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Abstract
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1 Introduction

An important aspect in the analysis of univariate data is inference about qualitative characteristica

of their distribution functionF or densityf , such as the number and location of monotone or

convex regions, local extrema or inflection points. This issue has been addressed in the literature

using a variety of methods. Silverman (1981), Mammen et al. (1992), Minnotte and Scott (1993),

Fisher et al. (1994), Minnotte (1997), Cheng and Hall (1999)and Chaudhuri and Marron (1999,

2000) use kernel density estimates. Excess masses and related ideas are employed by Hartigan

and Hartigan (1985), Hartigan (1987), Müller and Sawitzky(1991), Polonik (1995) and Cheng

and Hall (1998). Good and Gaskins (1980) and Walther (2001) use maximum likelihood methods,

whereas Davies and Kovac (2004) employ the taut string method. In the present paper, a qualitative

analysis of a densityf means simultaneous confidence statements about regions of increase and

decrease as well as local extrema. Such simultaneous inference has been treated in the literature

only sparingly. Also, the methods available so far provide only approximate significance levels as

the sample size tends to infinity and rely on certain regularity conditions aboutf .

In this paper we introduce and analyze a procedure that provides simultaneous confidence

statements with guaranteed given significance level for arbitrary sample size. The approach is

similar to Dümbgen (2002), who used local rank tests in the context of nonparametric regres-

sion, or Chaudhuri and Marron’s (1999, 2000) SiZer, where kernel estimators with a broad range

of bandwidths are combined. Here we utilize test statisticsbased on local order statistics and

spacings. The use of spacings for nonparametric inference about densities has a long history.

For instance, Pyke (1965) describes various goodness-of-fit tests based on spacings, and Roeder

(1992) uses such tests for inference about normal mixtures.Confidence bands for an antitonic

density on[0,∞) via uniform order statistics and spacings have been constructed by Hengartner

and Stark (1995) and Dümbgen (1998).

In Section 2 we define local spacings and related test statistics which indicate isotonic or

antitonic trends off on certain intervals. Then a deterministic inequality (Proposition 1) relates

the joint distribution of all these test statistics in general to the distribution in the special case of

a uniform density. This enables us to define a multiple test about monotonicity properties off .

Roughly speaking, we consider all intervals whose endpoints are observations. The rationale for

using and combining statistics corresponding to such a large collection of (random) intervals is

that the power for detecting an increase or decrease off is maximized when the tested interval is

close to an interval on whichf has such a trend. In that context we also discuss two important
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differences to Chaudhuri and Marron’s SiZer map.

In Section 3 we describe a particular way of calibrating and combining the single test statistics.

Optimality results in Section 4 show that in many relevant situations, the resulting multiscale test is

asymptotically as powerful in the minimax sense as any procedure can essentially be for detecting

increases and decreases off on small intervals as well as on large intervals. Thus neither the

guaranteed confidence level nor the consideration of many intervals simultaneously results in a

substantial loss of power. In addition we prove that our procedure is able to detect and localize an

arbitrary number of local extrema under weak assumptions onthe strength of these effects.

In Section 5 we consider a densityf on(0,∞) and modify our multiple test in order to analyze

monotonicity properties of the failure ratef/(1 − F ). It is well-known that spacings are a useful

object in this context; see e.g. Proschan and Pyke (1967), Bickel and Doksum (1969) and Barlow

and Doksum (1972). While these authors use global test statistics, Gijbels and Heckman (2004)

localize, standardize and combine such tests, albeit without calibrating the various scales. Hall and

Van Keilegom (2002) use resampling from an appropriately calibrated null distribution in order

to achieve better sensitivity to detecting local effects, which leads to an asymptotically valid test

procedure without explicit information about the locationof these effects. Walther (2001) uses a

multiscale maximum likelihood analysis to detect local effects.

Section 6 illustrates the multiscale procedures with two examples and introduces a graphical

display. In Section 7 we derive auxiliary results about weighted maxima and moduli of continuity

of stochastic processes. These results generalize Theorem6.1 of Dümbgen and Spokoiny (2001)

and are of independent interest. Further proofs and technical arguments are deferred to Section 8.

To fix notation for the sequel, suppose thatY1, Y2, . . . , Ym are independent random variables

with unknown distribution functionF and (Lebesgue) densityf on the real line. In order to infer

properties off from these data we consider the corresponding order statisticsY(1) < Y(2) < · · · <

Y(m). In some applications,F is known to be supported by an interval[a,∞), (−∞, b] or [a, b],

where−∞ < a < b < ∞. In that case we add the pointY(0) := a or Y(m+1) := b or both to

our ordered sample, respectively. This yields a data vectorX = (X(i))
n+1
i=0 with real components

X(0) < X(1) < · · · < X(n+1), wheren ∈ {m − 2,m − 1,m}. For 0 ≤ j < k ≤ n + 1 with

k−j > 1, the conditional joint distribution ofX(j+1), . . . ,X(k−1), givenX(j) andX(k), coincides

with the joint distribution of the order statistics ofk − j − 1 independent random variables with

density

fjk(x) :=
1{x ∈ Ijk}f(x)

F (X(k)) − F (X(j))
,
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whereIjk stands for the interval

Ijk := (X(j),X(k)).

Thus(X(j+i))
k−j
i=0 is useful in order to infer properties off on Ijk. The multiple tests to follow

are based on all such tuples.

2 Local spacings and monotonicity properties off

Let us consider one particular intervalIjk and condition on its endpoints. In order to test whether

f is non-increasing or non-decreasing onIjk we introduce the local order statistics

X(i;j,k) :=
X(i) − X(j)

X(k) − X(j)
, j ≤ i ≤ k,

and the test statistic

Tjk(X) :=

k−1
∑

i=j+1

β(X(i;j,k)),

where

β(x) := 1{x ∈ (0, 1)}(2x − 1).

This particular test statisticTjk(X) appears as a locally most powerful test statistic for the null

hypothesis “λ ≤ 0” versus “λ > 0” in the parametric model, where

fjk(x) =
1{x ∈ Ijk}
X(k) − X(j)

(

1 + λ
( x − X(j)

X(k) − X(j)
− 1

2

))

.

Elementary algebra yields an alternative representation of our single test statistics:

(2.1) Tjk(X) = −(k − j)

k
∑

i=j+1

β
( i − j − 1/2

k − j

)(

X(i;j,k) − X(i−1;j,k)

)

.

ThusTjk(X) is a weighted average of the local spacingsX(i;j,k) − X(i−1;j,k), j < i ≤ k.

Suppose thatf is constant onIjk. Then the random variableTjk(X) is distributed (condition-

ally) as

(2.2)
k−j−1
∑

i=1

β(Ui)

with independent random variablesUi having uniform distribution on[0, 1]. Note that the latter

random variable has mean zero and variance(k − j − 1)/3. However, iff is non-decreasing or

non-increasing onIjk, thenTjk(X) tends to be positive or negative, respectively. The following

proposition provides a more general statement, which is thekey to our multiple test.
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Proposition 1 DefineU = (U(i))
n+1
i=0 with componentsU(i) := Fo(X(i)), whereFo is the dis-

tribution function corresponding to the densityf0,n+1. ThenU(1), . . . , U(n) are distributed as the

order statistics ofn independent random variables having uniform distributionon [0, 1], while

U(0) = 0 andU(n+1) = 1. Moreover, for arbitrary integers0 ≤ j < k ≤ n + 1 with k − j > 1,

Tjk(X)

{

≥ Tjk(U ) if f is non-decreasing onIjk,

≤ Tjk(U ) if f is non-increasing onIjk.

This Proposition suggests the following multiple test: Suppose that for a given levelα ∈ (0, 1)

we know constantscjk(α) such that

(2.3) P

{

|Tjk(U )| ≤ cjk(α) for all 0 ≤ j < k ≤ n + 1, k − j > 1
}

≥ 1 − α.

Let

D±(α) :=
{

Ijk : ±Tjk(X) > cjk(α)
}

.

Then one can claim with confidence1−α thatf must have an increase on every interval inD+(α),

and it must have a decrease on every interval inD−(α). In other words, with confidence1−α we

may claim that for everyI ∈ D±(α) and for every version off there exist pointsx, y ∈ I with

x < y and±(f(y) − f(x)) > 0.

Combining the two familiesD±(α) properly allows to detect and localize local extrema as

well: Suppose for instance thatI1, I2, . . . , Im ∈ D+(α) andD1,D2, . . . ,Dm ∈ D−(α) such that

I1 ≤ D1 ≤ I2 ≤ D2 ≤ · · · ≤ Im ≤ Dm, where the inequalities are to be understood elementwise.

Under the weak assumption thatf is continuous, one can conclude with confidence1 − α thatf

has at leastm different local maxima andm − 1 different local minima.

Note that our multiscale test allows to combine test statisticsTjk(X) with arbitrary ‘scales’k−
j. This is an advantage over Chaudhuri and Marron’s (1999, 2000) SiZer map, where statements

aboutmultiple increases and decreases are available only at a common bandwidth. This is due to

the fact that these authors use kernels with unbounded support and rely on a particular variation

reducing property of the gaussian kernel which holds only for an arbitrary but global bandwidth.

Another consequence of the kernel’s unbounded support is that localizing trends off itself is not

possible.

3 Combining the single test statisticsTjk

It remains to define constantscjk(α) satisfying (2.3). Note first thatTjk(U) has mean zero

and standard deviation
√

(k − j − 1)/3. Motivated by recent results of Dümbgen and Spokoiny
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(2001) about multiscale testing in gaussian white noise models we consider the test statistic

Tn(X) := max
0≤j<k≤n+1 : k−j>1

(

√

3

k − j − 1
|Tjk(X)| − Γ

(k − j

n + 1

))

,

whereΓ(δ) := (2 log(e/δ))1/2 . This particular additive calibration for various scales is necessary

for the optimality results to follow. Without the termΓ((k−j)/(n+1)), the null distribution would

be dominated by small scales, as there are many more local test statistics on small scales than on

large scales, with a corresponding loss of power at large scales. The next theorem states that

our particular test statisticTn(U ) converges in distribution. Unless stated differently, asymptotic

statements in this paper refer ton → ∞.

Theorem 2

Tn(U ) →L T (W ) := sup
0≤u<v≤1

( |Z(u, v)|√
v − u

− Γ(v − u)
)

,

where

Z(u, v) := 31/2

∫ v

u
β
(x − u

v − u

)

dW (x),

andW is a standard Brownian motion on[0, 1]. Moreover,0 ≤ T < ∞ almost surely.

Consequently, ifκn(α) denotes the(1 − α)–quantile ofL(Tn(U)), thenκn(α) = O(1), and

the constants

cjk(α) :=

√

k − j − 1

3

(

Γ
(k − j

n + 1

)

+ κn(α)
)

satisfy requirement (2.3). For explicit applications we donot use the limiting distribution in The-

orem 2 but rely on Monte-Carlo simulations ofTn(U) which are implemented easily.

4 Power considerations

Throughout this section we focus on the detection of increases off by means ofD+(α). Analo-

gous results hold true for decreases off andD−(α).

For any bounded open intervalI ⊂ R we quantify the isotonicity off on I by

inf
I

f ′ := inf
x,y∈I :x<y

f(y) − f(x)

y − x

= inf
x∈I

f ′(x) if f is differentiable onI.

Now we analyze the difficulty of detecting intervalsI with infI f ′ > 0. An appropriate measure

of this difficulty turns out to be

H(f, I) := inf
I

f ′ · |I|2/
√

F (I),
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where|I| denotes the length ofI. Note that this quantity is affine equivariant in the sense that

it does not change whenf and I are replaced byσ−1f(σ−1(· − µ)) and{µ + σx : x ∈ I},

respectively, withµ ∈ R, σ > 0. For given numbersδ ∈ (0, 1] andη ∈ R, we define

F(I, δ, η) :=
{

f : F (I) = δ,H(f, I) ≥ η
}

and

F(δ, η) :=
⋃

bounded intervals I

F(I, δ, η) .

Note thatf(x) ≥ infI f ′ · (x − inf(I)) on I, so thatF (I) ≥ infI f ′ · |I|2/2. Hence

(4.1) H(f, I) ≤ 2
√

F (I).

ThusF(I, δ, η) andF(δ, η) are nonvoid if, and only if,η ≤ 2
√

δ.

Theorem 3 Let δn ∈ (0, 1] and0 < cn <
√

24 < Cn.

(a) Let In be a bounded interval andfn a density inF
(

In, δn, Cn

√

log(e/δn)/n
)

. Then

Pfn

(

D+(α) contains an intervalJ ⊂ In

)

→ 1 ,

provided that
(

Cn −
√

24
)√

log(e/δn) → ∞.

(b) Let φn(X) be any test with levelα ∈ (0, 1) under the null hypothesis thatX is drawn from a

nonincreasing density. If(log n)2/n ≤ δn → 0, then

inf
f∈F

“

δn,cn

√
log(e/δn)/n

”

Efφn(X) ≤ α + o(1) ,

provided that
(√

24 − cn

)√

log(e/δn) → ∞.

(c) Let In be any interval andbn some number in[0, 2
√

nδn]. If φn(X) is any test with level

α ∈ (0, 1) under the null hypothesis that the density is nonincreasingon In, then

inf
f∈F(In,δn,bn/

√
n)

Efφn(X) → 1

implies thatbn → ∞ andnδn → ∞.

Analogous results hold true for detecting a decrease off . Theorem 3 establishes that our

multiscale statistic is optimal in the asymptotic minimax sense for detecting an increase on an

unknown interval, both in the case of an increase occuring ona small scale (δn ց 0) and when

the increase occurs on a large scale (lim inf δn > 0).
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In the case of small scales, a comparison of (a) and (b) shows that there is a cut-off for the

quantityH(f, I) at
√

24 log(e/δn)/n: If one replaces the factor24 with 24+ ǫn with ǫn ց 0 suf-

ficiently slowly, then the multiscale test will detect and localize such an increase with asymptotic

power one, whereas in the case24 − ǫn no procedure can detect such an increase with nontrivial

asymptotic power.

In the case of large scales, one may replaceF
(

In, δn, Cn

√

log(e/δn)/n
)

in (a) with the

family F
(

In, δn, C̃n/
√

n
)

, whereC̃n → ∞. Then a comparison of (a) and (c) shows again our

multiscale test to be optimal, even in comparison to tests using a priori knowledge of the location

and scale of the potential increase. Hence searching over over all (large and small) scales does

not incur a serious drawback. In the case of small scales, (a)and (c) together show that ignoring

prior information about the location of the potential increase leads to a penalty factor of order

o
(√

log(e/δn)
)

= o
(√

log n
)

.

Example 1. Let us first illustrate the theorem in the special case of a fixed continuous densityf

and a sequence of intervalsIn converging to a given pointxo, where we use the abbreviation

ρn := log(n)/n.

Example 1a. Let f be continuously differentiable in a neighborhood ofxo such thatf(xo) > 0

and f ′(xo) > 0. If |In| = Dnρ
1/3
n with Dn → D > 0, then δn := F (In) is equal to

Dnf(xo)ρ
1/3
n (1 + o(1)) and infIn f ′ = f ′(xo) + o(1). Hence the quantityH(f, In) may be

written asD3/2
n f ′(xo)f(xo)

−1/2ρ
1/2
n (1+o(1)), while

√

24 log(e/δn)/n = 81/2ρ
1/2
n +o(1). Con-

sequently, the conclusion of Theorem 3 (a) is correct if

Dn ց
(

8f(xo)/f
′(xo)

2
)1/3

sufficiently slowly.

Example 1b.Letf be differentiable on(xo,∞) with f(xo) = 0 andf ′(xo+h) = γhκ−1(1+o(1))

ash ց 0, whereγ, κ > 0. If In =
[

xo + C1ρ
1/(κ+1)
n , xo + C2ρ

1/(κ+1)
n

]

with 0 ≤ C1 < C2,

then the conclusion of Theorem 3 (a) is correct, provided that min(Cκ−1
1 , Cκ−1

2 ) andC2/C1 are

sufficiently large.

Example 1c.Letf be twice continuously differentiable in a neighborhood ofxo such thatf(xo) >

0, f ′(xo) = 0 and±f ′′(xo) 6= 0. Now take the two intervalsI(ℓ)
n :=

[

xo − C2ρ
1/5
n , xo − C1ρ

1/5
n

]

andI
(r)
n :=

[

xo + C1ρ
1/5
n , xo + C2ρ

1/5
n

]

with 0 < C1 < C2. If C1 andC2/C1 are sufficiently

8



large, then it follows from Theorem 3 (a) and its extension tolocally decreasing densities that

P
(

D± contains someJ ⊂ I(ℓ)
n andD∓ contains someJ ⊂ I(r)

n

)

→ 1 .

Thus our multiscale procedure will detect the presence of the mode with asymptotic probability

one and furthermore localize it with precisionOp

(

(log(n)/n)1/5
)

. Up to the logarithmic factor,

this is the optimal rate for estimating the mode (cf. Hasminskii 1979).

Example 2. Now let I be a fixed bounded interval, and consider a sequence of densitiesfn such

thatsupx∈I |fn(x) − fo| → 0 for some constantfo > 0. Here the conclusion of Theorem 3 (a) is

correct, provided that
√

n · inf
I

f ′
n → ∞.

The next theorem is about the simultaneous detection of several increases off .

Theorem 4 Let f = fn, and letIn be a collection of non-overlapping bounded intervals such that

for eachI ∈ In,

(4.2) H(fn, I) ≥ C
(
√

log(e/Fn(I)) + bn

)

/
√

n

with constants0 ≤ bn → ∞ andC ≥
√

24. Then

Pfn

(

for eachI ∈ In, D+(α) contains an intervalJ ⊂ I
)

→ 1

in each of the following three settings, whereδn := minI∈In Fn(I):

(i) C ≥ 34.

(ii) C > 2
√

24 and nδn/ log(e#In) → ∞.

(iii) C =
√

24 and nδn/ log(e#In) → ∞, log #In = o(b2
n).

It will be shown in Section 8 that (4.2) entailsnδn ≥
(

C2/4 + o(1)) log n. In particular,

#In = o(n). Moreover, Theorem 3 (a) follows from Theorem 4 by considering setting (iii) with

In consisting of a single intervalIn.

A comparison with Theorem 3 (a) shows that the price for the simultaneous detection of an

increasing number of increases or decreases is essentiallya potential increase of the constant
√

24.
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The proof of Theorem 4 rests on an inequality involving the following auxiliary functions: For

c ∈ [−2, 2] andu ∈ [0, 1] let

gc(u) := 1 + c(u − 1/2).

This defines a probability density on[0, 1] with distribution function

Gc(u) := u − cu(1 − u)/2.

Proposition 5 DefineU = (U(i))
n+1
i=0 as in Proposition 1. For arbitrary integers0 ≤ j < k ≤

n + 1 with k − j > 1 it follows from infIjk
f ′ ≥ 0 that

Tjk(X) ≥
k−1
∑

i=j+1

β
(

G−1
S (U(i;j,k))

)

with S :=
H(f,Ijk)
√

F (Ijk)
.

Moreover, for any fixedc ∈ [−2, 2] andU ∼ Unif[0, 1],

Eβ(G−1
c (U)) = c/6 , Var

(

β(G−1
c (U))

)

≤ 1/3 ,

while

E exp
(

tβ(G−1
c (U))

)

≤ exp(ct/6 + t2/6) for all t ∈ R .

5 Monotonicity of the failure rate of f

To investigate local monotonicity properties of the failure ratef/(1 − F ), such as the presence of

a ‘burn-in’ period or a ‘wear-out’ period, we consider

Wi :=
i
∑

k=1

Dk

/

n+1
∑

k=1

Dk, i = 0, . . . , n + 1,

whereDi := (n − i + 2)(X(i) − X(i−1)), i = 1, . . . , n + 1, are the normalized spacings. Here

X(0) < X(1) < · · · < X(n+1) are the order statistics ofn + 2 or n + 1 i.i.d. observations from

F , in the latter case withX(0) being the left endpoint of the support ofF . The next proposition

shows that the problem can now be addressed by applying the methodology of Section 2 to the

transformed data vectorW = (Wi)
n+1
i=0 .

Proposition 6 SetX ′
(i) := − log(1 − F (X(i))), i = 0, . . . , n + 1, and defineW ′ = (W ′

i )
n+1
i=0

analogously as above withX ′ in place ofX. ThenW
′ =L U , and for arbitrary integers0 ≤ j <

k ≤ n + 1 with k − j > 1,

Tjk(W )

{

≥ Tjk(W
′) if the failure rate off is non-decreasing onIjk,

≤ Tjk(W
′) if the failure rate off is non-increasing onIjk.
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6 Graphical displays and examples

We first illustrate the methodology with a sample of sizem = 300 from the mixture distribution

F = 0.3 · Gamma(2) + 0.2 · N (5, 0.1) + 0.5 · N (11, 9),

whereGamma(2) denotes the gamma distribution with densityg(x) = xe−x on (0,∞). Figure 1

depicts the densityf of F .

Figure 1: Density of0.3 · Gamma(2) + 0.2 · N (5, 0.1) + 0.5 · N (11, 9)

Figure 2 gives a line plot of the data and a visual display of the multiscale analysis: The

horizontal line segments above the line plot depict all minimal intervals inD+(0.1), those below

the line plot depict all minimal intervals inD−(0.1). Here we estimated the quantileκm−2(0.1)

to be1.518 in 9999 Monte Carlo Simulations, where we restricted(j, k) in the definition ofT

to index pairs(j, k) such that(k − j)/(m + 1) ≤ 0.34. For example, we can conclude with

simultaneous confidence 90% that each of the intervals(0.506, 3.887) and(5.022, 5.841) contains

a decrease, and each of the intervals(3.983, 4.882) and(5.841, 10.307) contains an increase. As

these four intervals are disjoint, we can conclude with confidence 90% that the density has at least

three modes.

A referee reports that the taut string method of Davies and Kovac (2004) found three modes

in about 82% of the cases. Our method finds three modes in about39% and exactly two modes in

11



Figure 2: Minimal intervals inD+(0.1) (top) andD−(0.1) (bottom).

about 50% of the cases. However, the latter method also allows to localize the modes. Figure 3

provides a diagnostic tool for this type of inference. Each horizontal line segment, annotated by

‘+’ or ‘-’, depicts an interval in someD+(α), resp.D−(α). In each row, the depicted intervals are

disjoint with an alternating sequence of signs. The number in the first colunm gives the smallest

significance level at which this sequence of alternating signs obtains, and the plot shows all such

sequences that have a significance level of 10% or less. The intervals depicted in a given row

are chosen to have the smallest right endpoint among the minimal intervals at the stated level.

Consecutive intervals are plotted with a small vertical offset to better visualize their endpoints.

For example, figure 3 implies a p-value of less than 1% for the existence of at least two modes,

and a p-value of 7.33% for the existence of at least three modes.

Our second example concerns the detection of an increase in afailure rate. Gijbels and Heck-

man (2004) compare a global test and four versions of a localized test in a simulation study.

A sample of sizem = 50 is drawn from a distribution whose hazard rateh(t) is modeled via

log h(t) = a1 log t+β(2πσ2)−1/2 exp{−(t−µ)2/(2σ2)}. Table 1 shows the power of our proce-

dure from Section 5 for the choices of parametersa1, β, σ used by Gijbels and Heckman (2004).

The cases withβ = 0, a1 ≤ 0 pertain to the null hypothesis of a non-increasing failure rate,

whereasβ = 0, a1 = 0.01 implies an increasing failure rate. The other eight cases result in a

failure rate with a local increase. The power of the test introduced in Section 5 exceeds those of

the five tests examined by Gijbels and Heckman (2004) in four of the nine cases that involve an

12



Figure 3: Alternating sequences of minimal intervals inD+(α) andD−(α) with the corresponding
p-valuesα.

increase in the failure rate.

a1 −0.2 −0.1 0 0.01
β = 0 0.014 0.026 0.049 0.052

β = 0.3, σ = 0.2 0.066 0.115 0.215 0.224
β = 0.3, σ = 0.1 0.188 0.301 0.439 0.451

Table 1: Proportion of rejections of the null hypothesis at the 5% significance level in 10,000
simulations.

7 Auxiliary results about stochastic processes

Throughout this section letZ = (Z(t))t∈T be a stochastic process with continuous sample paths

on a totally bounded metric space(T , ρ), whereρ ≤ 1. ‘Totally bounded’ means that for arbitrary

u > 0 the capacity number

D(u) = D(u,T , ρ) := max
{

#To : To ⊂ T , ρ(s, t) > u for differents, t ∈ To

}

is finite. Moreover letZ = (Z(t))t∈T be a stochastic process onT with continuous sample paths.

We analyze the modulus of continuity ofZ with respect toρ. In addition we consider a function

σ : T → (0, 1], whereσ(t) may be viewed as measure of spread for the distribution ofZ(t). We

assume that

(7.1)
∣

∣σ(s) − σ(t)
∣

∣ ≤ ρ(s, t) for all s, t ∈ T ,

13



and that
{

t ∈ T : σ(t) ≥ δ
}

is compact for anyδ ∈ (0, 1].

We start with a version of Chaining which is simlar to Lemma VII.9 of Pollard (1984) and was

used by Dümbgen (1998). For the reader’s convenience a proof is given below.

Theorem 7 Let K be some positive constant, and forδ > 0 let G(·, δ) a nondecreasing function

on [0,∞) such that for allη ≥ 0 ands, t ∈ T with ρ(s, t) ≥ δ,

(7.2) P

{ |Z(s) − Z(t)|
ρ(s, t)

> G(η, δ)
}

≤ K exp(−η).

Then for arbitraryδ > 0 anda ≥ 1,

P

{

|Z(s) − Z(t)| ≥ 12J(ρ(s, t), a) for somes, t ∈ T with ρ(s, t) ≤ δ
}

≤ Kδ

2a
,

where

J(ǫ, a) :=

∫ ǫ

0
G(log(aD(u)2/u), u) du.

Remark 1. If we apply the preceding inequality toδ = 2−k with k = 0, 1, 2, . . ., then it follows

from the Borel-Cantelli-Lemma that

lim sup
δց0

sup
s,t∈T∗ : ρ(s,t)≤δ

|Z(s) − Z(t)|
J(ρ(s, t), 1)

≤ 12 almost surely.

Remark 2. Suppose that the processZ has sub–Weibull increments in the sense that for some

constantκ > 0 and arbitrarys, t ∈ T , η ≥ 0,

P
{

|Z(s) − Z(t)| > ρ(s, t)η
}

≤ 2 exp(−(η/κ)κ) .

Then the exponential inequality (7.2) is satisfied withG(η, δ) = (κη)1/κ. This includes the

situation of processes with subgaussian (κ = 2) and subexponential (κ = 1) increments.

Remark 3. Suppose thatG(η, δ) = q̃ ηq for some constants̃q, q > 0. In addition let

D(u) ≤ Au−B for 0 < u ≤ 1

with constantsA ≥ 1 andB > 0. Then elementary calculations show that for0 < ǫ ≤ 1 and

a ≥ 1,

J(ǫ, a) ≤ C ǫ log(e/ǫ)q

with C = q̃ max
(

1 + 2B, log(aA2)
)q ∫ 1

0 log(e/z)q dz.

With the conclusion of Theorem 7 in mind, we prove a result about the standardized process

Z/σ =
(

Z(t)/σ(t)
)

t∈T .

14



Theorem 8 Suppose that the following two conditions are satisfied:

(i) There is a functionG : [0,∞) × (0, 1] → [0,∞) such that for arbitraryη ≥ 0, δ ∈ (0, 1] and

t ∈ T with σ(t) ≥ δ,

P

{

|Z(t)| ≥ σ(t)G(η, δ)
}

≤ 2 exp(−η).

Moreover,

Go := sup
η≥0,0<δ≤1

G(η, δ)

1 + η
< ∞ .

(ii) There are positive constantsA,B, V such that

D
(

uδ, {t ∈ T : σ(t) ≤ δ}, ρ
)

≤ Au−Bδ−V for all u, δ ∈ (0, 1].

For constantsq,Q > 0 define the events

A(q,Q, δ) :=
{

sup
s,t∈T : ρ(s,t)≤δ

|Z(s) − Z(t)|
ρ(s, t) log(e/ρ(s, t))q

≤ Q
}

, δ > 0.

Then there exists a constantC = C(Go, A,B, V, q,Q) > 0 such that for0 < δ ≤ 1 the probability

of the event

{

|Z| ≤ σ G
(

V log(1/σ) + C log log(e/σ), σ
)

+ Cσ log(e/σ)−1 on{t : σ(t) ≤ δ}
}

is at leastP(A(q,Q, 2δ)) − C log(e/δ)−1.

Remark. In case ofG(η, δ) = (κη)1/κ with κ > 1,

G
(

V log(1/δ) + C log log(e/δ), δ
)

+ C log(e/δ)−1

= (κV log(1/δ))1/κ + O
(

log log(e/δ) log(eδ)1/κ−1
)

= (κV log(1/δ))1/κ + o(1) asδ ց 0.

The preceding two theorems and remarks entail the followingcorollary which extends Theo-

rem 6.1 of Dümbgen and Spokoiny (2001). The main differenceis that we don’t need to assume

subgaussian increments of our stochastic process.

Corollary 9 Suppose that the following three conditions are satisfied:

(i) There exist constantsA,B, V > 0 such that for arbitraryu, δ ∈ (0, 1],

D
(

uδ, {t ∈ T : σ(t) ≤ δ}, ρ
)

≤ Au−Bδ−V .
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(ii) There exists a constantK ≥ 1 such that for arbitrarys, t ∈ T andη ≥ 0,

P
(

|Z(s) − Z(t)| ≥ Kρ(s, t)η
)

≤ K exp(−η).

(iii) For arbitraryt ∈ T andη ≥ 0,

P
(

|Z(t)| ≥ σ(t)η
)

≤ 2 exp(−η2/2).

Then

P

(

sup
s,t∈T

|Z(s) − Z(t)|
ρ(s, t) log(e/ρ(s, t))

≥ η
)

≤ p1(η |A,B,K),

P

(

sup
t∈T

|Z(t)|/σ(t) −
√

2V log(1/σ(t))

D(σ(t))
≥ η

)

≤ p2(η |A,B, V,K)

with D(δ) := log(e/δ)−1/2 log(e log(e/δ)), wherep1(· |A,B,K) andp2(· |A,B, V,K) are uni-

versal functions such thatlimη→∞ p1(η |A,B,K) = limη→∞ p2(η |A,B, V,K) = 0.

Proof of Theorem 7. SinceZ is assumed to have continuous sample paths, it suffices to verify

the assertion on some dense subsetT∗ of T . We choose inductively maximal subsetsT1 ⊂ T2 ⊂
T3 ⊂ · · · of T such that

ρ(s, t) > δk := 2−kδ for differents, t ∈ Tk.

In particular, for anyt ∈ T andk ≥ 1 there is a pointπk(t) ∈ Tk with ρ(t, πk(t)) ≤ δk. Hence

T∗ :=
⋃

k≥1 Tk is a dense subset ofT . Furthermore,#Tk ≤ D(δk). Now define

ηk := G
(

log(aD(δk)
2/δk), δk

)

.

Then the eventA :=
⋃

k≥1

{

|Z(s) − Z(t)| > ρ(s, t)ηk for somes, t ∈ Tk

}

has probability

P(A) ≤
∑

k≥1

∑

{s,t}⊂Tk

P
{

|Z(s) − Z(t)| > ρ(s, t)ηk

}

≤ K
∑

k≥1

2−1D(δk)
2 exp

(

− log(aD(δk)2/δk)
)

= Kδ/(2a).

For s, t ∈ T∗ there exist integers1 ≤ ℓ < m with δℓ−1 ≥ ρ(s, t) > δℓ ands, t ∈ Tm (where

δ0 := δ). Definesm := s, tm := t and inductivelysk := πk(sk+1), tk := πk(tk+1) for k =

m − 1,m − 2, . . . , ℓ. Then one can conclude that

ρ(sℓ, tℓ) ≤ ρ(s, t) +
m−1
∑

k=ℓ

(

ρ(sk, sk+1) + ρ(tk, tk+1)
)

≤ 6δℓ.
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Thus outside of the eventA,

|Z(s) − Z(t)| ≤ |Z(sℓ) − Z(tℓ)| +
m−1
∑

k=ℓ

(

|Z(sk) − Z(sk+1)| + |Z(tk) − Z(tk+1)|
)

≤ ρ(sℓ, tℓ)ηℓ + 2
m−1
∑

k=ℓ

δkηk+1

≤ 12(δℓ − δℓ+1)ηℓ + 8
∑

k≥ℓ

(δk+1 − δk+2)ηk+1

< 12
∞
∑

k=ℓ

(δk − δk+1)ηk

≤ 12J(δℓ, a)

< 12J(ρ(s, t), a) .

When bounding the series by an integral, we tacitly assumed that G(η, δ) is non-decreasing in

η ≥ 0 and non-increasing inδ > 0. This may be assumed without loss of generality, because

otherwise one could replaceG(η, δ) in (7.2) with

G̃(η, δ) := inf
η′≥η,0<δ′≤δ

G(η′, δ′) ≤ G(η, δ) . 2

Proof of Theorem 8. The idea is to prove the assertion on some countable subsetT ∗ of T by

means of conditions (i) and (ii), and then to use the modulus of continuity of Z on the events

A(q,Q, ·).

The setT ∗ is constructed inductively as follows: Lett1 be any point inT maximizing σ.

Next letu be some continuous, non-decreasing function from(0, 1] into itself to be specified later.

Suppose that we picked alreadyt1, . . . , tm. If the set

(7.3)
{

t ∈ T : min
i=1,...,m

ρ(t, ti) ≥ u(σ(t))σ(t)
}

is nonvoid, then lettm+1 be an element of it with maximal valueσ(t). Since the displayed set

is closed and{σ ≥ δ} is compact for anyδ > 0, the pointtm+1 is well-defined. Thus we end

up with a finite or countable setT ∗ := {t1, t2, t3, . . .}, and its construction entails thatσ(t1) ≥
σ(t2) ≥ σ(t3) ≥ · · · . For0 < δ ≤ 1 the set

T ∗(δ) :=
{

t ∈ T ∗ : δ/2 < σ(t) ≤ δ
}

is contained in
{

t ∈ T : σ(t) ≤ δ
}

with ρ(s, t) ≥ u(δ/2)δ/2 for different s, t ∈ T ∗(δ).

Consequently,

#T ∗(δ) ≤ A2Bu(δ/2)−Bδ−V .
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In particular, ifT ∗ is infinite, thenlimm→∞ σ(tm) = 0. An important property of this setT ∗ is

that for anys ∈ T there exists a pointt ∈ T ∗ such that

(7.4) σ(s) ≤ σ(t) and ρ(s, t) < u(σ(s))σ(s).

For letm be a maximal index such thatσ(tm) ≥ σ(s). If ρ(s, ti) ≥ u(σ(s))σ(s) for all i ≤ m,

thens would belong to the set (7.3), whenceσ(tm+1) ≥ σ(s). But this would be a contradiction

to the definition ofm.

In order to bound|Z(t)|/σ(t) for all t ∈ T ∗ we define

H1(t) := G
(

V log(1/σ(t)) + B log(1/u(σ(t))) + 2 log log(e/σ(t)), σ(t)
)

.

Then for0 < δ ≤ 1,

P

{

sup
t∈T ∗ : σ(t)≤δ

( |Z(t)|
σ(t)

− H1(t)
)

> 0

}

≤
∑

t∈T ∗ : σ(t)≤δ

P

{ |Z(t)|
σ(t)

≥ H1(t)
}

≤ 2
∑

t∈T ∗ :σ(t)≤δ

exp
(

−V log(1/σ(t)) − B log(1/u(σ(t))) − 2 log log(e/σ(t))
)

= 2

∞
∑

k=0

∑

t∈T ∗(2−kδ)

σ(t)V u(σ(t))B log(e/σ(t))−2

≤ 2

∞
∑

k=0

∑

t∈T ∗(2−kδ)

(2−kδ)V u(2−kδ)B(log(e/δ) + log(2)k)−2

≤ C1

∞
∑

k=0

(log(e/δ) + log(2)k)−2

≤ C2 log(e/δ)−1,

where

C1 := A2B+1 sup
0<x≤1

u(x)

u(x/2)
and C2 := (1 + (log 2)−1)C1.

Considering the functionH1 closely, an elegant choice foru(δ) might be

u(δ) := log(e/δ)−γ

for someγ > 0. For thenu(x)/u(x/2) ≤ log(2e)γ , and

H1(t) = G
(

V log(1/σ(t)) + (Bγ + 2) log log(e/σ(t)), σ(t)
)

.

Now lets be an arbitrary point inT , and lett ∈ T ∗ satisfy (7.4). Then

σ(t)

σ(s)
− 1 ≤ ρ(s, t)

σ(s)
< u(σ(s)),
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so that on the eventA(2σ(s)),

|Z(s)|
σ(s)

− |Z(t)|
σ(t)

≤ |Z(s) − Z(t)|
σ(s)

+
|Z(t)|
σ(t)

(σ(t)

σ(s)
− 1
)

≤ Qρ(s, t) log(e/ρ(s, t))q

σ(s)
+

|Z(t)|
σ(t)

ρ(s, t)

σ(s)

≤ Qu(σ(s)) log
(

e/(u(σ(s))σ(s))
)q

+
|Z(t)|
σ(t)

u(σ(s))

≤ C3 log(e/σ(s))q−γ +
|Z(t)|
σ(t)

log(e/σ(s))−γ

for some constantC3 = C3(q,Q, γ). Consequently, if in addition|Z(t)|/σ(t) ≤ H1(t), then

|Z(s)|
σ(s)

≤ H1(t) + C3 log(e/σ(s))q−γ + H1(t) log(e/σ(s))−γ

≤ H1(s) + C3 log(e/σ(s))q−γ + H1(s) log(e/σ(s))−γ

≤ H1(s) + C3 log(e/σ(s))q−γ

+
(

1 + V log(1/σ(t)) + (Bγ + 2) log log(e/σ(t))
)

log(e/σ(s))−γ

≤ H1(s) + C4 log(e/σ(s))max(1,q)−γ

for some constantC4 = C4(Go, B, V, q,Q, γ). Finally note thatσ(s) ≤ δ implies thatσ(t) ≤ 2δ.

Consequently, with probability at leastP(A(2δ))−C2 log(e/(2δ))−1 , the ratio|Z(s)|/σ(s) is not

greater than

G
(

V log(1/σ(s)) + (Bγ + 2) log log(e/σ(s)), σ(s)
)

+ C4 log(e/σ(s))max(1,q)−γ

for all s ∈ {σ ≤ δ}. This yields the assertion if we takeγ = max(1, q) + 1 and a suitable

C = C(Go, A,B, V, q,Q). 2

8 Proofs

8.1 Proofs of Propositions 1, 5 and 6

The proofs rely on an elementary inequality which we state without proof:

Lemma 10 Let Go andG be distribution functions on an interval(a, b) with densitiesgo andg,

respectively. Suppose thatg − go ≤ 0 on (a, c) andg − go ≥ 0 on (c, b), wherea < c < b. Then

G−1 ≥ G−1
o . 2

Note that the conditions in Lemma 10 are satisfied if, for instance,go andg are differentiable

with derivatives satisfyingg′ ≥ g′o.
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Proof of Proposition 1. It is well-known thatU(1), . . . , U(n) are distributed as the order statistics

of n independent random variables having uniform distributionon [0, 1]. Suppose thatf and thus

fjk is non-decreasing onIjk, wherek − j > 1. Then the assumptions of Lemma 10 are satisfied

with g = fjk andgo(x) := 1{x ∈ Ijk}/|Ijk|. This implies that forj < i < k,

X(i) = G−1(U(i;j,k)) ≥ G−1
o (U(i;j,k)) = X(j) + (X(k) − X(j))U(i;j,k),

whenceTjk(X) ≥ Tjk(U ). In case off being non-increasing onIjk the reverse inequality

Tjk(X) ≤ Tjk(U) follows from Lemma 10 withg(x) = 1{x ∈ Ijk}/|Ijk| andgo := fjk. 2

Proof of Proposition 5. Again we apply Lemma 10, this time with the densities

g(u) := |Ijk|fjk

(

X(j) + |Ijk|u
)

andgo := gS on (0, 1). Note that

inf
(0,1)

g′ = |Ijk|2 inf
Ijk

f ′
jk = S ≡ g′S .

Thus it follows from Lemma 10 that

Tjk(X) =

k−1
∑

i=j+1

β
(

G−1(U(i;j,k))
)

≥
k−1
∑

i=j+1

β
(

G−1
S (U(i;j,k))

)

.

As for the moments ofβ(G−1
c (U)), note first that generally

Eh
(

β(G−1
c (U))

)

=

∫ 1

0
h(β(u))(1 + c(u − 1/2)) du =

1

2

∫ 1

−1
h(v)

(

1 +
c

2
v
)

dv

for h : [−1, 1] → R. Lettingh(v) := vj with j = 1, 2 shows that the first and second moment of

β(G−1
c (U)) are given byc/6 and1/3, respectively. Moreover, lettingh(v) := exp(tv) yields

Mc(t) := log E exp
(

tβ(G−1
c (U))

)

− ct/6 = log(A(t) + cB(t)) − ct/6 ,

where

A(t) :=
1

2

∫ 1

−1
etv dv = sinh(t)/t =

∞
∑

k=0

t2k

(2k + 1)!
,

B(t) :=
1

4

∫ 1

−1
etvv dv =

(

cosh(t)/t − sinh(t)/t2
)

/2 =
t

6

∞
∑

k=0

3

2k + 3

t2k

(2k + 1)!
.

We have to show thatMc(t) ≤ t2/6 for any t 6= 0. To this end, note that∂Mc(t)/∂c equals

B(t)/(A(t) + cB(t)) − t/6 and∂2Mc(t)/∂c2 < 0. ThusMc(t) is strictly concave inc ∈ {c :
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A(t) + cB(t) > 0}. The equation∂Mc(t)/∂c = 0 is equivalent toA(t) + cB(t) being equal to

6B(t)/t > 0, and this meansct/6 = 1 − tA(t)/(6B(t)). Hence elementary manipulations of the

series expansions yield

Mc(t) ≤ log
(6B(t)

t

)

+
tA(t)

6B(t)
− 1

= log
(

∞
∑

k=0

3

2k + 3

t2k

(2k + 1)!

)

+
t2

15

∞
∑

k=0

5 · 3
(2k + 5)(2k + 3)

t2k

(2k + 1)!

/

∞
∑

k=0

3

2k + 3

t2k

(2k + 1)!

≤ log
(

∞
∑

k=0

(t2/10)k

k!

)

+
t2

15

=
t2

6
. 2

Proof of Proposition 6. By construction, the vector(X ′
(i)−X ′

(0))
n+1
i=1 is distributed as the vector

of order statistics ofn + 1 independent random variables with standard exponential distribution.

Well-known facts imply that the variablesD′
i are independent with standard exponential distribu-

tion. Hence(W ′
1, . . . ,W

′
n) =L (U(1), . . . , U(n)), while W ′

0 = 0 andW ′
n+1 = 1.

Now we assume that the failure rate is non-decreasing onIjk; the non-increasing case is treated

analogously. Then the functionG(x) := − log(1−F (x)) is convex onIjk. Henceαs := D′
s/Ds

is non-decreasing ins ∈ {j + 1, . . . , k}. Consequently forj < i < k,

W(i;j,k) − W ′
(i;j,k) =

∑i
s=j+1 Ds

∑k
s=j+1 Ds

−
∑i

s=j+1 αsDs
∑k

s=j+1 αsDs

=

∑i
s=j+1

∑k
t=i+1(αt − αs)DsDt

∑k
s=j+1 Ds

∑k
t=j+1 αtDt

≥ 0 .

HenceTjk(W ) ≥ Tjk(W
′). 2

8.2 Proof of Theorem 2

We embed our test statisticsTjk into a stochastic processZn on

Tn :=
{

(τjn, τkn) : 0 ≤ j < k ≤ n + 1
}

,

whereτin := i/(n + 1), equipped with the distance

ρ((u, v), (u′, v′)) :=
(

|u − u′| + |v − v′|
)1/2
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onT := {(u, v) : 0 ≤ u < v ≤ 1}. Namely, let

Zn(τjn, τkn) := 31/2(n + 1)−1/2Tjk(U).

Moreover, for(u, v) ∈ T \ Tn let

Zn(u, v) := Zn(τn(u), τn(v)) with τn(c) :=
⌊(n + 1)c⌋

n + 1
.

Note that

E(Zn(u, v)) = 0 and Var(Zn(u, v)) ≤ σ(u, v)2,

whereσ(u, v) := (v − u)1/2. In fact, these functionsρ andσ satisfy (7.1). For

∣

∣σ(u, v) − σ(u′, v′)
∣

∣ ≤
∣

∣(v − u) − (v′ − u′)
∣

∣

√
v − u +

√
v′ − u′

≤
√

(v − u) + (v′ − u′)
√

|u − u′| + |v − v′|√
v − u +

√
v′ − u′

≤
√

|u − u′| + |v − v′|

= ρ((u, v), (u′, v′)).

Later on we shall prove the following two results about theseprocessesZn and the limiting pro-

cesssZ defined in Theorem 2:

Lemma 11 The processesZ onT andZn onTn (n ∈ N) satisfy conditions (i–iii) of Corollary 9

with A = 12, B = 4, V = 2 and some universal constantK.

Lemma 12 For any finite subsetTo of T , the random variable(Zn(t))t∈To converges in distribu-

tion to (Z(t))t∈To .

Now we consider the preliminary test statistic

T̃n := max
0≤j<k≤n+1

(

31/2(k − j)−1/2Tjk(U) − Γ
(k − j

n + 1

))

= max
t∈Tn

( |Zn(t)|
σ(t)

− Γ(σ(t)2)
)

,

whereTjk(U ) := 0 if k − j = 1. We define

T̃n(δ, δ′) := max
t∈Tn : δ<σ(t)≤δ′

( |Zn(t)|
σ(t)

− Γ(σ(t)2)
)

for 0 ≤ δ < δ′ ≤ 1 andn ∈ N ∪ {∞}, where(Z∞,T∞) := (Z,T ). Then it follows from

Corollary 9 and Lemma 11 that for any fixedǫ > 0,

(8.1) lim
δց0

sup
n∈N∪{∞}

P{T̃n(0, δ) ≥ ǫ} = 0

22



and

(8.2) lim
δց0

sup
n∈N∪{∞}

P

{

sup
s,t∈Tn :ρ(s,t)≤δ

∣

∣Zn(s) − Zn(t)
∣

∣ ≥ ǫ} = 0.

The latter asymptotic continuity condition (8.2) and Lemma12 imply that for any fixedδ ∈ (0, 1],

(8.3) T̃n(δ, 1) →L T̃∞(δ, 1).

Finally, as in Dümbgen (2002) one can show that

(8.4) lim
δց0

P{T̃∞(δ, 1) ≤ −ǫ} = 0

for any fixedǫ > 0. Combining the three facts (8.1), (8.3) and (8.4) yields that

T̃n →L T (W ).

Finally we have to show thatTn(U) = T̃n + op(1). Note that

Tn(U) = max
t∈Tn

( |Zn(t)|
σn(t)

− Γ(σ(t)2)
)

with

σn(t) :=
(

σ(t)2 − (n + 1)−1
)1/2

,

where we use the convention that0/0 := 0. The inequality|Zn(t)| ≤ (n + 1)1/2σn(t)2 entails

that fort ∈ Tn with σ(t) ≤ δn := (log(n + 1)/(n + 1))1/2,

|Zn(t)|
σn(t)

− Γ(σ(t)2) ≤ (n + 1)1/2σn(t) − Γ(σ(t)2)

≤ (n + 1)1/2δn − Γ(δ2
n)

= log(n + 1)1/2 − (2 log(n + 1))1/2 + o(1)

→ −∞,

and fort ∈ Tn with σ(t) ≥ δn,

|Zn(t)|
σn(t)

− |Zn(t)|
σ(t)

=
(σ(t) − σn(t))|Zn(t)|

σn(t)σ(t)

≤ (n + 1)1/2(σ(t) − σn(t))

= (n + 1)−1/2(σ(t) + σn(t))−1

≤ (n + 1)−1/2δ−1
n

→ 0.

Consequently,

Tn(U) = T̃n(δn, 1) + op(1) = T̃n + op(1). 2
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Proof of Lemma 11. A proof of condition (i) is given by Dümbgen and Spokoiny (2001, proof of

Theorem 2.1) in a slightly different setting. For the reader’s convenience we repeat the argument

here: For fixedu, δ ∈ (0, 1] let ǫ := u2δ2/2 and defineIj := [(j − 1)ǫ, jǫ] ∩ [0, 1] for 1 ≤
j ≤ m + 1, wherem := ⌊ǫ−1⌋. If (a, b), (a′, b′) ∈ T with a, a′ ∈ Ij andb, b′ ∈ Ik for some

j, k ∈ {1, . . . ,m + 1}, thenρ((a, b), (a′, b′)) ≤ uδ. On the other hand,σ(a, b) ≤ δ implies that

(k − j − 1)ǫ ≤ δ2, whence0 ≤ k − j ≤ 1 + 2/u2. These considerations show that

D
(

uδ, {t ∈ T : σ(t) ≤ δ}, ρ
)

≤ #
{

(j, k) : 1 ≤ j ≤ m + 1, j ≤ k ≤ j + 1 + 2/u2
}

,

and the latter number is not greater than(m + 1)(2 + 2/u2) ≤ 12u−4δ−2.

Next we verify condition (ii). In order to bound the increment Zn(s) − Zn(t) in terms of

ρ(s, t) we consider first the special case thats = (0, 1) andt = (τ, 1), whereτ = τkn for some

k ∈ {1, . . . , n}. Note that

n
∑

i=1

(2U(i) − 1) =

k−1
∑

i=1

(2U(i) − 1) + 2U(k) − 1 +

n
∑

i=k+1

(2U(i) − 1),

k−1
∑

i=1

(2U(i) − 1) =
k−1
∑

i=1

(

2
U(i)

U(k)
− 1
)

U(k) + (k − 1)U(k),

n
∑

i=k+1

(2U(i) − 1) =

n
∑

i=k+1

(2(U(i) − U(k)) − 1) + 2(n − k)U(k)

=

n
∑

i=k+1

(

2
U(i) − U(k)

1 − U(k)
− 1
)

(1 − U(k)) + (n − k)U(k),

whence

Zn(0, 1) = Zn(0, τ)U(k) + Zn(τ, 1)(1 − U(k)) + 31/2(n + 1)1/2(U(k) − τ).

Consequently,

Zn(0, 1) − Zn(τ, 1)

=
(

Zn(0, τ) − Zn(τ, 1)
)

U(k) + 31/2(n + 1)1/2(U(k) − τ)

= 31/2(n + 1)−1/2

(

k−1
∑

i=1

β
(U(i)

U(k)

)

−
n
∑

i=k+1

β
(U(i) − U(k)

1 − U(k)

)

)

U(k)

+ 31/2(n + 1)1/2(U(k) − τ)

=L 31/2(n + 1)−1/2
n−1
∑

i=1

β(U ′
i)U(k) + 31/2(n + 1)1/2(U(k) − τ),

whereU1, . . . , Un, U ′
1, . . . , U

′
n−1 are independent and identically distributed. Note thatU(k) has a

Beta-distribution with parametersk andn + 1 − k. This entails that

P

{

±(U(k) − τ) ≥ c
}

≤ exp
(

−(n + 1)Ψ(τ ± c, τ)
)

for all c ≥ 0,
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whereΨ(x, τ) := τ log(τ/x) + (1 − τ) log((1 − τ)/(1 − x)) if x ∈ (0, 1), andΨ(x, τ) := ∞
otherwise; see Proposition 2.1 of Dümbgen (1998). Elementary calculations show thatΨ(τ ±c, τ)

is not smaller thanc2/(2τ(1 − τ) + 2c), whence

(8.5) P{±(U(k) − τ) ≥ c} ≤ exp
(

− (n + 1)c2

2τ(1 − τ) + 2c

)

for all c ≥ 0. Consequently, for anyr ≥ 0,

P

{∣

∣

∣31/2(n + 1)1/2(U(k) − τ)
∣

∣

∣ ≥ rρ((0, 1), (τ, 1))
}

= P

{∣

∣

∣
31/2(n + 1)1/2(U(k) − τ)

∣

∣

∣
≥ rτ1/2

}

= P

{

|U(k) − τ | ≥ rτ1/2

31/2(n + 1)1/2

}

≤ 2 exp
(

− r2τ

6τ(1 − τ) + 121/2r(n + 1)−1/2τ1/2

)

≤ 2 exp
(

− r2

6 + 121/2r((n + 1)τ)−1/2

)

≤ 2 exp
(

− r2

6 + 4r

)

≤ 4 exp(−r/4).(8.6)

Here we used the fact that(n + 1)τ ≥ 1. Moreover, for anyr ≥ 1,

P

{∣

∣

∣
31/2(n + 1)−1/2

n−1
∑

i=1

β(U ′
i)U(k)

∣

∣

∣
≥ rτ1/2

}

≤ P

{∣

∣

∣
(3/n)1/2

n−1
∑

i=1

β(U ′
i)
∣

∣

∣
≥ r1/2

}

+ P

{

U(k) ≥ r1/2τ1/2
}

≤ 2 exp(−r/2) + P

{

U(k) − τ ≥ r1/2τ1/2 − τ
}

≤ 2 exp(−r/2) + exp
(

− (n + 1)(r1/2 − 1)2τ

2τ(1 − τ) + 2(r1/2 − 1)τ1/2

)

≤ 2 exp(−r/2) + exp
(

−(n + 1)(r1/2 − 1)2τ1/2

2 + 2(r1/2 − 1)

)

≤ 2 exp(−r/2) + exp
(

−(n + 1)1/2(r1/2 − 1)2

2r1/2

)

.

Note that the probability in question is zero ifr is greater than31/2(n + 1)−1/2(n − 1)τ−1/2, and

the latter number is smaller than31/2n. Thus suppose thatr ≤ 31/2n. Then

(n + 1)1/2(r1/2 − 1)2

2r1/2
≥ (3−1/2r + 1)1/2(r1/2 − 1)2

2r1/2
≥ 3−1(r1/2 − 1)2.

Consequently, for allr ≥ 0 and some positive constantC1,

(8.7) P

{∣

∣

∣
31/2(n + 1)−1/2

n−1
∑

i=1

β(U ′
i)U(k)

∣

∣

∣
≥ rτ1/2

}

≤ C1 exp(−r/C1).
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Combining (8.6) and (8.7) yields

(8.8) P

{∣

∣

∣
Zn(0, 1) − Zn(τkn, 1)

∣

∣

∣
≥ rρ((0, 1), (τkn, 1))

}

≤ C2 exp(−r/C2)

for some positive constantC2. Symmetry considerations show that the same bound applies to

s = (0, 1) andt = (0, τ), i.e.

(8.9) P

{∣

∣

∣Zn(0, 1) − Zn(0, τ)
∣

∣

∣ ≥ rρ((τkn, 1), (0, 1))
}

≤ C2 exp(−r/C2).

In order to treat the general case, note that the processesZn rescale as follows: For0 ≤ J <

K ≤ n + 1,
(

Zn(τJ+j,n, τJ+k,n)
)

0≤j<k≤K−J

=L σ(τJn, τKn)
(

ZK−J(τj,K−J , τk,K−J)
)

0≤j<k≤K−J
,

while for 0 ≤ j < k ≤ K − J and0 ≤ j′ < k′ ≤ K − J ,

ρ
(

(τJ+j,n, τJ+k,n), (τJ+j′,n, τJ+k′,n)
)

= σ(τJn, τKn)ρ
(

(τj,K−J , τk,K−J), (τj′,K−J , τk′,K−J)
)

.

This entails that the bounds (8.8) and (8.9) can be extended as follows:

(8.10)

P

{∣

∣

∣
Zn(u, v) − Zn(u, v′)

∣

∣

∣
≥ rρ((u, v), (u, v′))

}

P

{∣

∣

∣Zn(u, v′) − Zn(u′, v′)
∣

∣

∣ ≥ rρ((u, v′), (u′, v′))
}















≤ C2 exp(−r/C2)

for arbitrary(u, v), (u′, v′) ∈ T , whereu ≤ u′. But note that

Zn(u, v) − Zn(u′, v′) =
(

Zn(u, v) − Zn(u, v′)
)

+
(

Zn(u, v′) − Zn(u′, v′)
)

=: ∆1 + ∆2

and

ρ((u, v), (u′, v′))2 = ρ((u, v), (u, v′))2 + ρ((u, v′), (u′, v′))2 =: ρ2
1 + ρ2

2.

Consequently,

P

{

|∆1 + ∆2| ≥ r(ρ2
1 + ρ2

2)
1/2
}

≤ P

{

|∆1 + ∆2| ≥ r2−1/2(ρ1 + ρ2)
}

≤
2
∑

i=1

P{|∆i| ≥ r2−1/2ρi}

≤ 2C2 exp(−r/(2C2)).

Hence condition (ii) is satisfied withK = 2C2.

Finally, according to Proposition 5,E exp(rβ(Ui)) ≤ exp(r2/6) for all r ∈ R, whence

E exp
(

rσ(t)−1Zn(t)
)

≤ exp(r2/2) for r ∈ R, t ∈ Tn.

Then a standard argument involving Markov’s inequality yields condition (iii). 2
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Proof of Lemma 12. Recall the representationU(i) − U(i−1) = Ei/Sn with independent, stan-

dard exponential variablesEi andSn =
∑n+1

j=1 Ej. Starting from (2.1) one can write

Zn(τjn, τkn) = −31/2 k − j

(U(k) − U(j))Sn
(n + 1)−1/2

n+1
∑

i=1

β
( i − j − 1/2

k − j

)

Ei

=
τkn − τjn

U(k) − U(j)

n + 1

Sn
× Z̃n(τjn, τkn),

where

Z̃n(τjn, τkn) := 31/2(n + 1)−1/2
n+1
∑

i=1

β
(τin − τjn − δn

τkn − τjn

)

(1 − Ei)

andδn := (2(n + 1))−1. The centering of the variablesEi is possible because the sum of the

coefficientsβ((i − j − 1/2)/(k − j)), j < i ≤ k, is zero. SinceSn/(n + 1) →p 1 and

max1≤i≤n |U(i) − τin| →p 0, it suffices to consider the stochastic processZ̃n in place ofZn.

But then the assertion follows from the multivariate version of Lindeberg’s Central Limit Theo-

rem and elementary covariance calculations. 2

8.3 Proofs for Section 4

At first we prove the lower bounds comprising Theorem 3 (b–c).The following lemma is a surro-

gate for Lemma 6.2 of Dümbgen and Spokoiny (2001) in order totreat likelihood ratios and i.i.d.

data.

Lemma 13 Let X1,X2, . . . ,Xn be i.i.d. with distributionP on some measurable spaceX . Let

f1, . . . , fm be probability densities with respect toP such that the setsBj := {fj 6= 1} are

pairwise disjoint, and defineLj :=
∏n

i=1 fj(Xi). Then

E

∣

∣

∣
m−1

m
∑

j=1

Lj − 1
∣

∣

∣
→ 0

provided thatm → ∞, ∆∞ ≤ C(log m)−1/2 for some fixed constantC and

√

log m
(

1 − n∆2
2

2 log m

)

→ ∞,

where∆∞ := maxj supx |fj(x) − 1| and∆2 := maxj

(

∫

(fj − 1)2dP
)1/2

.

Proof of Lemma 13. The likelihood ratio statisticsLj are not stochastically independent, but

conditional onν = (νj)
m
j=1 with νj := #{i : Xi ∈ Bj} they are. Furthermore,E(Lj) = 1 =
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E(Lj |ν). Thus a standard truncation argument shows that for anyǫ > 0 and0 < γ ≤ 1,

E

(∣

∣

∣m−1
∑

j

Lj − 1
∣

∣

∣

∣

∣

∣ν

)

≤ m−1Var
(

∑

j

1{Lj ≤ ǫm}Lj

∣

∣

∣
ν

)1/2
+ 2m−1

∑

j

E

(

1{Lj > ǫm}Lj

∣

∣

∣
ν

)

≤ m−1
(

∑

j

E

(

1{Lj ≤ ǫm}L2
j

∣

∣

∣
ν

))1/2
+ 2m−1

∑

j

E

(

1{Lj > ǫm}Lj

∣

∣

∣
ν

)

≤ m−1
(

∑

j

E

(

ǫmLj

∣

∣

∣ν

))1/2
+ 2ǫ−γm−(1+γ)

∑

j

E

(

L1+γ
j

∣

∣

∣ν

)

= ǫ1/2 + 2ǫ−γm−(1+γ)
∑

j

E

(

L1+γ
j

∣

∣

∣ν

)

.

Thus it suffices to show that

inf
γ∈(0,1]

max
j

m−γ
E(L1+γ

j ) → 0

under the stated conditions onm, ∆∞ and∆2. Note thatE(L1+γ
j ) equalsE(fj(X1)

1+γ)n, and

elementary calculus reveals that

(1 + y)1+γ ≤ 1 + (1 + γ)y + γ(1 + γ)y2/2 + 3γ|y|3 for |y| ≤ 1.

HenceE(fj(X1)
1+γ) ≤ 1 + γ(1 + γ)∆2

2/2 + 3γ∆∞∆2
2 and

max
j

m−γ
E(L1+γ

j ) ≤ m−γ
(

1 + γ(1 + γ)∆2
2/2 + 3γ∆∞∆2

2

)n

≤ exp
(

−γ log m + γ(1 + γ)n∆2
2/2 + 3γ∆∞n∆2

2

)

.(8.11)

Suppose thatn∆2
2 ≤ 2(1 − bm) log m, where(0, 1) ∋ bm → 0 andb2

m log m → ∞ asm → ∞.

Then the right hand side of (8.11) does not exceed

exp
(

−γ(1 − (1 + γ)(1 − bm)) log m + 6γ∆∞ log m
)

≤ exp
(

− b2
m log m

4(1 − bm)
+ 3Cbm(log m)1/2

)

if γ =
bm

2(1 − bm)

→ 0 asm → ∞. 2

Proof of Theorem 3 (b). Let c̃n := cn

√

log(e/δn)/n, and setf0 := 1[0,1) and

fnj(x) := f0(x) + 1{x ∈ Inj}c̃nδ−3/2
n (x − (j − 1/2)δn)

for j = 1, . . . ,mn := ⌊1/δn⌋ andInj := [(j − 1)δn, jδn). Eachfnj is a probability density with

respect to the uniform distribution on[0, 1) such that the corresponding distributionFnj satisfies

28



Fnj(Inj) = δn andinfInj
f ′

nj · |Inj|2/
√

Fnj(Inj) = c̃n, i.e. fnj ∈ F(δn, c̃n). Thus, for any test

φn(X) with Ef0
φn(X) ≤ α + o(1),

inf
f∈F(δn,c̃n)

Efφn(X) − α ≤ m−1
n

mn
∑

j=1

Efnj
φn(X) − α

= Ef0





(

m−1
n

mn
∑

j=1

Lnj − 1
)

φn(X)



+ o(1)

≤ Ef0

∣

∣

∣m−1
n

mn
∑

j=1

Lnj − 1
∣

∣

∣+ o(1),

whereLnj :=
∏n

i=1 fnj(Xi). The latter expectation tends to zero by Lemma 13. For∆2
2 = c̃2

n/12,

and∆∞ = c̃nδ
−1/2
n /2 is less than

√

6 log(e/δn)/(nδn) = O(log(n)−1/2) = O(log(mn)−1/2),

becausenδn ≥ log(n)2 and hencemn = δ−1
n + O(1) = o(n). Finally,

√

log mn

(

1 − n∆2
2

2 log mn

)

=
24 log mn − c2

n log(e/δn)

24
√

log mn

≥
√

24(
√

24 − cn)
√

log(e/δn)(1 + o(1)) + o(1)

tends to infinity by assumption onδn andcn. 2

Proof of Theorem 3 (c). We may assume w.l.o.g. that the left endpoint ofIn is 0. Now we define

probability densitiesfn andgn via

fn(x) :=
δn

|In|
1{x ∈ [0, |In|/δn]},

gn(x) := fn(x) +

√
δnbn√
n|In|2

(x − |In|/2)1{x ∈ In}.

Note thatgn ≥ 0 becausebn ≤ 2
√

nδn. Furthermore,fn is non-increasing onIn while gn belongs

to F(In, δn, bn/
√

n).

Now we apply LeCam’s notion of contiguity (cf. LeCam and Yang, 1990, Chapter 3): If a test

φn(X) satisfiesEfn
φn(X) ≤ α, thenlim sup Egnφn(X) < 1, provided that

(8.12) Lfn

(

n
∑

i=1

log(gn/fn)(Xi)
)

→w Q

for some probability measureQ on the real line such that
∫

exQ(dx) = 1.

Note thatLfn

(

∑n
i=1 log(gn/fn)(Xi)

)

equals the distribution of
∑Nn

i=1 log(1 + cnVi) with

cn := bn/(2
√

nδn) ∈ [0, 1] and independent random variablesNn, V1, V2, V3, . . . such that

Nn ∼ Bin(n, δn) andVi ∼ Unif[−1, 1].
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Suppose first thatnδn 6→ ∞. By extracting a subsequence, if necessary, we may assume

that nδn → λ ∈ [0,∞) and cn → c ∈ [0, 1]. Then (8.12) holds for the distributionQ :=
∑∞

k=0 pλ(k)L
(

∑k
i=1 log(1 + cVi)

)

with the Poisson weightspλ(k) := e−λλk/k!. But this mea-

sureQ satisfies
∫

exQ(dx) = 1, whencelim sup Egnφn(X) < 1. This contradiction shows that

nδn → ∞.

Secondly suppose thatnδn → ∞ but bn 6→ ∞. We assume w.l.o.g. thatbn → b ∈ [0,∞).

Lindeberg’s Central Limit Theorem and elementary calculations yield (8.12) with gaussian dis-

tribution Q = N (−b2/24, b2/12). Again the limit distribution satisfies
∫

exQ(dx) = 1. Hence

bn → ∞. 2

Theorem 4 concerns our specific multiscale procedure. It will be derived from the following

basic result.

Lemma 14 For a bounded open intervalI andδ ∈ (0, 1] letf be a density inF
(

I, δ,D
√

log(e/δ)/n
)

with D ≥
√

24. Then

nδ ≥ D̃ max
(

log(e/δ),K log(en)
)

with D̃ := D2/4 andK ≥ 1 −
(

log D̃ + log log(en)
)

/ log(en). Suppose that

(8.13) D ≥
√

24

(1 − ǫ)2
√

1 − γ − 2/(nδ)

(

1 +
κn(α) + η

Γ(δ)
+

γ + 2/(nδ)

Γ(δ)2

)

for certain numbersǫ ∈ (0, 1), γ ∈ (0, 1/2] andη > 0. Then

P

(

D+(α) contains no intervalJ ⊂ I
)

≤ exp(−nδγ2/2) + 2 exp
(

−D
√

nδ log(e/δ) ǫ2/8
)

+ exp(−η2/2) .

Proof of Lemma 14. The inequalities2
√

δ ≥ H(f, I) ≥ D
√

log(e/δ)/n entail thatnδ ≥
D̃ log(e/δ). Now writenδ = D̃K log(en) for someK > 0. In case ofK ≤ 1,

D̃K log(en) ≥ D̃ log(e/δ) = D̃
(

log(en) − log(D̃K log(en))
)

≥ D̃ log(en)
(

1 − log D̃ + log log(en)

log(en)

)

,

and dividing both sides bỹD log(en) yields the asserted lower bound forK.

The numberN := #{i : X(i) ∈ I} has distributionBin(m, δ) with m ∈ {n, n + 1, n + 2}.

Consequently it follows from Chernov’s exponential inequality for binomial distributions (cf. van

der Vaart and Wellner 1996, A.6.1) that

P(N ≤ (1 − γ)nδ) ≤ exp(−nδγ2/2) .
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SinceD ≥
√

24 by assumption, we can conclude thatnδ ≥ D2/4 > 6, so that(1 − γ)nδ ≥ 3. In

case ofN ≥ 3 let j := min{i : X(i) ∈ I} andk := max{i : X(i) ∈ I}, i.e.N = k−j+1. In order

to bound the probability of|Ijk|/|I| < 1−ǫ, we writeI = (a, b) and defineI(ℓ) := (a, a+ǫ|I|/2],
I(r) := [b − ǫ|I|/2, b). Then

nF (I(r)) ≥ nF (I(ℓ)) ≥ n inf
I

f ′ · |I(ℓ)|2/2 = nH(f, I)
√

δ ǫ2/8

≥ D
√

nδ log(e/δ) ǫ2/8 ,

whence

P(N ≤ 1 or |Ijk|/|I| ≤ 1 − ǫ)

≤ P(no observations inI(ℓ)) + P(no observations inI(r))

≤ 2 exp
(

−D
√

nδ log(e/δ) ǫ2/8
)

.

From now on we always assume thatN ≥ (1 − γ)nδ and |Ijk|/|I| ≥ 1 − ǫ. With P
∗(·) we

denote conditional probabilities given these two inequalities. The definition ofD+(α) implies

thatP∗(D+(α) contains noJ ⊂ I
)

is not greater thanP∗(Tjk(X) ≤ cjk(α)
)

. On the other hand,

it follows from Proposition 5 that

P
∗
(

Tjk(X) ≤ D̃(N − 2)

6
− η

√

N − 2

3

)

≤ exp(−η2/2) for anyη ≥ 0 ,

whereC̃ := H(f,Ijk)/
√

F (Ijk). Thus it suffices to show that

C̃(N − 2)

6
− η

√

N − 2

3
≥ cjk(α) .

By definition ofcjk(α) this is equivalent to

C̃

√

N − 2

12
≥ Γ

(N − 1

n + 1

)

+ κn(α) + η .

But the left hand side is not smaller than

(1 − ǫ)2H(f, I)√
δ

√

N − 2

12
≥ (1 − ǫ)2H(f, I)

√

(1 − γ)nδ − 2√
12δ

≥ D
(1 − ǫ)2

√
1 − γ̃√

24
Γ(δ)

≥ Γ(δ) + κn(α) + η +
γ̃

Γ(δ)

with γ̃ := γ + 2/(nδ), whereasΓ((N − 1)/(n + 1)) ≤ Γ((N − 2)/n) is not greater than

Γ(δ(1 − γ̃)) ≤ Γ(δ) − log(1 − γ̃)/Γ(δ) ≤ Γ(δ) + γ̃/Γ(δ) . 2
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Proof of Theorem 4. Note first that (4.2) and the first part of Lemma 14 entail that

nδn ≥ C2/4 ≥ 6 and nδn ≥ (C2/4 + o(1)) log n .

In particular,#In ≤ δ−1
n = o(n).

We apply Lemma 14 tof = fn and all intervalsI ∈ In. Precisely, we shall introduce suitable

numbersγn ∈ (0, 1/2], ǫn ∈ (0, 1) andηn,I > 0. According to Lemma 14, the probability that

someI ∈ In does not cover an interval fromD+(α) is bounded by

(8.14) #In

(

exp(−nδnγ2
n/2) + 2 exp

(

−C
√

nδn log(e/δn) ǫ2
n/8
)

)

+
∑

I∈In

exp(−η2
n,I/2),

provided that

C
(

1 +

√
2bn

Γ(Fn(I))

)

≥
√

24

(1 − ǫn)2
√

1 − γ̃n

(

1 +
κn(α) + ηn,I

Γ(Fn(I))
+

γ̃n

Γ(Fn(I))2

)

for all I ∈ In, whereγ̃n := γn + 2/(nδn) = O(1). Note also thatκn(α) = O(1) by virtue of

Theorem 2. Hence the preceding requirement is met if for every constantA > 0 and sufficiently

largen,

(8.15) C
(

1 +

√
2bn

Γ(Fn(I))

)

≥
√

24

(1 − ǫn)2
√

1 − γ̃n

(

1 +
A + ηn,I

Γ(Fn(I))

)

for all I ∈ In.

In setting (i) we use constantsγn = γ ∈ (0, 1/2], ǫn = ǫ ∈ (0, 1) to be specified later and

define

ηn,I :=
√

2 log(1/Fn(I)) + bn ≤ Γ(Fn(I)) +
√

bn.

Sinceδ log(e/δ) is nondecreasing inδ ∈ (0, 1], it follows from nδn ≥ (C2/4 + o(1)) log n that

√

nδn log(e/δn) ≥ (C/2 + o(1)) log n .

Hence the bound in (8.14) equals

o(1) ·
(

exp
(

−(C2γ2/8 − 1 + o(1)) log n
)

+ exp
(

−(C2ǫ2/16 − 1 + o(1)) log n
)

)

+
∑

I∈In

Fn(I) exp(−bn/2)

and tends to zero, provided thatγ >
√

8/C andǫ > 4/C. Moreover, the right hand side of (8.15)

is not greater than
√

24

(1 − ǫ)2
√

1 − γ − o(1)

(

2 +
A +

√
bn

Γ(Fn(I))

)

=
2
√

24 + o(1)

(1 − ǫ2)
√

1 − γ

(

1 +
o(bn)

Γ(Fn(I))

)

.
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Hence the conclusion for setting (i) is correct if, say,ǫ = 4/(2
√

24) =
√

1/6, γ =
√

8/(2
√

24) =
√

1/12, while C is strictly larger than

2
√

24

(1 − ǫ)2
√

1 − γ
< 34 .

In settings (ii–iii) we define

γn :=
(

2 log(D#In)/(nδn)
)1/2

,

ǫn :=
(

(8/C) log(D#In)
/
√

nδn log(e/δn)
)1/2

,

ηn,I :=

{

√

2 log(1/Fn(I)) + bn in setting (ii),

bn/D in setting (iii),

for some (large) constantD > 1. Then the bound in (8.14) is not greater than

3/D +

{

exp(−bn/2) in setting (ii)
exp
(

log #In − b2
n/(2D2)

)

in setting (iii)

}

= 3/D + o(1).

Thus it remains to verify (8.15).

Note thatγn → 0 by assumption. Moreover, since#In ≤ δ−1
n , the termlog(D#In) is not

greater thanlog(D/δn)1/2 log(D#In)1/2, whence

ǫn ≤
√

8/C(log D)1/4
(

log(D#In)/(nδn)
)1/4 → 0.

Hence in setting (ii) the right hand side of (8.15) is not greater than

(

2
√

24 + o(1)
)

(

1 +
o(bn)

Γ(Fn(I))

)

,

so that (8.15) is satisfied for sufficiently largen, if C > 2
√

24. In setting (iii), the right hand side

of (8.15) is not greater than

√
24
(

1 + O(γ̃n + ǫn) + (1 + o(1))
A + bn/D

Γ(Fn(I))

)

.

According to the first part of Lemma 14,nδn ≥ (C2/4) log(e/δn) ≥ (C2/8)Γ(Fn(I))2 for all

I ∈ In. Thus

γ̃n + ǫn ≤ O
(

log(D#In)1/2
)

Γ(Fn(I))
=

o(bn)

Γ(Fn(I))
for all I ∈ In.

Consequently, (8.15) is satisfied ifC ≥
√

24. 2
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