
k=1 k=1
whereD; := (n — i+ 2)(Xy — Xi—1)), i = 1,...,n + 1, are the normalized spacings. Here

Xy < Xa) < -+ < X(nq1) are the order statistics of + 2 or n + 1 i.i.d. observations from
F, in the latter case witlX ) being the left endpoint of the support 61 The next proposition
shows that the problem can now be addressed by applying ttedwogy of Sectionl2 to the
transformed data vectdV = (W;)7Z,.

Proposition 6 SetX(, = —log(l — F(X()), i = 0,...,n + 1, and defineW’ = (W/);Z}
analogously as above witk’ in place ofX. ThenW' =, U, and for arbitrary integei < j <

kEk<n+1withk—j>1,

T

(W) {2 T;,(W') if the failure rate off is non-decreasing dfyy,,
J

< T;,(W') if the failure rate off is non-increasing of;y,.
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6 Graphical displays and examples

We first illustrate the methodology with a sample of size= 300 from the mixture distribution
F = 0.3-Gamma(2) + 0.2 - N (5,0.1) + 0.5 - N(11,9),

whereGamma(2) denotes the gamma distribution with dengjty:) = ze~* on (0, co). Figurel 1l

depicts the density of F.

0.25 ” 1

0.2 o

0.1 T

0.05 =1

Figure 1: Density 0f).3 - Gamma(2) + 0.2 - N'(5,0.1) + 0.5 - N'(11,9)

Figure[2 gives a line plot of the data and a visual display ef ntultiscale analysis: The
horizontal line segments above the line plot depict all madiintervals inD*(0.1), those below
the line plot depict all minimal intervals i~ (0.1). Here we estimated the quantig,_2(0.1)
to be1.518 in 9999 Monte Carlo Simulations, where we restrictgdk) in the definition of T’
to index pairs(j, k) such that(k — j)/(m + 1) < 0.34. For example, we can conclude with
simultaneous confidence 90% that each of the intef@al®6, 3.887) and(5.022, 5.841) contains
a decrease, and each of the interv@l983, 4.882) and(5.841,10.307) contains an increase. As
these four intervals are disjoint, we can conclude with carfce 90% that the density has at least

three modes.

A referee reports that the taut string method of Davies anda@2004) found three modes

in about 82% of the cases. Our method finds three modes in 88&tiand exactly two modes in
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Figure 2: Minimal intervals irD*(0.1) (top) andD~(0.1) (bottom).

about 50% of the cases. However, the latter method also silovocalize the modes. Figuré 3
provides a diagnostic tool for this type of inference. Eacotizontal line segment, annotated by
‘+’ or ‘', depicts an interval in som&® ™ («), resp.D~(«). In each row, the depicted intervals are
disjoint with an alternating sequence of signs. The numiehe first colunm gives the smallest
significance level at which this sequence of alternatingssigpbtains, and the plot shows all such
sequences that have a significance level of 10% or less. Téevats depicted in a given row

are chosen to have the smallest right endpoint among themalnntervals at the stated level.

Consecutive intervals are plotted with a small verticakeffto better visualize their endpoints.
For example, figurE]3 implies a p-value of less than 1% for ttistence of at least two modes,

and a p-value of 7.33% for the existence of at least three miode

Our second example concerns the detection of an increaskiinre rate. Gijbels and Heck-
man (2004) compare a global test and four versions of a exhltest in a simulation study.
A sample of sizen = 50 is drawn from a distribution whose hazard ratg) is modeled via
log h(t) = ay logt+ B(2m0?) =12 exp{—(t — n)?/(20?)}. Tablel shows the power of our proce-
dure from Sectionl5 for the choices of parameters3, o used by Gijbels and Heckman (2004).
The cases with3 = 0,a; < 0 pertain to the null hypothesis of a non-increasing faillate
whereas8 = 0,a; = 0.01 implies an increasing failure rate. The other eight casssltrén a
failure rate with a local increase. The power of the tesbihiiced in Sectiohl5 exceeds those of

the five tests examined by Gijbels and Heckman (2004) in fédne nine cases that involve an

12



0.01%

0.01%

0.01% + —
0.03% - *
0.07% = x —
0.08% i = i =
7.33% — t — + —
2 a 6 8 10 12 14 16

Figure 3: Alternating sequences of minimal interval®ih(«) andD~ («) with the corresponding
p-valuesa.

increase in the failure rate.

ay | —-02 -01 0 0.1
3=0 0.014 0.026 0.049 0.052
3=03,0=02| 0.066 0.115 0215 0.224
3=03,0=01| 0188 0301 0.439 0.451

Table 1: Proportion of rejections of the null hypothesistet 5% significance level in 10,000
simulations.

7 Auxiliary results about stochastic processes

Throughout this section lef = (Z(t)):c7 be a stochastic process with continuous sample paths
on a totally bounded metric spat€, p), wherep < 1. ‘Totally bounded’ means that for arbitrary

u > 0 the capacity number
D(u) = D(u,T,p) := max{#’]} : T, C T, p(s,t) > ufor differents, t € ’Z;}

is finite. Moreover letZ = (Z(t)).er be a stochastic process @rwith continuous sample paths.
We analyze the modulus of continuity g@fwith respect tg. In addition we consider a function
o:T — (0,1], whereo(t) may be viewed as measure of spread for the distributiafi(of. We

assume that
(7.1) lo(s) —o(t)] < p(s,t) foralls,teT,
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and that{t € 7 : o(t) > 0} is compact for any € (0,1].

We start with a version of Chaining which is simlar to Lemma&®bf Pollard (1984) and was

used by Dumbgen (1998). For the reader’s convenience & igrgiven below.

Theorem 7 Let K be some positive constant, and éor- 0 let G(-, §) a nondecreasing function

on|[0, c0) such that for alh > 0 ands, t € T with p(s,t) > ¢,

1Z(s) = Z(1)]
7.2 Py —= < K —n).
(7.2) {5ad > 6md} < Keo(-n)
Then for arbitraryy > 0 anda > 1,
. Ké
]P’{\Z(s) — Z(t)| > 12J(p(s,t),a) for somes,t € T with p(s,t) < 5} < 5.

where

J(e,a) = /OEG(log(aD(u)2/u),u)du.

Remark 1. If we apply the preceding inequality to= 2~* with k£ = 0, 1,2, .. ., then it follows

from the Borel-Cantelli-Lemma that

lim sup sup < 12 almost surely

ONO  s,t€Tn i p(s,t)<6 J(p(S, t)v 1)

Remark 2. Suppose that the procegshas sub—Weibull increments in the sense that for some

constants > 0 and arbitrarys,t € 7,n > 0,
P{|Z(s) — Z(t)| > p(s,t)n} < 2exp(—(n/k)").

Then the exponential inequality (7.2) is satisfied witn,§) = (kn)'/%. This includes the

situation of processes with subgaussian=2) and subexponentiak(= 1) increments.

Remark 3. Suppose that(n, §) = ¢n? for some constantg, ¢ > 0. In addition let
D(u) < Au™P foro<u<1

with constantsd > 1 andB > 0. Then elementary calculations show that fiox ¢ < 1 and
a>1,

J(e,a) < Celog(e/e)?

with C' = ¢ max(1 + 2B, log(aA?))? fol log(e/z)? dz.

With the conclusion of Theorefd 7 in mind, we prove a resultutlioe standardized process

Zjo = (Z(t)/o(1)),.r-
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Theorem 8 Suppose that the following two conditions are satisfied:

(i) There is a functiort : [0, 00) x (0,1] — [0, 00) such that for arbitraryy > 0, 6 € (0,1] and
teT witho(t) >,
P{1Z(t) = o(1)G(n,6)} < 2exp(—n).

Moreover,
G(n,d
G, := sup (n,9)
n>0,0<6<1 L +1n
(i) There are positive constanis B,V such that

< 0.

D(ua, (teT: o)< 5},p) < AuB5V forallu,s e (0,1].

For constantg, () > 0 define the events

Alg,Q,0) = { sup Z(s) — Z(t)|

<@y, d>0.
s,;t€T : p(s,t)<d p(37 t) IOg(e/p('S» t))q }

Then there exists a constant= C(G,, A, B,V,q,Q) > 0 such that fob < § < 1 the probability

of the event
{|Z| < 0 G(Vlog(1/o) 4+ Cloglog(e/o), o) + Colog(e/o) L on{t:o(t) < 5}}

is at least(A(q, Q, 25)) — Clog(e/d)t.

Remark. In case ofG(, ) = (kn)'/* with & > 1,

G(V 10g(1/8) + Cloglog(e/8),6) + Clog(e/3) "
—  (kV log(1/8))V% + o(1og log(e/9) log(eé)l/“_l)
= (kV1og(1/6))Y* +0(1) asd \, 0.

The preceding two theorems and remarks entail the followorgllary which extends Theo-
rem 6.1 of DUmbgen and Spokoiny (2001). The main differaad¢hat we don't need to assume

subgaussian increments of our stochastic process.

Corollary 9 Suppose that the following three conditions are satisfied:

(i) There exist constantd, B,V > 0 such that for arbitrary, 6 € (0, 1],
D(ud,{t € T :0(t) <6},p) < Au=B5V,

15



(i) There exists a constaht > 1 such that for arbitrarg,t € T andn > 0,
P(1Z(s) — Z(t)| = Kp(s.t)y) < K exp(—n).
(iij) For arbitraryt € T andn > 0,
P(1Z(t)] = a(t)n) < 2exp(—n*/2).

Then

sup

1Z(s) — Z(t)]
IED<s,t€’]’ P(37 t) log(e/p(37 t))

= 77) < p1(77|A>B>K)7
A —+/2V log(1
]P’(sup| (t)[/o(t) Viog(1/a(t))
teT D(a(t))
with D(8) := log(e/5)~'/? log(elog(e/d)), wherep, (- | A, B, K) andps(- | A, B, V, K) are uni-
versal functions such théitn, .. p1(n| A, B, K) = lim, . p2(n| A, B,V, K) = 0.

>1) < paln| A, B,V.K)

Proof of Theorem[7. SinceZ is assumed to have continuous sample paths, it sufficesifg ver
the assertion on some dense sulsedf 7. We choose inductively maximal subséfsc 75 C

73 C --- of 7 such that
p(s,t) > 0, :=27%5 for differents,t € 7.

In particular, for anyt € 7 andk > 1 there is a pointry(t) € 7 with p(t, m,(t)) < ;. Hence

T, == U;>1 Tx is a dense subset @f. Furthermore#7;, < D(dx,). Now define

me = G(log(aD(5)2 /). 6.

Then the eventd := |J;.>,{|Z(s) — Z(t)| > p(s, t)n. for somes,t € 7 } has probability

Yo > B{Z(s) = 20| > pls,t)m}

k>1{s,t}CT}

K Z 271 D(6),)% exp (— log(aD(5k)2/5k)>
1
— K5/(2a).

IN

P(A)

IN

For s,t € 7, there exist integers < ¢ < m with 6,1 > p(s,t) > d, ands,t € 7, (where
0y := 0). Defines,, := s,t,, := t and inductivelys; := mi(sgr1),tx = m(tgsq) for k =

m—1,m —2,...,£. Then one can conclude that
m—1
p(se,te) < p(s,t) + Z( P(Sks Sk+1) +P(tkatk+1)) < 60y.
k=t

16



Thus outside of the evert,

—_

m—

Z(s) = Z()] < |Z(se) = Z(t)| + Y (12(sk) = Z(swy1)| + | Z(tr) — Z(tr11))
k=¢
m—1

p(seto)ne+2 > ke
o,

12(8¢ = 6p41)m + 8D (Oka1 — Okt
K>t

< 12 (Gk — Opp)m
K=t

< 12J(d4,a)

IN

IN

< 12J(p(s,t),a).

When bounding the series by an integral, we tacitly assuratd(n, J) is non-decreasing in
n > 0 and non-increasing in > 0. This may be assumed without loss of generality, because

otherwise one could replac&(n, 0) in (7.2) with

= i "6 < . O
G(n,9) n’zﬁ&f&saG(n ,6") < G(n,9)
Proof of Theorem[8. The idea is to prove the assertion on some countable sdset 7 by

means of conditions (i) and (ii), and then to use the modufusoatinuity of Z on the events
A, Q).

The set7* is constructed inductively as follows: Let be any point in7 maximizing o.
Next letu be some continuous, non-decreasing function f(ém| into itself to be specified later.

Suppose that we picked alreatly. . . , t,,. If the set

(7.3) {t eT: min ptt;) > u(a(t))a(t)}

i=1,...m
is nonvoid, then let,,; be an element of it with maximal valug(t). Since the displayed set
is closed ando > ¢} is compact for any > 0, the pointt,,+, is well-defined. Thus we end
up with a finite or countable s&t* := {t1,ts,t3,...}, and its construction entails thatt,) >

o(te) > o(ts) > ---. For0 < ¢ <1 the set
T*(8) = {t eT*:6/2<0(t) < 5}

is contained in{t €T :0() < 5} with p(s,t) > u(d/2)0/2 for differents,t € 7*(9).
Consequently,
#T*(5) < A2Bu(5/2)7Bs7V.

17



In particular, if7* is infinite, thenlim,,,.o, o(t,,) = 0. An important property of this séf* is

that for anys € 7 there exists a pointe 7* such that
(7.4) o(s) < o(t) and p(s,t) < u(o(s))o(s).

For letm be a maximal index such thatt,,) > o(s). If p(s,t;) > u(o(s))o(s) forall i < m,
thens would belong to the sef (7.3), wheneét,,,. 1) > o(s). But this would be a contradiction

to the definition ofm.

In order to boundZ(t)|/o(t) for all t € 7* we define
Hq(t) = G(Vlog(l/a(t)) + Blog(1/u(o(t))) + 2loglog(e/o(t)), 0(75)).

Then for0 < § < 1,

Z(1)|
P{teTf:lloIzt)ch( o(t) ~ ) >0}

<y YL g

teT*:0(t)<d

< 2 Z exp(—Vlog(l/a(t)) — Blog(1/u(o(t))) — 2log log(e/a(t))>

teT*:0(t)<d

=23 > o) ule@) logle/o(t)?

k=0teT*(2-%4)

2 f: > @7 )V u(26)P (log(e/8) +log(2)k)
k=0teT*(2-%4)
C1 Y _(log(e/d) +log(2)k)
k=0
02 lOg(e/é)_17

IN

IN

IN

where

Cy = A28+ U and Gy = (14 (log2)" 1O,
: LRy WY O G G

Considering the functio/; closely, an elegant choice fafé) might be

u(0) := log(e/d)™"
for somey > 0. For thenu(x) /u(z/2) < log(2e)?, and
Hi(t) = G(Vlog(l/a(t)) +(By+2) loglog(e/a(t)),a(t)).

Now let s be an arbitrary point i, and lett € 7* satisfy [Z.4). Then

o(s) = o(s)

18
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so that on the event (20 (s)),

- < +

)
< Qu(o(s)log(e/(u(o(9)a(s)" +

< Cylog(efo(s))T™ + ‘Zg))’log(e/ ()7

for some constant’s = C(q, @, ~y). Consequently, if in additionZ(¢)|/o(t) < H;(t), then

1Z(s)]
a(s)

IA

Hi(t) + Cslog(e/a(s))"™" + Hi(t) log(e/a(s)) ™

Hi(s) + C3log(e/a(s))"™" + Hi(s)log(e/o(s))™"

Hy(s) + Cslog(e/a(s))*

+ (14 Vlog(1/0(1)) + (By + 2)loglog(e/a (1)) ) log(e/or(5)) ™
Hy(s) + Cylog(e/a(s))m (10

IA

IN

IN

for some constant’y = Cy4(G,, B,V, q,Q,~). Finally note that(s) < ¢ implies thato () < 2.
Consequently, with probability at leaBt.A(25)) — Cz log(e/(28)) 71, the ratio| Z(s)| /o (s) is not

greater than

G(V log(1/0(s)) + (Bvy + 2)loglog(e/o(s)), a(s)) + Cylog(e/o(s))maxba) =y
forall s € {o < ¢}. This yields the assertion if we take = max(1,q) + 1 and a suitable
C=C(Go,A,B,V,q,Q). M
8 Proofs

8.1 Proofs of Proposition$ 1,6 andl6

The proofs rely on an elementary inequality which we statbavit proof:

Lemma 10 Let G, andG be distribution functions on an intervél, b) with densitiesy, andg,
respectively. Suppose that- g, < 0 on(a,c) andg — g, > 0 on(c,b), wherea < ¢ < b. Then
G 1>aGot. O

Note that the conditions in Lemrhal10 are satisfied if, foranse,g, andg are differentiable

with derivatives satisfying’ > ¢/.
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Proof of Proposition[d. Itis well-known thatl,), ..., U, are distributed as the order statistics
of n independent random variables having uniform distributaro, 1]. Suppose thaf and thus
fjk is non-decreasing af;,, wherek — j > 1. Then the assumptions of Lemind 10 are satisfied

with g = f;, andg,(x) := 1{z € Z;;}/|Z;x|. This implies that forj < i < k,
X = G Usn) = Go'WUgm) = Xg) + Xy = X))V,
whenceT),(X) > T;,(U). In case off being non-increasing ofi;;, the reverse inequality

Tjx(X) < Tj(U) follows from Lemma 1D withy(z) = 1{z € Z;.}/|Z;1| andg, := fj. 0

Proof of Proposition[5. Again we apply Lemmp_10, this time with the densities
9(u) = Tl fir (X + |Zjlu)
andg, := gs on(0,1). Note that
inf ¢ = |Zp*inf f}, = S = ¢5.
Inf g \Zjk| inf Fik 9s

Thus it follows from Lemm&-10 that

k—1 k—1
Tin(X) = Y, BG  Uagw)) = Y, BGs Uiyw))-
i=j+1 i=j+1

As for the moments of(G;*(U)), note first that generally
! 1! c
ER(3(G: W) = [ BB)+ et y2)du = 5 [ nw)(1+5o) do
0 -1
for h: [-1,1] — R. Lettingh(v) := v’ with j = 1,2 shows that the first and second moment of

B(G(U)) are given bye/6 and1/3, respectively. Moreover, letting(v) := exp(tv) yields

C

M.(t) = logEexp(t8(G, 1 (U))) — ct/6 = log(A(t) + cB(t)) — ct/6,

where
1 1 i t2k
At) = 5/_1@“) dv = sinh(t)/t = ;m7
B(t) = }/1 eYvdv = (cosh(t)/t — sinh(t)/t?)/2 = Ei 3 12k |
Ha 6 & 2k +3 (2k + 1)!

We have to show thad/.(t) < t2/6 for anyt # 0. To this end, note thalM,(t)/0c equals
B(t)/(A(t) + ¢B(t)) — t/6 and9*M.(t)/0c* < 0. ThusM.(t) is strictly concave irc € {c :
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A(t) + ¢B(t) > 0}. The equatiordM.(t)/0c = 0 is equivalent toA(t) + c¢B(t) being equal to
6B(t)/t > 0, and this meanst/6 = 1 — tA(t)/(6B(t)). Hence elementary manipulations of the

series expansions yield

t (t)

t2k

M.(t) < 10g<63(t)) + ég(t) -1
- 3
- 1°g<z 2k+3(2k+1)!)

+ﬁz 5-3 2k /i 3 2k
15 £ (2k +5)(2k +3) 2k + 1)1/ £= 2k +3 (2k + 1)!

> (¢2/10)F 12
1°g<z( /k:! ) )*B

IA

Proof of Proposition[6. By construction, the vectdrX(, — X EO))?:J? is distributed as the vector
of order statistics ofi + 1 independent random variables with standard exponenséiditaition.
Well-known facts imply that the variabld3] are independent with standard exponential distribu-
tion. Hence(Wy, ..., W) = (Uqy, .-, Uyy), while Wy = 0 andWW; | = 1.

Now we assume that the failure rate is non-decreasirifjgrthe non-increasing case is treated
analogously. Then the functigfi(z) := —log(1 — F'(x)) is convex ori;;,. Hencew, := D, /D,

is non-decreasing in € {j +1,...,k}. Consequently foj < i < k,

Zi:j+1Ds B Z;:jﬂ asDs

W... .—W'. =
(4:9,k) (4:9,k) k k
J j SemjniDs  YijyiasDs
Eizjﬂ Zf:i—i—l(at — o) D Dy
k k
Zs:j—i-l D Zt:j—l-l arDy
> 0.
HenceT), (W) > T;,(W'). O

8.2 Proof of Theorem2
We embed our test statisti@S,, into a stochastic process, on
Ty i= {(Tnsmin) 10 j <k <n+ 1},
wherer;,, :=i/(n + 1), equipped with the distance
(), () 2= (ju—af| + o — o))"
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on7 :={(u,v) : 0 <u < v < 1}. Namely, let
Zn(Tjns Tin) o= 3Y2(n+ 1)V 2T (0).

Moreover, for(u,v) € 7 \ 7, let

|(n+ 1)c] .

Zn(u,v) = Zp(tp(u), 7 (v)) with 7,(c) := |

Note that
E(Zn(u,v)) = 0 and Var(Z,(u,v)) < o(u,v)?,

whereo (u,v) := (v — u)'/2. In fact, these functiong ando satisfy [7.1). For

‘(v—u) — (v’—u’)‘

/ /
lo(u,v) —o(u/ ;)| < NN
- Vo —u)+ W —u)/Ju— ]+ [v—
- Vuo—u+Vu =
< Vu—u|+ o]

= p((u, U)v (u,> U/))'

Later on we shall prove the following two results about theseesses/,, and the limiting pro-

cesssZ defined in Theorerml 2:

Lemma 11 The processe& onT andZ, on7, (n € N) satisfy conditions (i—iiij) of Corollar/19

with A = 12, B = 4, V = 2 and some universal constakit

Lemma 12 For any finite subset, of T, the random variabléZ,,(t)).cz, converges in distribu-

tion to (Z(t))er, -

Now we consider the preliminary test statistic

T (200w - r(A)

- (5 -reon).

whereT},(U) := 0if k — j = 1. We define

T,(6,8") = max (

teT, 1 6<o(t)<d’
for0 < ¢ < ¢ < 1landn € NU {x}, where(Z,7) := (Z,7). Then it follows from
Corollary[9 and Lemmia_11 that for any fixed> 0,

(8.1) lim sup P{7,(0,6) >¢} =0
N0 neNU{oo} { ( ) }
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and
(8.2) lim  sup ]P’{ sup | Zn(s) = Zn(t)| = €} = 0.
N0 neNU{oo} $,6€Ty 1p(s,8)<é

The latter asymptotic continuity condition (8.2) and LenibZamply that for any fixed € (0, 1],
(8.3) T,(0,1) —, Tuo(5,1).
Finally, as in Dimbgen (2002) one can show that

: i ~OO < — =
(8.4) (%l\Hé P{Ts(6,1) < —€} = 0
for any fixede > 0. Combining the three facts (8.1]), (8.3) ahd [8.4) yield$ tha

T, — T(W).

Finally we have to show thak,(U) = T;, + o,(1). Note that
|

|Zn(t)
on(t)

T.(U) = 2;}% F(U(t)z))

with
1/2
ou(t) == (o(®)? = (n+1)7)
where we use the convention thigtd := 0. The inequality| Z,,(t)| < (n + 1)Y/20,(t)? entails

that fort € 7,, with o (t) < 8, := (log(n + 1)/(n + 1))/2,

|Zn(t)| _ F(O’(t)z) < (n + 1)1/2O'n(t) - F(J(t)2)

on(t) -
< (n+1)Y%5, —1(52)
= log(n+1)"2 — (2log(n +1))"/2 + 0(1)
and fort € 7,, with o(t) > 0y,
1Zn@] _ 1Za®)]  _ (0(t) = on(t))|Za(?)]
on(t)  o(t) on(t)o(t)
< (n+ 1) (0(t) - ou(t))
= (n+1)72(o(t) + on(t) !
< (n+1)"Y251
— 0.
Consequently,
T (U) = T, (6n,1) +0,(1) = Tp, + 0,(1). O
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Proof of Lemmal[1l. A proof of condition (i) is given by Dimbgen and Spokoiny (4Q proof of
Theorem 2.1) in a slightly different setting. For the re&leonvenience we repeat the argument
here: For fixedu,§ € (0,1] lete := u?%/2 and definel; := [(j — 1), je] N [0,1] for 1 <
j < m+1, wherem = [e7]. If (a,b),(d/,V/) € T with a,a’ € I; andb, b’ € I, for some
gk € {1,...,m+ 1}, thenp((a,b), (a’,b")) < ud. On the other hands(a,b) < ¢ implies that

(k—j —1)e < 6%, whenced < k — j < 1+ 2/u?. These considerations show that
D(ué,{t €T :o(t) §5},p) < #{(j,k) 1<j<m+1,j<k §j+1+2/u2},
and the latter number is not greater than+ 1)(2 + 2/u?) < 1204572,

Next we verify condition (ii). In order to bound the incremeéti,(s) — Z,(t) in terms of
p(s,t) we consider first the special case that (0,1) andt = (7,1), wherer = 3, for some

k€ {1,...,n}. Note that

n k—1 n
d @Uy-1) = QUu — 1) +2Ugy — 14+ > (U — 1),
i=1 i=1 i=k+1
k—1 k—1 U
Wiy —1) = 22 1 E—1
Z (QU(i) -1) = (Q(U(Z-) — U(k)) —1)4+2(n— ]{T)U(k)
i=k+1 i=k+1
" Uiy — U
= > (2T 1) (- Ugg) + (0= kU,
. 1-Uy
i=k+1 (k)
whence
Zn(0,1) = Zn(0,7)Uky + Zn(7, 1)(1 = Upry) + 32 (n + 1)/ (Ugry — 7).
Consequently,

Z,(0,1) — Z,(1,1)

= (Zn(ovT) — Zn(T, 1)) Uy + 372 (n+1)"2(Ugy — 7)

1=1 i=k+1
4324 12Uy~ 7)
n—1
=z 32+ 1723 U] Uy + 3% (0 + 1)V (U — 1),
i=1

whereUy, ... ,Uy,, Uy, ..., U, , are independent and identically distributed. Note tiiat has a

Beta-distribution with parametetsandn + 1 — k. This entails that

]P’{:I:(U(k) —-7) > c} < exp(—(n +1)U(r ¢, 7')) forall ¢ > 0,
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whereV¥ (z,7) := 7log(r/x) + (1 — 7)log((1 — 7)/(1 — z)) if x € (0,1), and¥(x,7) := oo
otherwise; see Proposition 2.1 of Dumbgen (1998). Eleargmalculations show that(r+c, 1)

is not smaller tham?/(27(1 — 7) + 2¢), whence
n+1)c?
(8.5) P{Uw) —7) = c} < eXp<—7_(_—)>
for all ¢ > 0. Consequently, for any > 0,
P{[3"2n + )20 — 7)| 2 70((0,1), (. 1))}
P{[32(n + 1)U — )| 2 r7'/2}
rrl/?

= IP>{|U( -7l 312(n + 1 )1/2}
2

< 9 ( reT >
= PTG — ) + 1220 (n 1) 212
2
= 2eXp< 121/2 (n+1)7)- 7)
< son(52r)
(8.6) < dexp(-r/4).

Here we used the fact that + 1)7 > 1. Moreover, for any- > 1,

P{‘31/2(n + 1)—1/2 ng_:lﬁ(Ui/)U(k)‘ > 7‘7-1/2}
1=1

n—1
< PSIB/n)V2S B! 12V ply. > p1/271/2
{Jamr =3 b+ {u }
< 2exp(—r/2) +P{U(k) — > 212 T}
< 2exp(—r/2) + exp<_ (n+ 1)(7"1/2 — 1)27' )

27(1 — 7) +2(r¥/2 — 1)71/2
(n+ 1)(r1/2 — 12712
2+2(rt/2 - 1)
(n+ 1)V2(r1/2 — 1)
2r1/2 )

< 2exp(—r/2) + exp(—

< 2exp(—r/2) + exp(—

Note that the probability in question is zerarifs greater thas'/?(n +1)~1/2(n — 1)7~1/2, and
the latter number is smaller tha2n. Thus suppose that< 3'/2n. Then

(n+1D)Y2(r1/2 —1)2 S (3712 4 )12 (412 — 1

2
273 > " ) > 3_1(r1/2 _ 1)2.

Consequently, for alt > 0 and some positive constaftt,

n—1
(8.7) P{(:al/?(n +1)72N Bl U(k)‘ > 7’7'1/2} < Cyexp(—r/Ch).
i=1
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Combining [(8.6) and (817) yields

(8.8) IP’{

2u(0.1) = Zu(70, )| 2 70((0,1), (710, 1)) | < Coexp(—r/Co)

for some positive constartts. Symmetry considerations show that the same bound applies t

s =(0,1) andt = (0,7), i.e.

(8.9) IP’{

Zu(0,1) = Zu(0,7)| = 7p((7kns 1), (0,1))} < Caexp(—r/Co).

In order to treat the general case, note that the procegsesscale as follows: Fdr < J <

K <n+1,

Zo(TIsin, T )
( n( J+7,ms J+k,n) 0<j<h<K—J

=z 0(Tyn, Tkn) (ZK—J(Tj,K—Ja Tk,K—J)) 0<i<h<K_r

whilefor0<j<k< K-Jand0<j <k <K —J,
p((TJ—i-j,ny Titkmn) (TI+i n, TJ+k’,n)>
= U(TJmTKn)P((Tj,K—JaTk,K—J)a(Tj’,K—JaTk’,K—J))'
This entails that the bounds (8.8) ahd {8.9) can be extenslémllaws:

P{|Zu(,0) = Zu(u, )| 2 rp((u,0), (1)}
(8.10) < Cyexp(—r/Cy)
IP’{ Zn(u,v") — Zpy (! 0| > rp((u,v'), (u’,v’))}

for arbitrary (u, v), (v/,v") € T, whereu < «’. But note that

Zn(u,v) = Zpy (W) = (Zn(u,v) = Zyp(u,v)) + (Zp(u,v') — Zo(W/,0))) = A+ Ay

and
p((u,v),(u/,’u/))2 = p((u,v),(u,v/))2+p((u,v/),(u/,’u/))2 = p%"i_p%'

Consequently,
]P’{\Al + No| > r(pf + P%)m} < P{’Al + Ag| > 1272 (py + 02)}
< ZZ:P{’AZ‘ > r27H2p;}
< ;:C’lg exp(—71/(2Cy)).
Hence condition (ii) is satisfied with® = 2C5.
Finally, according to Propositidd & exp(r3(U;)) < exp(r?/6) for all » € R, whence
Eexp(ra(t)_lZn(t)> < exp(r?/2) forr eR,t € T,.

Then a standard argument involving Markov’s inequalitydsecondition (iii). O
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Proof of Lemmal[l2. Recall the representatidii;, — U,y = E;/S, with independent, stan-

dard exponential variables; andS,, = Z;L;l E;. Starting from[(2.]1) one can write

k—j —1/2 U 1/2

’ Uy~ UgSn " EZ (=)

Thn — Tjn N+ 1 ~

= X Zn(T'mTkn)a
Usy = Uy Sn ’
where

~ n+1 e T _5
Zn(ijTkn) = 31/2 TL +1 12 Zﬁ( in ~ Tin >(1 - E )

— Tin
andd, = (2(n + 1))~!. The centering of the variables; is possible because the sum of the
coefficients5((¢ — j — 1/2)/(k — 7)), j < i < k, is zero. SinceS,/(n + 1) —, 1 and
maxi<i<n \U(,-) — Tin| —p 0, it suffices to consider the stochastic procéssin place of Z,,.
But then the assertion follows from the multivariate vemsad Lindeberg’s Central Limit Theo-

rem and elementary covariance calculations. O

8.3 Proofs for Sectiori 4

At first we prove the lower bounds comprising Theofdm 3 (bFbk following lemma is a surro-
gate for Lemma 6.2 of Dimbgen and Spokoiny (2001) in ordeireat likelihood ratios and i.i.d.

data.

Lemma 13 Let X1, X5, ..., X, be ii.d. with distributionP on some measurable spate Let
fi,-.., fm be probability densities with respect o such that the set8; := {f; # 1} are
pairwise disjoint, and defin; := [[;", f;(X;). Then

EMfJE:Lj—l‘—eO
j=1
provided thain — oo, A, < C(logm)~/? for some fixed constart and

Viogm(1- 120 o

2logm

1/2
whereA, := max; sup, |fj(z) — 1| andA, := max; (f(f] — 1)2dP) / .

Proof of Lemmal[13. The likelihood ratio statisticd; are not stochastically independent, but

conditional onv = (v;)7%; with v; := #{i : X; € B;} they are. Furthermoréi(L;) = 1 =
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E(L; | v). Thus a standard truncation argument shows that foeany) and0 < v < 1,
(o 1]
J

< mVar(Y 1, < em} L ‘ 1/)1/2 +2m S E(1Ly > em} L ‘ v)
J

J

IN

m! (ZE(l{Lj < em} L2 ‘ 1/))1/2 +2m! ZE(l{Lj > em}L; ( 1/)

J
m_l (Z E(Eij ‘ I/))l/2 -+ 25_7m_(1+7) Z E(L;+7 ‘ I/)
J J

€2 4 2e V(1Y) Z E(le.'w ‘ V).
J

IN

Thus it suffices to show that
inf  max m_'yE(LJI-'M) — 0

~e(0,1] J

under the stated conditions on, A, andAy. Note thatE(le.ﬂ) equalsE(f;(X1)*")", and

elementary calculus reveals that
A+ < 1+ A +7)y+v(1+9)97/2+3lyl> for|y| < 1.
HenceE(f;(X1)™7) <1+ (1 +7)A3/2 + 3vAA% and
max mE(L) < (1 (1 +7)AZ/2 + 37AOOA§>n

(8.11) < exp(—v logm +v(1 +7)nA3/2 + 37AoonA§>.

Suppose that A2 < 2(1 — b,,) log m, where(0, 1) > b, — 0 andb?, logm — oo asm — oo.
Then the right hand side df (8111) does not exceed

eXp(—V(l — (1 +7)(1 = b)) logm + 67Ax log m)

b2, logm 1 . b
< __Zm e /2 - m
< eXp( 20 = by + 3Cby,(logm) > if 50— b))
— 0 asm — oo. d

Proof of Theorem[3 (b). Leté, := c,+/log(e/d,)/n, and setfy := 1 1) and
foj(@) = fo(x) + Uz € L,;}6,67%%(x — ( — 1/2)8,)

forj=1,...,m, = [1/0,] andl,; := [(j — 1)d,, jo,). Eachf,; is a probability density with

respect to the uniform distribution df, 1) such that the corresponding distributidp; satisfies
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Fj(Inj) = 6, andinfy, ;Lj . |Inj|2/\/Fnj(Inj) = Cp, I.€. fn; € F(dp,¢En). Thus, for any test
On(X) With E¢ ¢, (X) < a4 0(1),

inf  Erpn(X)—a < m,ty Ep 6,(X)—a
P ) Fon(X) ; Fay @ (X)

- Ej ((mnli%— - 1)%(}()) +o(1)
p=

my' > Lnj — 1( + o(1),
j=1

IN

IEfo

whereL,; := [[L, f»;(X;). The latter expectation tends to zero by Lenima 13.&pk 2 /12,
andA,, = é,0,"/%/2 is less than/6log(e/d,)/(n0,) = O(log(n)~1/2) = O(log(my)~1/2),
because:s,, > log(n)? and hencen,, = 6, + O(1) = o(n). Finally,

2 2
m<1_ nAj ) _ 24logmy, cz log(e/dy)
2log my, 24+/log my,

V2A(VZ — ¢)v/log(e/5,)(1 + o(1)) + o(1)

Y

tends to infinity by assumption aofj, andc,,. O

Proof of Theorem[3 (c). We may assume w.l.0.g. that the left endpoinf,pfs 0. Now we define

probability densities;,, andg,, via

falz) = S—:‘l{xe 0,11, 1/6,]},
B Vb
@) = fule) + S~ LI/ € 1),

Note thatg,, > 0 becausé,, < 2v/nd,,. Furthermoref,, is non-increasing o, while g,, belongs

to F (I, 0n, bn/\/0).

Now we apply LeCam’s notion of contiguity (cf. LeCam and Yah§90, Chapter 3): If a test
¢n(X) satisfiesE ¢, ¢, (X) < a, thenlimsup Ey, ¢,(X) < 1, provided that

(8.12) L5, (D 10g(ga/ £)(X)) —u @
1=1

for some probability measui@ on the real line such thgte*Q(dz) = 1.

Note that(, (z;;l log (gn/ fn)(XZ-)) equals the distribution of 2" log(1 + ¢,V;) with
cn = by/(24/nd,) € [0,1] and independent random variablds,, V4, V5, V3, ...such that
N,, ~ Bin(n, d,) andV; ~ Unif[—1, 1].
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Suppose first thatd,, -~ oo. By extracting a subsequence, if necessary, we may assume
thatnd, — A € [0,00) and¢, — ¢ € [0,1]. Then [8.12) holds for the distributio@ :=
ZZioPA(k)ﬁ(Zf:1 log(1 + cV,-)) with the Poisson weights, (k) := e *\*/k!. But this mea-
sureQ satisfies| e*Q(dz) = 1, whencelimsupE,, ¢,(X) < 1. This contradiction shows that
no, — 00

Secondly suppose that,, — oo butb, /4 oco. We assume w.l.0o.g. that, — b € [0, 00).
Lindeberg’s Central Limit Theorem and elementary calcoiet yield [8.12) with gaussian dis-
tribution @ = N(—b%/24,b%/12). Again the limit distribution satisfie§ e*Q(dz) = 1. Hence
b, — oo. O

Theorenl 4 concerns our specific multiscale procedure. ltbsilderived from the following

basic result.

Lemma 14 For a bounded open intervabnds € (0,1] let f be adensity itF (1,6, D\/log(e/d)/n)
with D > +/24. Then
no > Dmax(log(e/é),KIog(en))

with D := D?/4 andK > 1 — (log D +log log(en)) /log(en). Suppose that

Nex: Fn(a) +1 7 +2/(nd)
(8.13) D > 1o 1_7_2/(715)( re) | T0) )

for certain numbers € (0,1), v € (0,1/2] andn > 0. Then

P<D+(a) contains no interval C I )

< exp(—ndy?/2) + 2exp(—D+/ndlog(e/d) € 2/8) + exp(—n°/2).

Proof of Lemmal[I4. The inequalitie2v/6 > H(f,I) > D/log(e/d)/n entail thatns >
Dlog(e/5). Now writend = DK log(en) for someK > 0. In case ofK < 1,

DKlog(en) > Dlog(e/d) = ﬁ(log(en) —log(DK log(en)))

log D + log log(en) )

> Dlog(en) (1 - Tog(en)

and dividing both sides by log(en) yields the asserted lower bound f&.

The numberV := #{i : X(; € I} has distributionBin(m, §) with m € {n,n + 1,n + 2}.
Consequently it follows from Chernov’s exponential inégydor binomial distributions (cf. van

der Vaart and Wellner 1996, A.6.1) that
P(N < (1 —7)né) < exp(—ndy?/2).
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SinceD > /24 by assumption, we can conclude that> D?/4 > 6, so that(1 — y)nd > 3. In
case ofV > 3letj := min{i : X; € I} andk := max{i : X;) € [},i.e.N = k—j+1. Inorder
to bound the probability ofZ;|/|I| < 1—¢, we write] = (a, b) and defind ) := (a, a+¢[1]/2],
I(r) = [b — 6|I|/2, b) Then

v

nF(Iiy) > ninf f'-|Iy*/2 = nH(f, )V /8

Y

D+/ndlog(e/d) €*/8,
whence

P(N < Lor|Zl/|I] <1-¢)
< P(no observations i) + P(no observations id,))

< 2exp(—D+/nélog(e/d) €/8) .

From now on we always assume thet > (1 — v)nd and|Z;;|/|I] > 1 — €. With P*() we
denote conditional probabilities given these two inedigai The definition ofD™ () implies
thatP* (D™ () contains naJ C I) is not greater thai?* (7},(X) < ¢jx(cr)). On the other hand,

it follows from Propositio b that

P2 N 22) < exp(ont/2) foranyy >0,

P (Tjr(X) < -

whereC := H(f,Z;)/+/F(Z;x). Thus it suffices to show that

C(N -2 N —2
%—U 3 > cjp(a).

By definition of c;; () this is equivalent to

& N -2 S 1ﬂ(N—l
n+1

== > )+ﬁn(a)+n.

But the left hand side is not smaller than

(1—e)2H(f,I) |[N—-2 - (1 —€)2H(f, 1)\/(1 —~)nd —2

NE 12 - 126
(1-e/T—7
> r<6>+nn<a>+n+%

with 4 := v + 2/(nd), wheread’((N — 1)/(n+ 1)) <T'((N — 2)/n) is not greater than
['(6(1=%)) < I'(6) —log(1 —7)/T'(6) < I'(6) +7/T'(9). O
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Proof of Theorem[4. Note first that[(4.R) and the first part of Lemma 14 entail that
nd, > C?/4 > 6 and nd, > (C*/4+o(1))logn.

In particular,#Z,, < 6,! = o(n).

We apply Lemmal4 tg = f,, and all intervald € Z,,. Precisely, we shall introduce suitable
numbersy,, € (0,1/2], ¢, € (0,1) andn,, ; > 0. According to Lemma_14, the probability that
some! € Z,, does not cover an interval fro@* («) is bounded by
(8.14) #In(exp( nén%/Q +2exp( C'/ndylog(e/oy) /8 > + Z exp(—n,2171/2),

1€,

provided that

V2b,, V24 K (@) + M1 n
C(1+ waqm) 2 (1= eI (S Emmr TR

forall I € Z,,, wheres,, := v, + 2/(nd,) = O(1). Note also thak, (a) = O(1) by virtue of
Theoren 2. Hence the preceding requirement is met if foryesenstant4 > 0 and sufficiently

largen,

\/ibn \/ﬂ A+ M, I

(8.15) C(1+m> = (1—e)2VI-7n <1+ T(Fu (1))

) forall I € Z,,.

In setting (i) we use constants, = v € (0,1/2], ¢, = € € (0,1) to be specified later and

define

i = /210g(L/Fy (1) + by < T(Fu(I)) + /bn.

Sinceé log(e/§) is nondecreasing it € (0, 1], it follows from nd,, > (C%/4 + o(1)) log n that
noy log(e/d,) > (C/2+ o(1)) logn.
Hence the bound in(8.14) equals

o(1) - (exp(—(szyz/S —1+0(1))logn) + exp(—(C?*/16 — 1 + o(1)) log n))
+ Z F,.(I)exp(—by/2)

I€T,
and tends to zero, provided that> /8/C ande > 4/C. Moreover, the right hand side ¢f (8]15)
is not greater than

V24
(1—¢€)2y/1—~—0(1)

A+\/E>  2v24+0(1) o(b

)
et immy) = aavi= EE )
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Hence the conclusion for setting (i) is correct if, say; 4/(2v/24) = 1/1/6,v = v/8/(2v/24) =
v/1/12, while C'is strictly larger than

2v/24
—(l—e)2m < 34.
In settings (ii—iii)) we define
Yo = (2log(D#L,)/(néy))"?

€n = ((8/C)log(D#In)/\/m>l/27

{\/2 log(1/Fn (1)) + by in setting (ii),

Mn, I bn/D in setting (iii),

for some (large) constad®? > 1. Then the bound in(8.14) is not greater than

exp(—by/2) in setting (i) |
3D+ { exp(log #I,, — b2 /(2D?))  in setting (i) } = 3/D +o(1).

Thus it remains to verify (8.15).
Note thaty,, — 0 by assumption. Moreover, singeZ,, < 6!, the termlog(D#1Z,) is not

greater tharog(D/6,)"/? log(D#I,)"/?, whence

1/4

en < /8/C(log D)Y*(log(D#Z,,)/(né,)) " — 0.

Hence in setting (ii) the right hand side 6f (8.15) is not ¢ge#an

o(bn)
so that[(8.1b) is satisfied for sufficiently largeif C' > 21/24. In setting (iii), the right hand side
of (8.18) is not greater than

A+ bn/D)

\/ﬂ(1 + O +en) + (1+ 0() Tt )

According to the first part of Lemniall4g, > (C?/4)log(e/s,) > (C?/8)I'(F,(I))? for all
IeZ,. Thus

3 O (log(D#1,)'/?) o(by,)
Yo+ €n < = forall I € Z,.
[(F(I)) [(Fn(1))
Consequently[(8.15) is satisfieddf > 1/24. O
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