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ππ scattering at low energy is sensitive to the structure of the QCD vacuum. I review the cal-

culations of the ππ scattering lengths and phases, and group them in three cathegories: 1. those

based on very general theoretical constraints (like dispersion relations and crossing symmetry)

and phenomenology, 2. those which in addition make explicit use of chiral symmetry, 3. the first-

principle ones, done with lattice QCD. I then compare these to the experimental results. Thanks

to recent progress in all these and in the experimental determination of the scattering lengths we

are improving substantially our knowledge of the QCD vacuum.
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1. Introduction

According to the standard view, the pions become massless in the chiral limit, because they
play the role of the Goldstone bosons of spontaneous chiral symmetry breaking. The strength of
the interaction among Goldstone bosons vanishes with the square of their momentum and with a
calculable coefficient (the inverse of the decay constant squared). If one moves away from the
chiral limit, the strength of the interaction does not vanish when they are at rest, but for small quark
masses it must be proportional to them. The coefficient of this term is also calculable and is given
by the quark condensate (divided by the decay constant to the fourth power). These few statements
summarize what was known about ππ scattering already more than 40 years ago, when Weinberg
calculated the amplitude using current algebra [1]:

A(s, t,u) =
s−M2

F2 +O(p4) , (1.1)

where A(s, t,u) ≡ M (π+π− → π0π0) is the isospin invariant ππ scattering amplitude, M2 ≡

B(mu +md), with B =−〈q̄q〉/F2, is the leading term in the quark mass expansion of the pion mass
squared, M2

π = M2 +O(m2
q), and F the pion decay constant in the chiral limit, Fπ = F +O(mq). As

indicated by the O(p4) symbol, the result of Weinberg is the leading term in the chiral expansion.
Formula (1.1) clearly illustrate the importance of studying ππ scattering: Weinberg’s calculation
heavily relies on a theoretical picture about the vacuum of QCD. The latter is difficult to rigorously
prove theoretically (indeed, until we can prove it, this picture only has the status of a reasonable,
sound assumption), and very difficult to test experimentally. In ππ scattering we are now able to
do it.

This took quite some efforts, however, both on the theoretical and on the experimental side.
On the theory side, one had to show that the beautiful relation between the scattering lengths, the
quark masses, the quark condensate and the pion decay constant given by Eq. (1.1), valid at leading
order of the chiral expansion, does not get washed out by higher order corrections. Not only a next-
to-leading (NLO) [2], but also a NNLO calculation [3] were necessary to reach the required level of
confidence. On the experimental side, for many years the only known reliable method to measure
the ππ scattering lengths was through final state interactions in Ke4 decays [4]. It is worth stressing
that this channel is quite rare (BR∼ 10−5), and that the effect due to the ππ rescattering in the final
state is rather subtle. The first measurement by the Geneva-Saclay collaboration [5] was based on
about 30000 events, came only about ten years after Weinberg prediction (with which it disagreed!)
and could only reach a precision of about 20% on the S-wave, isospin zero scattering length a0

0. It
took more than twenty years to see an improvement (by more than a factor of ten in the statistics) of
that experiment, by the E865 collaboration at Brookhaven [6]. Today we are in the lucky situation
of having not only yet another improvement in statistics by another experiment, NA48 (with the
advantage of having also different systematics), but also two completely different ways to measure
the ππ scattering lengths: the one pursued by DIRAC at CERN relies on the measurement of the
lifetime of pionium, whereas the one pursued again by the NA48 Collaboration, also at CERN, on
a very precise measurement of a small cusp in the spectrum of the center of mass energy of the two
neutral pions in K± → π±π0π0 decays.

A detailed knowledge of the ππ scattering amplitude is also important for many other hadronic
processes, whenever pions in the final state play a role. Two examples of this are the determination
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of the σ resonance parameters [7] (for a recent discussion of this issue and reference to the earlier
literature see Ref. [8]), and the evaluation of the hadronic contributions to the g− 2 of the muon
[9].

Since a few years, there is a new player on the ππ scattering arena, lattice QCD. Various
groups have calculated the isospin two, S wave scattering length a2

0 in the quenched approximation
and the first calculations with dynamical fermions [10] and reasonably low quark masses have
recently become available [11]. In addition, on the lattice one can explicitly see how both the pion
mass and decay constant behave as one decreases the quark masses, and so directly test our picture
of the QCD vacuum as one approaches the chiral limit. Using chiral perturbation theory (CHPT)
one can translate this information into values of the scattering lengths and check whether all these
informations merge into a coherent picture.

The rest of the paper is organized as follows: in the next section I will discuss dispersion
relations and in particular the Roy equations and some phenomenological analyses based on them.
These analyses rely on theory only as far as unitarity and analyticity (and partly crossing symmetry)
are concerned, and use also data as input, but do not make any use of chiral symmetry. In the
following section I will then discuss the improvement in precision which one obtains if one uses
chiral symmetry. Section 4 gives an overview of the recent progress in related lattice calculations.
I conclude and summarize in the final section.

2. Theoretical calculations which do not make use of chiral symmetry

In the early days of the study of strong interactions it was quickly realized that perturbative
methods could not be applied. In order to tackle the problem in some more useful way, people
tried to exploit the general properties of the S matrix, like analyticity and unitarity and its possible
symmetries. In ππ scattering this activity culminated in the formulation of an (infinite) set of cou-
pled dispersion relations for all the partial waves, which incorporated analyticity and unitarity and
(partially) crossing symmetry, by S. M. Roy [12]. The dispersion relations are double subtracted,
and the two subtraction constants may be identified with the two S wave scattering lengths, a0

0 and
a2

0. Soon after the formulation of the equations different groups started to work on their numerical
solution [13, 14] (and others on their mathematical properties, see e.g. [15], but we will not dwell
on this point here). The outcome of these analyses was that at low energy the essential parameters
are the two scattering lengths: given some reasonable input for the imaginary parts above a cer-
tain energy (called the matching point), the solution of the Roy equations uniquely fixes the partial
waves below this energy in terms of the two scattering lengths. Notice that since at low energy only
the S and P waves have imaginary parts significantly different from zero, the Roy equations can be
solved effectively only for these, and become a set of three coupled integral equations. Of course
the solutions do still depend on the input on the imaginary parts of the higher waves, but these
are not particularly important and can be kept fixed (with the corresponding uncertainties properly
taken into account). In such a setting if the uncertainty in the input would shrink to zero, the partial
waves below the matching point would only depend on the two scattering lengths.

After about twenty years of inactivity in this field, in view of new experiments about ππ scat-
tering, the study of the numerical solutions of Roy equations has been taken up again by a few
groups [16, 17, 18, 19]. The results of the early analyses could be reproduced and the newly built
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Figure 1: Left panel: universal band. Right panel: solution corresponding to the point S0 at the center of
the universal band. The matching point in this figure is 0.8 GeV. Both figures are from Ref. [16].

machineries were ready to incorporate new experimental results. The logical flow of these analyses
is as follows: take the input for the imaginary parts above the matching point with generous uncer-
tainties. At this stage a0

0 and a2
0 are still completely free, apart from a loose correlation which takes

the form of a rather wide band, called the universal band in the (a0
0,a

2
0) plane, see Fig. 1, left panel.

If one knew exactly the input for the imaginary part of the exotic S wave, one could not freely
choose a2

0: in order to have a smooth transition at the matching point, without unphysical cusps, a2
0

has to be appropriately tuned. In this situation, the universal band would shrink to a line. Its width
reflects the uncertainties in the experimental input for the exotic S wave [20, 21] (for details about
this point, cf. Ref. [16]). Unfortunately it is rather unlikely that we will see an improvement of this
input – in the foreseeable future the universal band will stay as it is.

To any point inside the universal band there corresponds an exact solution of the Roy equa-
tions, as shown in Fig.1, right panel. Such a solution can be compared to any data set on the ππ
scattering amplitude below the matching point. One can then vary the two scattering lengths and
evaluate the χ2 corresponding to each point inside the universal band. The minimum of the χ 2

identifies the value of the two scattering lengths that a certain data set prefers. Such an analysis
has been done in the early days in Refs. [13, 14], and more recently repeated in Refs. [16, 17]. The
latter two analyses agree as far as the solutions of the Roy equations are concerned – any difference
in the conclusions arises from the use of different sets of data, but this is much less significant than
the check provided by two completely independent analysis of the Roy equations.

This theoretical work is very important, but it is clear that by doing this one simply relates
different data sets rather than making a genuine theoretical prediction: analyticity, unitarity and
crossing symmetry do not fully constrain the ππ scattering amplitude at low energy, but imply
that any measurement thereof can be translated into a measurement of the two S wave scattering
lengths, and this is what such an analysis concretely implements.

Kaminksi, Lesniak and Loiseau [18] have used the solution of the Roy equations in order to
resolve an ambiguity in the extraction of the ππ scattering amplitude from πN → ππN data, and
have so provided another example of how useful it is to take into account analyticity, unitarity
and crossing symmetry in the data analysis. In this manner they have also obtained ranges for the
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no chiral symmetry with chiral symm.

DFGS [17] KLL [18] PY [22] CGL [26]

a0
0 0.228±0.032 0.224±0.013 0.230±0.015 0.220±0.005

−10 ·a2
0 0.382±0.038 0.343±0.036 0.480±0.046 0.444±0.010

(δ 0
0 −δ 2

0 )|s=M2
K

47.1◦ 37◦−δ 2
0 (M2

K) < 49◦ 52.9◦±1.6◦ 47.7◦±1.5◦

Table 1: Comparison of the numbers for the S-wave scattering lengths and the phase difference δ 0
0 −δ 2

0 at
s = M2

K for the theoretical analyses discussed here.

scattering lengths, which we will compare to other analyses below.

A different approach has been followed by Peláez and Ynduráin [22]. They use a parametriza-
tion for each partial wave which is simple and respects analyticity in certain low energy regions,
and fit data with these. They then check a posteriori whether forward dispersion relations are sat-
isfied, and use this information to improve their fits. In a later work with Kaminski, [19] they have
concentrated on the region above the KK̄ threshold and reevaluated the dispersion relations. In
comparison to other analyses, these works do not fully exploit analyticity and crossing symmetry.
Moreover, there are some difference as far as the high-energy behaviour (described à la Regge)
of the ππ scattering is concerned. The latter, however, has a limited influence in the low energy
region (as shown in [23] in reply to the criticism raised in [24]). The main difference between this
analysis and the other ones concerns the behaviour of the S0 wave in the region between 0.5 GeV
and the and KK̄ threshold, where these authors claim that both data as well as dispersion relations
would like to have a broad structure which they call a “shoulder”. As discussed by Leutwyler [25],
this shoulder is in contrast with the Roy equations.

A comparison of the numbers for the S-wave scattering lengths and of the phase difference
δ 0

0 (M2
K)−δ 2

0 (M2
K) of the analyses just discussed is given in Table 1. The last column contains the

result obtained when using chiral symmetry, which will be discussed in the next section. The main
difference between the first three columns and the last one concerns the size of the error bars – chiral
symmetry leads to a substantial increase of the precision. The analyses which do not make use of
chiral symmetry agree among themselves as far as the central value of a0

0 is concerned. The central
values of a2

0 show a larger scatter, which simply reflects the meagre experimental information about
this quantity. Finally, the last row shows that the analysis of Peláez and Ynduráin has a higher
δ 0

0 phase around the K mass. Direct extraction of the phase difference δ 0
0 (M2

K)− δ 2
0 (M2

K) from
K → 2π decays actually indicate an even larger value. After applying isospin breaking corrections,
Cirigliano et al. [27] find (δ 0

0 − δ 2
0 )|s=M2

K
= (60.8± 4)◦. The recent update of the measurement

of Γ(KS → π+π−(γ))/Γ(KS → π0π0) by KLOE [28] pushes this number down by about three
degrees. Notice that the isospin breaking correction is in this case very large, about 12◦ [27] –
its evaluation is far from straightforward, and despite the careful analysis of Cirigliano et al. the
outcome is puzzling. Understanding the clash between the value extracted from K → 2π and all
other experimental and theoretical analyses remains an open, very important problem1.

In all these analyses, input on the ππ scattering amplitude at intermediate energies is essential.

1In a recent paper, [29] it has been proposed to determine the scattering lengths from a simultaneous fit to the Ke4

data and to the phase extracted from K → 2π . The large uncertainties in the latter extraction and the puzzling result
would rather suggest not to use this experimental information in any fit.
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This is obtained from different experiments by also using some convenient parametrizations which
incorporate at least partially the properties of analyticity and unitarity. Until some years ago this
input came mostly from πN → ππN scattering experiments [30, 31, 32, 33]. More recently, pro-
duction of two (or more) pions in hadronic decays of heavier states have also become important,
in particular for what concerns the resonances in the region around 1 GeV, like the f0(980), which
has been studied in detail at BES [34] and at KLOE [35], see also [36, 37, 38].

3. Theoretical calculations which rely on chiral symmetry
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Figure 2: Behaviour of the I = 0 (left panel) and I = 2 S waves in the region around threshold.

The Roy equations allow to translate any experimental information on ππ scattering at low
energy into information on the scattering lengths. But one can also reverse the argument: if one has
a theory which predicts the scattering lengths, one can combine this with the Roy equations and
extend the prediction to the whole region below 1 GeV. As we have mentioned in the introduction,
chiral symmetry does lead to predictions about the scattering lengths. The leading order calculation
of Weinberg gives (after one substitutes M2 and F with M2

π and Fπ , respectively)

a0
0 =

7M2
π

32πF2
π

= 0.16 , a2
0 = −

M2
π

16πF2
π

= −0.045 . (3.1)

The theoretical uncertainties of this prediction cannot be estimated until one evaluates the next term
in the series. This was done by Gasser and Leutwyler in 1984 [2], and some ten years later even
the correction one order higher has been evaluated [3]. Numerically the series behaves as follows:

a0
0

p2

= 0.156
p4

→ 0.200
p6

→ 0.216 , a2
0

p2

= −0.0454
p4

→−0.0445
p6

→−0.0445 , (3.2)

and shows a rather slow convergence in the I = 0 channel. The reason for this slow convergence is
understood and has to do with a rather hefty chiral log:

a0
0 =

7M2
π

32πF2
π

[

1+
9
2
`χ + . . .

]

, a2
0 = −

M2
π

16πF2
π

[

1−
3
2
`χ + . . .

]

(3.3)

where `χ = M2
π

16π2F2
π

ln µ2

M2
π

which in turn is due to a strong rescattering of pions in this channel. The
large corrections are unitarity effects, as it is also very well illustrated in Fig. 2: the correction of
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order p4 shows a strong curvature below threshold and a sizeable cusp at threshold in the I = 0
channel, but is very flat below and does not have a visible cusp at threshold in the I = 2 channel.
Around s = 0, however, both corrections are very small.

This observation is crucial if one wants to combine the chiral prediction and the dispersive
analysis: choosing the two scattering lengths as subtraction constants is convenient for discussing
the physics, but it is not the only possible choice. One could as well subtract the amplitudes in
the region below threshold. Doing this has the advantage that if one uses the chiral input there,
this converges much better and gives stability to the whole machinery. Indeed, after subtracting
below threshold, and evaluating the scattering lengths with the help of the Roy equations [26], the
behaviour of the series improves drastically:

a0
0

p2

= 0.197
p4

→ 0.2195
p6

→ 0.220 a2
0

p2

= −0.0402
p4

→−0.0446
p4

→−0.0444 . (3.4)

Within this framework, the evaluation of the uncertainty can be done reliably, and gives

a0
0 = 0.220±0.001+0.027∆r2 −0.0017∆`3

10 ·a2
0 = −0.444±0.003−0.04∆r2 −0.004∆`3 (3.5)

where ¯̀3 = 2.9+∆`3, is the low-energy constant which determines the next-to-leading quark mass
dependence of the pion mass:

M2
π = M2

(

1−
M2

32π2F2
¯̀3 +O(M4)

)

(3.6)

and ∆r2 is the relative uncertainty in the scalar radius of the pion, 〈r2〉s = 0.61fm2 · (1+∆r2). The
scalar radius strongly depends on the low energy constant ¯̀4, which determines the leading quark
mass dependence of the pion decay constant:

Fπ = F

(

1+
M2

16π2F2
¯̀4 +O(M4)

)

. (3.7)

Adding errors in quadrature and using the estimates ∆r2 = 6.5% (which, together with the central
value quoted above, corresponds to ¯̀4 = 4.4±0.2), ∆`3 = 2.4 yields [26]

a0
0 = 0.220±0.005 , a2

0 = −0.0444±0.001 , a0
0 −a2

0 = 0.265±0.004 . (3.8)

The experimental determinations of the scattering lengths have been amply discussed at this
conference [39]. The comparison between the experimental numbers and the theoretical predictions
is shown in Fig. 3. On the left panel the ellipses corresponding to the Ke4 data sets have been
obtained with the raw data, whereas on the right panel the isospin breaking correction to the phase
as extracted from Ke4 data, which has been evaluated and discussed in Ref. [40], has been applied.
The figure shows that the latter isospin breaking correction is important at the current level of
precision of the experiments. The disagreement at the level of 1.5 σ ’s between the recent NA48
determination and the theoretical prediction disappears once this correction is taken into account.
On the other hand, the perfect agreement seen on the left panel between the E865 determination
and the theoretical prediction, becomes marginal, at the level of one sigma. In either case there is
some tension between the E865 and the NA48 Ke4 data, which should be better understood This
issue is discussed in detail in the contribution of Bloch-Devaux [39].
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Figure 3: Comparison of the theoretical predictions of the scattering lengths and their measurements. On
the left the blue and orange ellipses are obtained from the uncorrected Ke4 and on the right those after isospin
corrections (cf. Ref. [40])

4. Lattice calculations

Lattice calculations relevant for ππ scattering can be grouped into two classes: those which
determine the quark mass dependence of Mπ and Fπ and thereby determine the constants ¯̀3 and ¯̀4;
and those which determine directly the scattering lengths. There are only two calculations of a2

0

available until now with dynamical fermions, one of them is performed on a background containing
only two dynamical quarks [10], while the more recent one by the NPLQCD collaboration is per-
formed on a background of three flavours of staggered quarks [11] (on configurations generated by
the MILC collaboration and made openly accessible). The latter calculation was done with a rather
low pion mass, reaching values just below 300 MeV, such that an extrapolation down to physical
pion masses becomes reliable. Their latest result reads

a2
0 = −0.04330±0.00042 (4.1)

in excellent agreement with the chiral prediction (3.8), as it is also seen on Fig. 4. The CP-PACS
calculation, on the other hand has been made for a value of the pion mass above 500 MeV, where
contact with chiral perturbation theory, or an extrapolation to the physical value of the pion mass
can hardly be possible. For the earlier literature on the subject, in particular on the quenched
calculations, we refer the reader to Ref. [11].

The determination of the quark mass dependence of the pion mass and decay constant with
dynamical fermions and for low pion masses has been performed by several groups. Published
results are available from the MILC collaboration [41], from Del Debbio et al. [42] and from
the ETM collaboration [43]. Only the first calculation has been done with a background of three
dynamical flavours (of staggered quarks and employing the fourth root trick), whereas the last two
have two light quarks in the sea (with a Wilson and twisted mass formulation, respectively). A
summary of their numerical results is given in Table 2. The agreement with the phenomenological
estimates is remarkable. It is important to stress the improvement in precision that the lattice
approach offers for these constants, in particular for ¯̀3. In the long run the lattice method is without
competition for this particular constant, and will compete with the phenomenological determination
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Figure 4: Same as Fig. 3, right panel, but including also lattice results.

MILC [41] Del Debbio et al. [42] ETM [43]
¯̀3 0.6±1.2 3.5±0.5±0.1 3.65±0.12
¯̀4 3.9±0.5 4.52±0.06

Table 2: Lattice determinations of the low energy constants ¯̀3 and ¯̀4.

of others (notice that the errors given by the ETM collaboration do not include systematic effects –
these have been estimated by the other two groups).

5. Summary and conclusions

The ππ scattering amplitude at low energy is one of the rare physical quantities that we can
calculate with a high precision and that at the same time can be measured with a comparable
precision. In addition, the comparison is very instructive, because we can relate the theoretical
predictions made within the effective field theory framework to properties of the vacuum state of
QCD. The recent progress in lattice calculations makes this issue even more interesting, because
it allows us to compare experimental numbers directly to the result of first principle calculations,
which only take as input the Lagrangian of QCD. All this is very well represented by Fig. 4, which
shows (albeit in rather compressed form) the convergence of all these different informations. The
figure also shows that we have room for improvement, especially on the experimental side, and
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possibly for surprises. It will be interesting to see how this picture will look like at the next Kaon
conference.
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