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ABSTRACT

In this paper, the problem of estimating the readability
of handwritten text is addressed. The estimation problem is
posed as a two class classification problem where a text is
classified as either readable or unreadable. A classifier is
trained on this two class classification problem. In the train-
ing phase, for each text a number of features are extracted.
At the same time the recognition rate achieved on the text is
determined. Based on the recognition rate, each feature vec-
tor is labelled, i.e., assigned to one of the two classes. The
labelled data is then used to train a classifier. The k-Nearest
Neighbour (k-NN) and the Support Vector Machine (SVM)
classifier are evaluated in this work. Both classifiers show
promising results on a test set of 715 text lines from 20 writ-
ers.

1. INTRODUCTION

In handwritten text recognition, false recognition is expen-
sive. An example is an address reading system where a letter
with a falsely recognized address is directed to a wrong des-
tination, possibly returned, and then needs to be reprocessed.
Moreover, false recognition is expensive in the sense that a
needless recognition attempt has been made. Therefore, it
would be interesting to filter out unreadable text before it is
fed into a text recognition system. The text that has been fil-
tered out can then be processed by a human or a specialised
recognition system, thus decreasing the overall cost.

The readability problem can be posed as a classification
problem [10]. A text is classified as either readable or un-
readable. A classifier can be trained on this two class classi-
fication problem. The training data consists of a set of feature
vectors extracted from the text together with the label of the
class the text belongs to. In the classification phase, feature
vectors are first extracted from the text and then classified.
If they are classified as readable they are passed on to the
text recognition system. Otherwise, if they are classified as
unreadable, they are filtered out. Fig. 1 gives a schematic
overview of readability classification.

In the present paper, the problem of estimating the read-
ability of handwritten text is studied. Only very few works on
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Figure 2: Training of the Readability Estimation System

readability estimation exists. The problem of predicting the
accuracy of an Optical Character Recognition (OCR) system
for machine printed text has been studied in [2, 12]. Other,
loosely related works deal with writer identification (for an
overview of recent work see [20]), handwriting style classifi-
cation [15], and sub-category classification analysis of hand-
writing [5]. However, to the best of the authors’ knowledge,
the particular problem of estimating the readability of hand-
written text has never been addressed in the literature before.

The rest of this paper is structured as follows. In the next
section, the proposed readability estimation system is intro-
duced. Section 3 describes the data and the experimental
setup. The results are presented and discussed in Section 4.
Finally, Section 5 concludes the paper and proposes future
work.

2. SYSTEM DESCRIPTION

This section describes the readability estimation system. In
the training phase, each text is transformed into a feature vec-
tor and the text recognition rate achieved on the text is deter-
mined. Next, the feature vectors are labelled, i.e., assigned
to one of the classes readable or unreadable depending on
the recognition rate. The labelled data is then used to train
a classifier. A k-NN and a SVM classifier are evaluated in
this work. A systematic overview of the training procedure
is shown in Fig. 2. In the classification phase, the same fea-
tures as the ones used for training are extracted from a text
and then passed on to the trained classifier, which assigns the
text to the class readable or unreadable.

The rest of this section is structured as follows. Fea-



ture extraction and text recognition are presented in Subsec-
tions 2.1 and 2.2, respectively. Labelling is defined in Sub-
section 2.3 and the classifiers are described in Subsection 2.4.
Finally, Subsection 2.5 discusses methods to find a good sub-
set of the original feature set for classification.

2.1 Feature Extraction

This paper considers individual text lines as the basic units.
The features extracted from a text line image have initially
been defined for writer identification and have shown very
good results on large sets of writers [8, 20]. These features
are able to distinguish writers with diverse writing styles.
Therefore, it is reasonable to apply them to the readability
classification task as well. The readability classification task
can thus be viewed as the problem of distinguishing two writ-
ers, one with readable and one with unreadable handwriting.

Before feature extraction, a text line image is normalised.
The normalisation operations are designed to improve the
quality of the features. Only a short description of the nor-
malisation operations is given here; for more details see [8].
In the first step, the grey scale text line images are binarised
using Otsu’s binarisation algorithm [18]. Next, the text line
images are clipped. Finally, Hilditch’s thinning algorithm is
applied which iteratively refines a text line image until a sta-
ble image is achieved [9].

The 100 extracted features can be divided into five
groups. Only a short overview of the features is given here;
a detailed description can be found in [8]. The first group of
basic features describe basic properties of a text line, such
as the skew, the slant angle, the middle and the lower region
of a text line, the transition width, and the average character
width.

The second group of component features describe the
writing style of a writer with respect to its connectedness,
i.e., whether a word is written in one single stroke or in mul-
tiple strokes. Each connected component in a text line im-
age is described by its bounding box. From the connected
components of a text line, various measures are calculated.
They include the average distance of two successive bound-
ing boxes, the average distance of two consecutive words, or
the average within-word distance of connected components.

The basic idea behind the third group of fractal features
is to measure how the area of a handwritten text grows when
a dilation operation is applied on the image [22]. The writ-
ing is dilated using circular and ellipsoidal kernels of various
size resulting in an evolution graph. The evolution graph is
divided into three more or less linear segments. The slope of
each of the three straight line segments is used as a feature to
characterise the handwriting.

The lower (upper) contour of a text line is defined as the
sequence of pixels obtained if the lower-most (upper-most)
pixel is considered. The characteristic contour is calculated
by deleting the gaps that occur between the contours of single
components and by concatenating these components, result-
ing in one connected line. From the resulting characteris-
tic lower and upper contour the features of the characteristic
contour are extracted.

The last group are the features of the enclosed regions
which are defined on the closed loops occurring in a hand-
written text from which features are obtained. Each loop de-
fines a blob, i.e., a region enclosed by the loop from which
the features are extracted.
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Figure 3: Local Features Extracted by the Sliding Window

In summary, 100 individual features are obtained from
one handwritten text line. These features are arranged in a
feature vector that serves as an abstract representation of the
text line. As the extracted features can have very different
numerical ranges, each feature is normalised with respect to
its mean and standard deviation.

2.2 Text Recognition

Hidden Markov Models (HMMs) are a powerful statistical
tool for the modelling of a sequence of observations. Due to
their expressive mathematical structure they have been suc-
cessfully applied to a wide range of tasks in pattern recog-
nition, i.e., handwriting recognition [16] or speech recogni-
tion [19]. For both isolated word and general text recogni-
tion, HMMs have become the predominant approach. HMM-
based recognisers have a number of advantages over other
approaches [3]. Firstly, they are resistant to noise and can
cope with shape variations. Secondly, HMM-based recog-
nisers are able to implicitly segment a text line into words
and characters, a task that is difficult to perform explicitly
[23]. Thirdly, standard algorithms for training and classifica-
tion exist [19].

The text recognition system uses HMMs to model the
handwriting. Only a short description of the system is given
here; for a detailed presentation we refer to [17]. Before fea-
ture extraction, skew, slant, and baseline position of each text
line are normalised. These normalisation steps are necessary
to reduce the impact of the different writing styles. After pre-
processing, a handwritten text line is transformed into a se-
quence of feature vectors. For this purpose, a sliding window
is used. The window has a width of one pixel and moves from
left to right, one pixel per step, over the image. At each posi-
tion of the window, nine geometrical features are extracted.
The first three features are of global nature and describe the
distribution of the black pixels in the window. The remain-
ing six local features describe specific points in the window,
such as the position of the upper and the lower contour, re-
spectively. See Fig. 3 for an illustration of the local features.

For each upper and lower case character an individual
HMM is built. Additionally, frequent punctuation marks,
such as full stop, colon and space are modelled. Other, in-
frequent punctuation marks are mapped to a special garbage
HMM. Each character HMM consists of 16 states. The states
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are connected in a linear topology, i.e. for each state only two
transitions exist: a transition to itself and a transition to the
next state. The character models are concatenated to word
models which in turn are concatenated to model a complete
text line. The HMM modelling of a text line is illustrated in
Fig. 4.

The system is trained by applying the Baum-Welch algo-
rithm which iteratively maximises the probability for a given
sequence of observations [19]. Recognition is performed by
the Viterbi algorithm using dynamic programming to recur-
sively maximises the likelihood of the state sequence [19].
The recognition is supported by a statistical bi-gram lan-
guage model which defines the probability that a word w;
follows a word w; [24]. The bi-gram language model is ob-
tained from the LOB corpus [11].

2.3 Labelling

The readability estimation problem can be stated as a clas-
sification problem [10]: given an input feature vector X; ex-
tracted from a text 7, determine whether X; belongs to class
c1 or to class ¢;. Class ¢ indicates that the text is readable,
while class ¢; indicates that the text is unreadable. Thus

cr, if r(X) >0
X e{ cp, otherwise 1)

where r(X;) € [0,1] denotes the recognition rate on text ¢
achieved by the text recognition system described in Sec-
tion 2.2. The threshold & € [0, 1] controls the classification.
Clearly, if ¥ is set to a high value, more text is classified as
unreadable.

2.4 Classifier Training

To address the readability classification problem, two clas-
sifiers are evaluated. The first classifier is the k-Nearest-
Neighbour (k-NN) classifier. The k-NN classifier determines
the k nearest neighbours to each input feature vector and opts
for the class that is most often represented. In case of a
tie, the class with the smallest sum of distances is chosen.
The Euclidean distance measure is used in the experiments
described subsequently. The optimal number k of nearest
neighbours is determined on a validation set. The advantages
of this classifier are its conceptual simplicity and the fact that
no classifier training is needed.

The second, more complex classifier is the Support Vec-
tor Machine (SVM). The idea of a SVM is to separate two
different classes of patterns by a maximum margin hyper-
plane [4]. The maximum margin hyperplane is the hyper-
plane for which the distance to the closest pattern of either
class is maximal. Generally, two classes are not linearly sep-
arable without error because of outliers and noisy objects. In
order to handle such errors, so called slack variables & are

introduced. These slack variables measure the error in terms
of distance to the class boundary. In order to control whether
the maximization of the margin or the minimization of the
error is more important, a weighting parameter C is defined.

If two classes are not separable in the original input
space, the so-called kernel trick is applied. It maps the data
into a high dimensional feature space and constructs a sepa-
rating hyperplane with maximum margin there. This hyper-
plane is equivalent to a non-linear decision boundary in the
original input space. Using a kernel function, it is possible to
compute the separating hyperplane without explicitly carry-
ing out the mapping into the feature space. A kernel function
fulfils the condition:

K(x,y) = (0(x),0(y))
where x and y are feature vectors and o : R” — R is a func-
tion with n,m € N and m > n, mapping objects from the input
to a higher dimensional feature space. Different kernel func-
tions exist. The radial basis function (RBF) kernel function

K(x,y) =exp(—y[x—yl?*), y>0.

was chosen in this work because it contains only one meta-
parameter. Furthermore, the simpler linear kernel with no
meta-parameter is a special case of the RBF kernel [13]. In
addition, RBF kernels are most widely used and have been
extensively studied [21]. The parameter y of the kernel func-
tion as well as the weighting parameter C need to be opti-
mized on a validation set. The SVM is implemented using
the LIBSVM library [6].

2.5 Feature Set Transformation

It is an open question whether the 100 extracted features are
optimal or near-optimal for the task under consideration. Ac-
tually, some features may not be independent of each other
or even be redundant and therefore provide only little infor-
mation. Moreover, there may be features that do not provide
any useful information at all. Subsets of features may exist
that perform as well as, or even better than, the original set of
features. Furthermore, using a smaller set of features results
in a more efficient classifier with respect to both computation
times and memory requirements.

Feature extraction is the process of deriving a subset of
the original set of features in order to increase classifier ef-
ficiency and to allow for higher classification accuracy [14].
There are two different approaches to obtaining a subset of
features: feature selection and feature transformation. In
feature selection, a subset of the original set of features is
selected while in feature transformation, the features of the
original feature set are combined and then projected onto a
space of lower dimensionality.

In this paper, the classical PCA method to find an effec-
tive transformation is applied. PCA seeks a projection that
best represents the data [7]. This method has been chosen
because of the fast computation times compared to other fea-
ture selection methods.

3. EXPERIMENTAL SETUP

The text lines used in the experiments are part of the IAM
handwriting database [17]' . This database currently contains

'The TAM handwriting database is publicly available at:
http://www.iam.unibe.ch/fki/databases/iam-handwriting-database
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Figure 5: Distribution of the Recognition Rates

over 1,500 pages of handwritten text from over 650 writers.
In total, 3,308 text lines from 347 writers are used in the ex-
periments described in this paper. The text lines are divided
into two disjoint sets. The first set is used to train and val-
idate the text recognition system. The second set is used to
train, validate, and test the readability estimation system.

The first set of 1,478 text lines of 297 writers is split into
a training and a validation set. The text recognition system
is trained using 1,333 text lines from 268 writers. The meta-
parameters are optimized using the remaining 145 text lines
from 29 writers. The text lines of each writer appear only in
one data set, thus the sets are writer independent.

The second set of 1,830 text line from 50 writers is split
into three sets: a training, a validation and a test set. This
data set is the same set as the one that was used for writer
identification in [8]. A total of 780 text lines from 20 writ-
ers are used as training set, 335 text lines from another 10
writers are used as validation set, and the remaining 715 text
lines from 20 writers form the test set. Again, this is a writer
independent setup.

During training of the handwriting recognition system,
the number of Gaussian mixture components of the HMM-
based recognizer is increased from 6 to 18 components in
steps of 3. Optimal performance on the validation set is
achieved using 15 Gaussian mixture components resulting in
a word accuracy rate of 69.78%.

Next, the data of the readability estimation system is la-
belled. The labelling is controlled by the parameter ¥ (see
Eq. 1). This parameter was set so as to have approximately
the same amount of readable as well as unreadable text lines
in the training set. This partitioning prevents the SVM from
classifying all data as coming from one class and neverthe-
less achieve good classification rates. The parameter was set
to ¥ = 0.8, which results in 48.46 % of the text lines be-
ing readable and 51.54 % unreadable. The distribution of
the recognition rates for the text lines of the training set are
shown in Fig. 5. The vertical dashed line shows the partition-
ing of the data into the classes readable and unreadable.

4. RESULTS AND DISCUSSION

First of all, the meta-parameters of the two classifiers are op-
timized on the validation set. In case of the k-NN classifier,
the parameter k needs to be determined. It is varied from
1 to 780 in steps of 2 (780 denotes the total number of text
lines in the training set). The highest classification rate of
72.54 % is achieved with k = 651 neighbours. In case of the
SVM-classifier, the meta-parameters C € {27>,273 ... 215}
andy € {2715,2713 ... 23} need to be optimized. The high-
est classification rate of 71.04 % is achieved with C = 2! and
y =277, In the subsequent experiments, the classifiers are

Feature k-NN SVM

Set # Feat. | Cla. Rate | # Feat. | Cla. Rate
Original 100 65.17 % 100 66.15 %
PCA 36 64.20 % 45 6741 %

Table 1: Classification Rates on the Test Set

Classifier’s || Actual Class of the Text Data
Decision readable | unreadable
readable 13.43 % 9.65 %
unreadable || 22.94 % 53.99 %

Table 2: Type I and Type 2 Errors

trained using the meta-parameters thus obtained.

The results on the test set are given in Table 1. In
the first row, the classification rates for the original feature
set consisting of 100 features are shown. The k-NN based
readability estimation system achieves a classification rate
of 65.17 %. The SVM-based readability estimation system
yields a slightly better classification rate of 66.15 %. How-
ever, the classification rate is not significantly higher at the
statistical significance level of 99 %.

For the PCA algorithm, the optimal dimension d of the
transformed feature subspace is determined as follows. For
each dimension d € [1, 100], the classification rate for a given
dimension is calculated on the validation set. The dimension
which produces the highest writer identification rate is se-
lected. Using this dimension, the final classification rate on
the test set is calculated.

The results of applying PCA to the original feature sets
are shown in the second row of Table 1. The k-NN-based
system achieves a classification rate of 64.20 % using 36 fea-
tures. The SVM-based systems returns a classification rate
of 67.41 % for 45 features. Neither of the results is statisti-
cally significantly different compared to the results obtained
by the original feature set of 100 features.

A readability estimation system can make two types of
errors. It can falsely label a readable text as unreadable (Type
1 error) or it can label an unreadable text as readable (Type 2
error) [1]. The two types of errors as well as the cases where
the system correctly classifies readable text as readable and
unreadable text as unreadable, are shown in Table 2. Table 2
is calculated on the test set consisting of 715 text lines using
PCA and the SVM classifier. A correct classification rate of
67.41 % is achieved. The Type 1 error is 9.65 % and the Type
2 error equals 22.94 %.

The following conclusions can be drawn from the results
presented in Table 1. Firstly, the SVM-based system does
not perform significantly better than the simpler k-NN based
system. Secondly, the feature sets found by PCA are half
or two-thirds times smaller then the original features set and
lead to classification rates that are not significantly different
from those obtained with the full set of features. Thirdly, in
over two-thirds of all cases, the readability of a text line is
correctly estimated. This result is very promising.

5. CONCLUSION AND FUTURE WORK

In this paper, a new approach to estimating the readability
of a handwritten text is presented. It allows one to filter out



unreadable data prior to recognition and thus helps avoid-
ing needless recognition attempts. The estimation problem
is posed as a two class classification problem where a text is
classified as either readable or as unreadable. A classifier is
trained on this classification problem. In the training phase,
for each text, a vector of features is extracted and the text
recognition rate achieved on the text is determined. Next,
the feature vectors are labelled and the labelled data is used
to train two classifiers, a k-NN and SVM classifier, respec-
tively. Both classifiers show promising results on a test set of
715 text lines from 20 writers.

The readability classification task presented in this paper
can be regarded as a special case of the more general problem
of estimating whether or not a presented data is recognisable
by a given system. The idea is to filter out unrecognisable
data before it is passed on to the recognizer. A natural ex-
tension of this work would thus be to study the problem of
recognisability classification on other recognition tasks. Ad-
ditionally, instead of posing the readability estimation prob-
lem as a classification problem, it can be formulated as a re-
gression problem with the aim of predicting the recognition
rate without actually performing the recognition. Moreover,
all experiments reported in this paper could be repeated with
other thresholds (see Eq. 1) than the one used in this paper.
These issues are left for future research.
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