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Abstract Let (S, S2) = (Rcos(®), Rsin(®)) be a bivariate random vector
with associated random radius R which has distribution function F being
further independent of the random angle ®. In this paper we investigate
the asymptotic behaviour of the conditional survivor probability ,,(y) :=
P [,051 + 1 =028 > y|S| > u} ,p € (—=1,1),e R when u approaches the
upper endpoint of F. On the density function of ® we impose a certain local
asymptotic behaviour at 0, whereas for F' we require that it belongs to the
Gumbel max-domain of attraction. The main result of this contribution is an
asymptotic expansion of /, ,, which is then utilised to construct two estimators
for the conditional distribution function 1 — 7,,,,4. Furthermore, we allow ©® to
depend on u.
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240 E. Hashorva

1 Motivation

Let (81, S2) be a spherical bivariate random vector with associated random
radius R > 0 (almost surely) with distribution function F. The random vector
(X, Y) with stochastic representation

(X.v)< (Sl, 08 ++/1— ,OZSZ>, pe(=1,1)

is an elliptical random vector (é stands for equality of the distribution func-
tions). If F is in the Gumbel max-domain of attraction with positive scaling
function w, i.e.,

. 1= Flu+x/w)) B
’}gg I Fa =exp(—x), VxelR, (1)

where xr € (0, co] is the upper endpoint of F, then Theorem 4.1 in Berman
(1983) implies the following Gaussian approximation

lim P{Zu,p > pu—i—y\/m} - P{Z > y/Y/1 —pz}, vy eR, (2)

utxr

with Z,, , £ Y|X > u and Z a standard Gaussian random variable (mean 0
and variance 1).

Berman’s result shows that the Gumbel max-domain of attraction assump-
tion is crucial for the derivation of Eq. 2. Conditional limit results for F in
the Weibull max-domain of attraction and (X, Y) a bivariate elliptical random
vector are obtained in Berman (1992), Hashorva (2007b). The case F is in the
Fréchet max-domain of attraction is simpler to deal with, see Berman (1992).

As shown in Cambanis et al. (1981) we have the following stochastic
representation

(S1, $2) £ (Rcos(®), Rsin(®)), 3)

with R independent of the random angle ® which is uniformly distributed
on (—m, ), i.e., (cos(®))? possesses the Beta distribution with parameters
1/2,1/2.

When (cos(®))? is Beta distributed, then the random vector (S, S,) is a
generalised symmetrised Dirichlet random vector. Generalisation of Eq. 2 for
such (S, Sy) is presented in Hashorva (2008b) with limit random variable Z
being Gamma distributed (see below Example 1).

@ Springer



Conditional limit results for type I polar distributions 241

Three natural questions arise:

a) What is the adequate approximation of the conditional survivor function
P {ZL,. o > y} if ® € (—m, ) is some general random angle with unknown
distribution function?

b) What can be said about the limit random variable Z ?

¢) Does Z has a more general distribution if the random angle ® = ©,, varies
with u?

In this paper we show that if ®, possesses a positive density function /4, with
a certain local asymptotic behaviour at 0, then we can answer both questions
raised above. The generalisation of Eq. 2 for bivariate polar random vectors
(see Definition 1 below) satisfying Eq. 1 is given in Section 3. Two applications
of our results are presented in Section 4. The first one concerns the asymptotic
behaviour of survivor functions of bivariate polar random vectors. In the
second application we discuss the estimation of the conditional distribution
function P{Z,,, < y}. Proofs and related results are relegated to Section 5.

2 Preliminaries

We shall explain first the meaning of some notation, and then we introduce the
class of bivariate polar random vectors. A set of assumptions needed to derive
the main results of this paper concludes this section.

If X is a random variable with distribution function H this will be alterna-
tively denoted by X ~ H. When H possesses the density function # we write
X = h.

In the following v is a positive measurable function such that for all z €
(0, 00)

¥(z) < Kmax (z,27%), K>0,k€(=1/2,00), i=1,2, (4)

where E{y(W?/2)} > 0 with W a standard Gaussian random variable. Since
E{y/(W?/2)} < oo we can define a new distribution function ¥ on IR by

JEexp(—s?/2) v (s%/2) ds
[ exp (—s2/2) ¥ (s2/2) ds

V(z) = , VzelR. (5)

We denote by ¥, 4, «, > 0 the Gamma distribution with density function
x*~Lexp(—Bx)B%/T'(a), x € (0, c0), where I'(-) is the Gamma function.
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242 E. Hashorva

Next, we introduce the class of bivariate polar random vectors. Throughout
the paper R denotes a positive random radius with distribution function F
independent of the random angle ® € (—x, ), and (S, S») is a bivariate
random vector with representation (3). In the special case ® is uniformly
distributed on (-, 7r) for any two constants ay, a, (see Lemma 6.1 in Berman

1983) we have
a1S1+azSQi,/a%+a§Sl i,/a?+a%S2, (6)

hence linear combinations of spherical random vectors (i.e. the elliptical
random vectors) are very tractable.

If the random angle ® is not uniformly distributed on (-, ), then Eq. 6
does not hold in general. In this paper we do not make specific distributional
assumptions on ©. We assume however that the random angle ® possesses a
positive density function /4 on (—, 7).

Definition 1 A bivariate random vector (X, Y) is referred to as a bivariate
polar random vector with coefficients a;, b;,i = 1,2 if it has the stochastic
representation

(X, V) L (@18 + @280, 5151 +b255), (51, S5) £ (Reos(®), Rsin(®)), (7)
where R~ F and R > 0 (almost surely) being independent of the random

angle ® € (—m, ).

Clearly, bivariate elliptical random vectors are included in the above class,
which is defined in terms of three components, a) the distribution of the
associated random radius R, b) the distribution function of the random angle
0, and c) the deterministic coefficients a;, a,, b1, b,. In this paper we consider
for simplicity the case

ar=1,a0=0, andb; =p,br=+1—-p2, pe(—1,1).

We refer to p as the pseudo-correlation coefficient, and call (X, Y) simply a
bivariate polar random vector with pseudo-correlation coefficient p. We have
thus the stochastic representation

(XY (81,081 +V/T=p28:). (81, )£ (Reos(®), Rsin(®)), R~F,
(8)

with R > 0 independent of ©.
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Conditional limit results for type I polar distributions 243

We note in passing that Sy, S, are in general dependent random variables.
If S; and S, are independent, for instance if R? is chi-squared distributed with
2 degrees of freedom and ® is uniformly distributed on (-, 7), then (X, Y) is
a linear combination of independent Gaussian random variables.

Next, we formulate three assumptions needed in this paper:

Al.

A2.

A3.

[Gumbel max-domain of attraction]

The distribution function F with upper endpoint x5 is in the Gumbel
max-domain of attraction satisfying Eq. 1 with the scaling function w.
Further, suppose that F(0) = 0 and xr € (0, oo].

We formulate next an assumption for the second order approximation in
Eq. 1 initially suggested in Abdous et al. (2008).

[Second order approximation of F]

Let F be a distribution function on [0, co) satisfying Assumption Al.
Suppose that there exist positive functions A, B such that

- F](iflf - ) _ exp| = Aw B ©)
holds for all u < xr large enough and any x € [0, c0). Furthermore we
assume lim,4,, A(u) =0, and B is locally bounded on finite intervals of
[0, o0).

[Local approximation of 4,,, n > 1 along t,]

Lethy, : (—m, m) — [0, 00),n > 1 be a sequence of density functions such
that 4, (0) = h,(—6), V6 € [0, /2), and let ¢,, n > 1 be positive constants
tending to oo as n — oo. Assume that for any sequence of positive
measurable functions t,(s) = 1 + O(s/t,),n > 1,5 > 0 for all large n we
have

hy, <rn(s)\/32> = hy(1/N/12) ¥, (2Ta(s)), Vs, 2 € [0, 00), (10)

where y;,, n > | are positive measurable functions such that

Y, () = ¥(s), n— o0

locally uniformly for s, z € [0, oo) with ¢, satisfying Eq. 4 for all large n
and all s € [0, et,,) with ¢ a fixed positive constant.

Our last assumption concerns the second order asymptotic behaviour of
h,,n>1at0.
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244 E. Hashorva

A4. [Second order approximation of 4,,n > 1 along t,]
Suppose that Assumption A3 holds for some given sequence t,,n > 1,
and further for any sequence of functions z,(s) = 1 + O(s/t,),n>1,5>0
for all large n we have

1 2z
mhn (Tn(s)\/;> — ¥ (2)

where a, b, n > 1 are positive measurable functions such that

<a(t,b,(z), Vs, zel0,00),

(11)

lim a(t,) =0, lim b,(s) = b(s),

and b,, n > 1 satisfy Eq. 4 for all n large.

3 Main results

In this section we consider a bivariate polar random vector (X, Y) with pseudo-
correlation p and representation (8). We are interested in the asymptotic
behaviour of the conditional distribution Y| X > u,, when u,, tends (n — o) to
the upper endpoint xr of F. Several authors have dealt with such conditional
probabilities and their statistical estimation, see e.g., Gale (1980), Eddy and
Gale (1981), Berman (1982, 1983, 1992), Heffernan and Tawn (2004), Abdous
et al. (2005, 2008), Heffernan and Resnick (2007), and Hashorva (2006,
2008a, b). Statistical modelling of conditional distributions is treated in the
excellent monograph Reiss and Thomas (2007).

The main restriction on F is that it satisfies Assumption A1l with the scaling
function w. Such polar random vectors are referred to alternatively as Type |
polar random vectors.

The scaling function w possesses two crucial asymptotic properties: a) uni-
formly on the compact sets of IR

lim w =1, (12)
utxp w(u)
and b)
liTm uw(u) = oo, liTm w)(xp —u) = oo if xp < co. (13)

Refer to Galambos (1987), Reiss (1989), Embrechts et al. (1997), Falk et al.
(2004), Kotz and Nadarajah (2005), De Haan and Ferreira (2006), or Resnick
(2008) for more details on the Gumbel max-domain of attraction.
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Conditional limit results for type I polar distributions 245

We derive in the next theorem the asymptotic behaviour of R cos(®,,), with
®, a random angle depending on n.

Theorem 1 Let R be a positive random radius with distribution function F
independent of the random angle ®,, = h,,n > 1. Let u,,n > 1 be constants
such that u,, < xp,n > 1 and lim,_, , u, = xp with xp € (0, co] the upper end-
point of F. If F satisfies Assumption Al, and the density functions h,,n > 1
satisfy Assumption A3 along t, := u,w(u,),n > 1 with ¥, ¥, ,n > 1, then we
have

P{Rcos(©,) > u,} = (1+ o)), *h,(1//1:)[1 = Fuy)]

X /OO exp (—x2/2) W (x2/2) dx, n—oo. (14)

oo

If ®, = ©,Vn > 1 not depending on n, then R cos(®) has distribution function
in the Gumbel max-domain of attraction with the scaling function w. Further-
more, the convergence in probability

qn|Rcos(®) — un‘ Rcos(®) > u, 2 0, n—> o (15)

holds for any sequence q,, n > 1 such that lim,,_, . w(u,)/q, = oco.

We note in passing that Eq. 14 is obtained in Theorem 12.3.1 of Berman
(1992) assuming that (cos(®,))? is Beta distributed with positive parameters
a, b. See also Tang (2006, 2008) for some important results on tail asymptotics
of products of independent random variables.

We state now the main result of this section.

Theorem 2 Let (X, Y,),n > 1 be a bivariate polar random vector with rep-
resentation (8), where p € (—1,1), R~ F and ©, = h,,n > 1. Let u,,n > 1
be a positive sequence such that u, < xp,n > 1 and lim,,_, o, u, = xp. Suppose
that F satisfies Assumption Al and h,,n>1 satisfy Assumption A3 along
b=, wUy), n>1with ¢, Y., n> 1. If further limsup,,_, ., h, (1 + 0(1))//11)/
h,(1/4/t,) < 0o, then for any x > 0, y € IR we have

lim PY, < puy + yun/~/tn, Xn < tty + x/w(uy)

n—o00 -

:P{Ziy/\/l—pz,fo}, (16)

X, > un}

with Z ~ \V being independent of W ~ WV, |, where WV is defined in Eq. 5.
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246 E. Hashorva

Assumption A3 is somewhat cumbersome. If we consider random angles ®,,
not depending on # for all large n, a tractable condition on the local asymptotic
behaviour of the density of ®,, is imposed below.

Theorem 3 Under the setup of Theorem 2 if ®,, = ® = h, n > 1 and instead of
Assumption A3 we suppose that the density function h of © is regularly varying
at 0 with index 28 € (—1, 00), then for any sequence u, < xp,n > 1 such that
lim,,_, oo U, = X We have

5+1/2

P{X,>u,}=(1 +o(1))mzn1/2h(,/1/tn)[1 — F(uy)], n— oo,

(17)

and X, has distribution function in the max-domain of attraction of the Gumbel
distribution with the scaling function w. Furthermore Eq. 15 holds for any
sequence qn, n > 1 such that lim,_, . w(u,)/q, = oo, and for x > 0, y € IR given
constants Eq. 16 is satisfied with Z* ~ Wsi1/2,172, and Z symmetric about 0
independent of W ~ ¥y .

We present next an illustrating example.

Example 1 (Kotz Type 111 Polar Random Vector) Let R ~ F be a random
radius with tail asymptotic behaviour

1—Fu) = (1+0(1))KuNexp(—ru5), K>0,6>0,NeclR, u— oo. (18)

If ® « his arandom angle independent of R we call (X, Y) with stochastic rep-
resentation (8) a Kotz Type III polar random vector with pseudo-correlation
o€ (—1,1). If weset w(u) :=réu’~', u > 0, then

P{R>u+x/wu)}

lim =exp(—x), VxelR

U—>00 P{R > Ll}

implying that F is in the Gumbel max-domain of attraction with the scaling
function w. Suppose that () = h(—6), V6 € [0, 7/2), and further

h(®) = cqp|sin(@) > cos@)|* 7!, 0 e (—e,6), €€ (0,m),

where a, b, ¢, are positive constants. Note that when

1T(a+b)
2T(@TI(b)’

&E=T, Cab =

then (X,Y) is a generalised symmetrised Dirichlet random vector (see
Hashorva 2008b). It follows that Assumption A3 is satisfied with

h(1/vt) = (1+o(D)capty* ™  Y(s) =292 s>0, 1, > o0
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and 4 is regularly varying at 0 with index 2a — 1. By Eq. 14 for u, — oo we
have

P{X > u,} = (14+0(0))cap K(2/(r8)) T (@u) = exp (— ru).
Next, for any x > 0, y € IR Theorem 2 implies

lim P1Y < pu, ~|—yu1"3/2, X <u, —}—xu,ll"s‘X > un}

n—o0 n

-P {Z < yWrs/(L— p?), W < r5x} ,

with Z symmetric about 0 independent of W ~ W j,and Z% ~ ¥, 2. Remark
that if a = 1/2, then Z is a standard Gaussian random vector. When also
b =1/2,then (X, Y) is an elliptical random vector with pseudo-correlation p.

In the next theorem we show a second order correction for the condi-
tional limit result obtained in Eq. 16 which is of some interest for statistical
applications.

Theorem 4 Under the assumptions and the notation of Theorem 2, if further-
more Assumptions A2 and A4 are satisfied where xp = oo and p € [0, 1), then

we have locally uniformly for any z € IR (set 2, , *= puy + ZUny/1 — p?//1n)

1 o
PY, > z,,|X, nt=1—W —_—
{ > Znp >u} (Z)Jr\/ﬂm (z)
1
+0 (A(un) +a(t,) + z_) , n—o0, (19)
provided that

o0 o0
max (/ B(s)ds,f B(s) max(s’\‘,s“)ds) < 00,
0 0
where A; € (—1/2,00),i = 1, 2 are the constants related to Assumption A3.

Remark 1

a) Abdous et al. (2008) show several examples of distribution functions F
satisfying Assumption A2. The assumptions on / can be easily checked for
common distribution functions using Taylor expansion.

b) If we assume £ is regularly varying with index 28 € (—1, oo) instead of the
Assumption A3 and modifying A4 accordingly, then Eq. 19 holds with
V= ‘115+1/2’1/2, provided that

max(/Oo B(s)ds, /oo B(s)s‘sds) < 00.
0 0
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248 E. Hashorva

c) Since R >0 with distribution function in the Gumbel max-domain
of attraction implies that also R”, p € (0,00) has distribution func-
tion in he Gumbel max-domain of attraction our results can be
easily extended when considering linear combinations of (S, $,) =
(RI|cos(®,)|'/P, RI|sin(®,)|"/P) with R, ©, € [0, /2), I}, I, mutually in-
dependent and /;, I, two random variables assuming values —1, 1 such that
P{l, =1} P{l, =1} > 0 holds.

4 Applications

In this section we present two applications: a) we obtain an asymptotic
expansion for the joint survivor probability of polar random vectors, and b) we
discuss briefly the estimation of the conditional distributions of such vectors.

4.1 Tail asymptotics

Let (X, Y) be a bivariate polar random vector with pseudo-correlation co-
efficient p € (—1, 1). Assume that the distribution function F of the random
radius R has an infinite upper endpoint. In various situations quantification
of the asymptotics of the joint survivor probability P{X > x,Y > y} is of
interest when x, y become large. Our asymptotic results in Section 3 imply
an asymptotic expansion of this survivor probability, provided that (X, Y) is
of Type I. Explicitly, under the assumptions of Theorem 3 we obtain for any
x>0,y eRandularge (setx, := u+ x/ww), yu, = pu+ yJu/w), u > 0)

P{X > Xx,, Y > yu,p}
= (1 + 0(1)) exp(—x)[l — \I’3+1/271/2(y)]P{X > Lt} , U— Q.

In our asymptotic result the sequence y, , increases like pu since by (13)

Yup = (1 + ﬁ) pu=(1+o())pu, u— oo.

Itis of some interest to consider also constants y, , = (1 + o(1))cu, u > 0, with
¢ € (p, 1]. In view of Theorem 3 for any ¢ € (—o0, p) we have

P{X >x,Y >y.c}=(14+0o0)exp(—x) P{X > u}, u— oo.

When ¢ € (p, 1] the joint survivor probability P {X > x,, Y > y, .} diminishes
faster than P {X > u},i.e.,

fim P{X > X, Y > yu,c}

=0.
n—o00 P{X > u}
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Conditional limit results for type I polar distributions 249

If (X,Y) is a bivariate elliptical random vector we may write (see Hashorva
2007a)

ap,cKp,c 1— F(Olpycl/t)

2 uw(otp,cu)

P{X>u,Y>cu}=(1+0(1)) , u—>oo (20)

for any c € (p, 1] with

(1)
(1=cp)(c=p)
In a forthcoming paper we extend Eq. 20 to the case of Type I bivariate polar
random vectors.

wpei=/(1 =20+ 02) /(1 = p?) € (1.00), Ky i= € (0, 00).

4.2 Estimation of conditional distributions

Let (X;, Y),i <n,n > 1 be independent and identically distributed bivariate
polar random vectors with pseudo-correlation coefficient p € (—1, 1) and ran-
dom radius R ~ F with xr = 0o. Define the conditional distribution function

I, (y)=P{Y, <yl X >x}, x,yelR

For (X1, Y)) elliptically distributed Abdous et al. (2008) provide novel es-
timators of the the conditional distribution function /, .. Motivated by the
aforementioned paper under the assumptions of Theorem 3 we have (set
t, := uw(u), u > 0 and suppose that F satisfies Assumption Al)

SEHP;’Ip,u(”[P + W 1/t]) = Ysipap(y/vV1 - ,02)‘ -0, u—>o0, (21)
y

where 24 is the index of the regular variation of 4 at 0. Under Assumptions A2
and A4 we obtain additionally the second order asymptotic expansion

Lu(ulp + 1/t + y3/1/t]) = Wsy10.12(y/V 1 = p?)
+ O (A(u) +a(u) + [l) , u—o0. (22)

These approximations motivate the following estimators of /, , for x large and
y positive, namely
7 Y — PnX
I/()l,?v,n(y) = Wsii2.12 = = = , n>1,
(1= 42) x/ iy (x)

and

5 Y — pn (x + 1/0,(x)
I;()%gc,n(J’) =Wsii2,1,2 Al n() , n>1,

(1 - ﬁyzl) x/lz)n(x)

where p,, is an estimator of p, and w,(-) is an estimator of w(-).
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250 E. Hashorva

An estimator of p,, can be constructed by considering the relation between
p and the expectation E{Y}, provided that the latter exists. Estimation of §
and w are difficult tasks. If the scaling function w (related to the Gumbel
max-domain of attraction of F) is simple, say w(u) = cyu”~', ¢,y > 0,u > 0,
then an estimator w, is constructed by estimating separately ¢ and y from
X1, ..., X, (recall X; has distribution function in the Gumbel max-domain
of attraction with the scaling function w). See Abdous et al. (2008), Hashorva
(unpublished manuscript) for more details.

In practical situations also the constant § might be unknown and therefore
has to be estimated. One possibility of estimating § is to utilise Eq. 17.

We note that for elliptical random vectors both estimators /() , and 1), ,
are suggested in Abdous et al. (2008). Since in this paper we consider estima-
tion of ¢ and y based on the sample X7, ..., X, and not from the observations
related to the random radius R both estimators suggested have a different
asymptotic behaviour as the original ones suggested in the aforementioned

paper.

5 Related results and proofs

Set in the following

0, (. y) =y 1+ ((v/m) — p)/(1 = p2).
ay(x, y) =a,(x, y)x/y, x,yelR,y#0, pe(=11. (23)

For 1 <a < b < o0, x > 0 constants, and &, F two positive measurable func-
tions we define

b 1
J(a,b,x, h):= 1 — F(xt)|h(t) ———— dt. 24
(a,b,x, h) /a [ (x0)] (t)tm t (24)

If b = oo write simply J(a, x, h) suppressing the second argument. Write E(-)
and Ep(~) instead of A(arccos(1/-)) and A(arcsin(1/-) — arcsin(p)), respectively.

Next, we shall prove two lemmas, and then proceed with the proof of the
main results. The first lemma is formulated for F with infinite upper endpoint.
It generalises Lemma 5 in Hashorva (2008a) for bivariate elliptical random
vectors. If F has a finite upper endpoint, say x = 1, then a similar result holds.
Statement b) and c¢) should be reformulated requiring additionally that x> +
20xy + y* < 1 — p? with |x], |y| € [0, 1].

Lemma 5 Let the random radius R ~ F be independent of the random angle
® € (—m, ) and define a bivariate polar random vector (X, Y) with pseudo-

correlation p € (—1, 1) via Eq. 8. If the upper endpoint xr of F is infinite and

@ Springer



Conditional limit results for type I polar distributions 251

® possesses a density function h such that h(6) = h(—0), 6 € [0, 7/2), then we
have:

a) Foranyx >0

P{X >x}=2J(1,xh). (25)

b) Forany x > 0,y € (0, x] such that y/x > p
P(X >x,Y > y)=J(a,0x. ). x, h) + J(a(x, y), y. h,). (26)
¢) Foranyx>0andy/x € (0,p),p >0

P{X>xY>yl= 2](1, X, l~l) - J(oe,)(x, V), X, Z) + J(a;(x, ), y,ﬁp).
27)
Proof Since the associated random radius R is almost surely positive being

further independent of ® and h(—6) = h(0), cos(—6) = cos(#), VO € [0, 7/2)
for any x > 0 we obtain

/2
P{X >x} = 2/ P{R > x/cos(0)} h(0) do
0

- 2/00 [1- F(xs)]ﬂ ds =2J(1,x, ).
! sv/s?—1

We prove next the second statement. By the assumptions (X, Y) 4 (Rcos(®),
R sin(® + arcsin(p))), consequently for x > 0, y > 0 two positive constants

P[51 >x,pSl+\/1—p252>y}

= P{Rcos(®) > x, Rsin(® + arcsin(p)) > y}.

Since sin(arcsin(p) + 0)/ cos(#) is strictly increasing in 6 € [— arcsin(p), /2]
with inverse arctan((- — p)/+/1 — p?) (see Kliippelberg et al. 2007) we have

/2
P{X>x,Y>y}:/ P{R > x/cos(0)}dQ(6)
arclan((y/x—p)/«/ l—pz)

arctan((y/x—p)/«/ l—pz)
+/ P {R> y/sin(f+arcsin(p))} dQ(6),

arcsin(p)

@ Springer



252 E. Hashorva

with Q the distribution function of ®. Transforming the variables we obtain
fory/x > p

P{X>xY>y}= J((xp(x, V), X, ﬁ) + J(oz;(x, V), y,ﬁp),
and if y/x < p with x, y positive
P{X>xY >y =2J(,x, ﬁ) — J(ap(x, y), x, 71) + J(aZ(x, ), y,ﬁp),
hence the proof is complete. O
Lemma 6 Let F be a distribution function with upper endpoint xp € (0, 0o]

satisfying further Eq. 1 with the scaling function w and let 1 < a, <b,, y, > 1,
u, € (0, xp), t, := uyw(y,uy,), n > 1 be positive constants such that

buyu, <xp,n>1, limy, =y e€[l,00), lim pu, = lim b,u, = xf,
n—oo n—0o0 n—oo
(28)
and further
lim t,(a, — y,) =& €[0,00), lim t,(b,—yy) =n€[§,00]. (29)
n—o00 n—oo
Let h, r, Y, n > 1 be positive measurable functions. Assume that for some ¢ > 0
h(yn + s/tn) = r(Yn, t)¥n(s), Vs € [0, &t,] (30)
and
Yu(s) = ¥ (s) € [0,00), n— o0 (31)
locally uniformly with v, satisfying Eq. 4 for all n > 1,s € [0, et,] with A,
i=1,2 € (c,00). Suppose further f;;o h(s)(sv/s? —1)"'ds < K < oo, Vn > 1.
a) Ify e (1,00) and ¢ = —1, then we have
J(am bns urh h)

(Vs tn) 1= F(yn
yvy?i—1 In

= (1 +o(D) u”)/nexp(—x)w(x) dx, n—oo.
3

(32)
b) When y =l and lim,_, o t,(y, — 1) = 7 € [0, 00), then
J(an7 bn, Mn, h)

= (1+0(1))r(y t )m /n exp(—x);l//(x) dx n— oo
VA V2x+27
(33)
holds provided that c = —1/2 if &£ = © = 0 and c = —1 otherwise.
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Proof Set in the following for n > 1

W= Yalln, Ly = ugw(u)), LX) =y + X/,

=1
P = —Y Ty, x>0

C L)YEx) —1

and &, :=t,(ay — Yn), n 1= ty(bp — ). Since lim,_, o u); = xp, then Eq. 13
implies

lim 1, =00, lim w(u,)(xF — u,) = oco.
n—00 n—oo

If ¢y, ¢; are two arbitrary constants such that ¢; > ¢; > 1 for all n large we have

o0 1 o0 1

1— F(u,s)|h(s) ————ds < |1 — F(u, h(s) ——d.
/mz[ ) J1(5) s = [1 = Flus(y +cz>)]/m ) ds
and

2 —

bl’
J(an, by, tn, h) = / [1- F(u,,s)]h(s);1 ds
a, S

s2—1

y+ci 1
> / [1 — Fups)|h(s) ——=ds
a, S
y+c 1
> [1 = F(un(y + cl))]/ h(s)T ds.
an sa/sc — 1

Assume that xp =oo. Since 1 — F is rapidly varying (see e.g., Resnick
2008) i.e.,

. - F(un-x)
lim =

— =0, V 1
n—oo 1 — F(uy,) r=

for any ¢* > 0 we obtain

y+e* 1
J(an, bn,un, h) = (1 1 1 — F(u,s)]h ds.
(s B ttn 1) = (14 0 >)/an [1 - Flans) o) ——ds

If y € (1, 00), then
Yr@s) = ¥(s), n— oo
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locally uniformly for s > 0 and v, satisfying Eq. 4 for all s € [0, e1,,), & > 0. As
in the Proof of Lemma 7 of Hashorva (2007a) as n — oo we obtain

J(an, by, uy, h)

min(yu+nn/tn,y +€)

= (1 +0(1))/

1
[1 = F(uns)|h(s) ——— ds
Yn+En/th S

V82 —1

14+ o0(1) min(y,ty (¥ =yn+¢)) . .
_ {L+o) | [1 = F(u+ x/w(u))]

1
h(l,(x)) ————4d
( (X))ln(x),/lfl(x) —1 *

_ (1+0M) r(yns tn) /mi“ (.ta (v =rte))

Syl &

[1— F(u} + x/w(u})) v (x) dx

= (1+o(D))

1 r()’n’ tn) N "
vWryi—1 I [t~ F(”n)]/g exp(—x)¥ (x) dux.

Next, if y = 1 redefine

1
*($) 1= n(8), >1,5s>0.
Y, (s) T JEG) =1 llﬁ (), n=1ls>
We have
. yis)
Y, () — —m =:Y"(s)

locally uniformly for s > 0. Hence as in the proof above for ¢ > 0 and n — oo
we obtain

min(1y,&l,)

Vi Je,

J(an, by, un, h) = (1+0(1)) [1— F(u; + x/w)) v, (x) dx

= (14 o())r( t)l_—F(u")/nex (—x);l//(x)dx
- Vo In N P V2x+ 21 ’

Similarly, the asymptotic results follow when xr € (0, 00), hence the proof is
complete. O
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Proof of Theorem I We consider for simplicity only the case xr = oco. For all
n large Eq. 25 implies

1
x2—1

P{Rcos(®,) > u,} = 2/00 [1- F(unx)]hn(arccos(l/x)))—lc dx.
1

We have (set ¢, := u,w(u,),n > 1)

V2s
NG

locally uniformly for s > 0. Hence the Assumption A3 on 4, implies

hy(arccos (1/(1 4 5/1,))) = hn(ta($)v/28/tn) = hn(1//1a) ¥, (sTa(s)), s = 0.

arccos (1/(1 +s/tn)) = (1 + O(S/[n)) =:/25/thT(S), n—> 00

Applying Lemma 6 with t —l=y=y,=a,=1,n>1and b, =o00,n > 1
we obtain

P{Rcos(®,) > u,}

— F(u,
= (1+o()h (1/@) (”)/ exp(—s>/2)y (s%/2) ds.

If h, =h,n>1, then by the Assumption A3 we have lim, . h(1//t,)/
h(y.//ty) =1 for any sequence y,,n > 1 such that lim, ., y, = 1. Conse-
quently, the self-neglecting property of w in Eq. 12 implies

_ P{Rcos(©®) > u, + x/w(uy)} . 1= Fluy +x/w(uy))
lim = lim
n— 00 P{Rcos(®) > u,} n—00 1 — F(uy,)
=exp(—x), VYxelR.

Hence for any z > 0

P{q,|Rcos(®) —u,| > z| Rcos(®) > u,}

_ P{Rcos(®) > u, + z/q,}
- P{Rcos(®) > u,}

P{Rcos(®) > u, + (z/wu,)) (wn)/qn))
P{Rcos(®) > u,}

-0, n-— oo,

thus the result follows. O
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Proof of Theorem 2 Setforn > 1and z € R

V=2 Un/w(ty), Xn:=Un/Un, an:=+ 1+ /u)? t:=u,wu,), n>1

and write in the sequel ﬁ,,(~) and E,,, o(-) instead of hj,(arccos(l/-)) and
hy, (arcsin(1/-) — arcsin(p)), respectively.

Since lim,,_. » t, = 0o by the assumptions on 4 making use of Egs. 13 and 15
we retrieve the convergence in probability

A% w(un)/un(Xn - un)

p
X,>u,—>0, n— oo.

Consequently, it suffices to show the proof for p = 0. Next, we prove the
convergence in distribution

Vwun)/u, Y, Lz~ v, n— oo,

with Y} 4 Y. X, > u, and W defined in Eq. 5. Since x, = v,/u, > p = 0 holds
for all large n, we have in view of Lemma 5 for all large n

P{X,>u,Y,>v}l= J(an, Uy, En) +J (Xn_lot,,, vn,ﬁn,p) ,

where a, = 1 4+ (1 + 0(1))z?/(2t,), n — oo. As in the Proof of Theorem 1 we
obtain for the first term

J (o, tn, Zn) = (1+ O(Ii}?(l/\/ﬁ) [1— F(uy)] /oo exp (— x*/2) ¥ (x*/2) dx.

Further, for any s > 0 (set /,(s) := x,; ' +5/(vow(u,)) we have

1 Xn

_ )
L(s) 145/t &/t

1+s/t,
Consequently, the assumption on /4, implies for all s > 0

Z

Jin

where t,(s) := 1+ O(s/t,),s > 0,n > 1. Hence

P (In(8)) = hy ( Tn(S))) = ha(1/V/12) Vg, (2a()2%/2) ,

1
L)y (L(9)* = 1

En,p(ln(s)) = hn(l/\/a)xs/zwr,, (tn(s)zz/Z) ,  h— 00.
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As in the Proof of Lemma 6 we have thus

J (Xn_lanv Uns hn,p) = /‘71 [1 - F(vnt)] np () —F— \/Tl dt

— F(uy) 3/2
w(Uy)

1= F(valu(s)) 5
o T By Va0 12) 8

(WE)

1 — F(un)

= (1+0()hy(1//tn) %9 (22/2)
VW (Up)

° 1-F n n
x/ (un + s/w(uy)) s
22/2+0(1) 1 — F(uy)

=0(J(1,u,,,ﬁ,,)), n— oo

implying

P{Yn > Z/up/w(uy), Xy > un}
. % T
i P{Y; = oot = im =S

3 [ exp (—x%/2) ¥ (x%/2) dx
N [ exp (—=x2/2) ¥ (x2/2) dx

—V(2).
Thus the proof is complete. |

Proof of Theorem 3 By the assumption on /& we have h(s) =s* L(s) for all s >0
in a neighbourhood of 0 with L(s) a positive slowly varying function such that
lim,0 L(ts)/L(¢) = 1, Vs > 0. Furthermore, by Proposition B.1.10 in De Haan
and Ferreira (2006) we have for any ¢ > 0,& > 0

h(ts)
h(t)

— s25‘ < & max (sz‘s"é, sz‘”E) (34)

holds for any s € (0, fy(e, §)/1), t € (0, 1) with £y(e, £) some positive constant.
Since for positive constants #,, n > 1 such that lim,,_, « #, = 00

h ( 2s/ t,,)

— L = (25)° s Vs >0

7 (1) = (25)° = Y (s), >
the result follows along the lines of the Proof of Theorem 2 utilising further
Eq. 34. O

@ Springer



258 E. Hashorva

Proof of Theorem 4 Setforn > 1,z €e IR and |[p| < 1

U 1= Pty + 21 = 02U Jw W), Y 1= Vnftn, by = U w (i),

=1+ (1/x2 = p)/(1 — p?).

In view of Lemma 5 for all large n we have P{X, > u,} =2J(1, u,, iNzn) and
further for p >0,z >0

P{Y, > v, X, > u,} = m [J(otn, Uy, En) +J (Xn_lan, vn,ﬁn,p)] .

In order to show the proof we need to approximate J <1 2; L Up, En) and

J (Xr?lana Un, En,p)- We have

2
=1+ —+0(1/2)., n=1.
21,

As in the Proof of Theorem 2 we obtain n — oo

J (on, tn, hy)
= (14+o)h (1/\/5) j_(””)p—\p(z)]/ exp (— x*/2)y(x*/2) dx

—00

Assumptions A3 and A4 imply ¥ (x) < max(x*', x*2) and b (x) < max(x*1, x?)
for some A;, A} € (—1/2, 00). Consequently, the assumptions on B and b yield

o0 o0 1
— d , B —d ,
/0 exp(—X)¥ (X)v/x dx < o0 /0 (x)lﬁ(x)m X <00

* 1
—x)b(x)——=d .
/0 exp(—x) (x)m X < 00

Define forallx > 0andn > 1

1
(0 + %/t 1,1+ X/1,)> — 1,

gn(x) =

Forall x > 0,n > 1 we have g,(x) < —-L_and further

V2x
L— (x)‘< ! ’1— ! + ! !
Vo = T T T T x/ Vo
1
I S Y NN 35
m!s/ﬁ/( ) (35)
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Consequently, for ¢ > 0 and n large we obtain

Jin

_‘/00 1—FQupt)  /t,
1

- % 1
70 ) — _ L d
(14 &/t 4, T /{ XD () x’

~ 1 o0 1
h, dt— — —d
e T=Fan) iy " Orm /g XD ()= dx

/oo 1= F(un + x/wn)) Iy (1 + x/1,)
‘ 1= F(up) ha(1/ /1)

gn(x) dx

o 1
—/ eXP(—X)W(X)\/—Z—x dx

¢
21 1= F (1 + x/w (1)) hn(1+ X/ 1)
5/; v T RN R

%0 h(1 4+ x/1,) 1
- - d
+/; exp( x)’hnu/ﬂ) ‘”(x)m‘ *

o0 1
Alu, B (X)) ——d
< (u)fz ()Y (X)m X

h(1 + x/1,)

N

+ [ expt-ngu |
¢

+ [ et aw -] dx

< Auy,) /{ * B(x)I//(x)\/Lz_x dx + a(t,) f{ * exp(—x)\/%_xbn(x) dx

5

2 o0
+ 8\t/_ / exp(—x) ¥ (x)v/x dx
n Je

= O A + alty) +1/1,) =: Ru(uwy),

Since

oo

/z2/2+0(1/tn) PV v 2x g ./;2/2 exp(=0¥ () 2x x

=0{/ty), n— oo
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we have
i e Lo
T =y e ) = f L POV ds] = Rt

Assume for simplicity in the following that p > 0 and z > 0. The other case
can be established as in the Proof of Theorem 2. We obtain the first order
asymptotic expansion (set /,(s) := xn" +s/(awuy,)),s >0,n > 1)

J (Xn_lana Un, En,p)

o 1
/ [1 — F(uat) | hin,p () —— dt

nly [V \/Tl
= 1= Fu) [~ 1 — F(uy, +S/w(un)) )
Un W (Un) o000 i 1 — F(uy,)
X ;ds
L(9)y/2(s) — 1
— F(uy)
h,(1/4/1,
F N U (1)
1= Flunts/w) o,
) tlay—1] 1 — F(uy,) Ve, (2°/2(1 + o(1))) ds
— F(uy)
= hy(1/\/ty
ﬁ N v (tty)
h L= Flun+s/ww)
" fz2/2+0<1/z,,> 1 — F(uy,) Vr, (27/2(1 + o())) ds
= P F(uy)
=(1 +0(1))m1//(z Iy (1) i ) .

[o.¢]
xf exp(—s)ds, n— oo.
z2/2

Define next forn > 1 ands > 0

1
gnls) = L(s)Es) — 1
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We have foralls >0,n > 1

gn(s)—5‘<<jr+s/tn) K, gu(s) <pK, p:=p*/V1-p2

with K > 1 a positive constant. Next, for any ¢ > 0 we may write

vw(Uy,)

hn(l/\/a)[l - F(un)]

T (€, v P p) = BU ) exp(=2)|

_ ) /oo 1= F(0aln(9)) Ty, (1 ()
¢

T Fn) Il 5" ds — 5/{ ¥ (£) exp(—s) ds‘

1 = F(un + 5/wn)) hnp(1u(5)) N
- /f ‘ 1 — F(uy) hn(l/ﬂ)g”(s)ds_Pw(f)exp(—s))ds
P (U (5))

PRI S

—exp(=s)

- /"o‘ 1 — F(uy +s/wu,))
—J; 1 — F(uy,)

I p(Li(5))

+/; A Ty

gn(s) = BY(¢)| ds

o (L (s))

vy VOIS

< A KPy (©) / B(s)ds + / exp(—s)
¢ ¢

. /°° exp(s) T, Un(5))
¢

(1)) &

~

gn(s) - P

< A KPY (0) / B(s) ds + Palin)bn(¢) exp(~0)
¢

gn(s) = 7| ds

) / exp(—s)
¢

= Rn(un)-

Hence for all n large since o, = 1 + z2/(2t,) + O(1/12) we may write

VW (L) -1 7N — (2 — 222 =
(17 70) (L — FGan) J(%,, " tns Vns hnp) — PV (27/2) exp (— 2 /2)‘ = R,(u,).
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Consequently, as n — oo

~

J(an, Uy, hn)
1 — F(uy,) * 2 2
= hn(l/ﬂ)T[[l - ‘I’(Z)]f exp(—x"/2)y (x°/2) dx + Rn(un)i|
and

J(Xn_lanv Un,s En,p)

1 1— Fu)[ »p 5 )
= Ehn(l/\/a) N [mlﬁ(z /2)exp(—=z7/2) + Rn(un)i|

implying

P{Y, > v,| X, > uy}

1 o exp(—z2/2) ¥ (2%/2)
=1-¥() + — +Ry(un), 1 — oo
R s Joo exp(=x2/2) ¥ (x2/2) dx n(tn)
The proof for z < 0 follows with similar calculations, hence the result. O
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