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ABSTRACT 

 
Statistical shape analysis techniques commonly employed 
in the medical imaging community, such as Active Shape 
Models or Active Appearance Models, rely on Principal 
Component Analysis (PCA) to decompose shape variability 
into a reduced set of interpretable components. In this paper 
we propose Principal Factor Analysis (PFA) as an 
alternative and complementary tool to PCA providing a 
decomposition into modes of variation that can be more 
easily interpretable, while still being a linear efficient 
technique that performs dimensionality reduction (as 
opposed to Independent Component Analysis, ICA). The 
key difference between PFA and PCA is that PFA models 
covariance between variables, rather than the total variance 
in the data. The added value of PFA is illustrated on 2D 
landmark data of corpora callosa outlines. Then, a study of 
the 3D shape variability of the human left femur is 
performed. Finally, we report results on vector-valued 3D 
deformation fields resulting from non-rigid registration of 
ventricles in MRI of the brain. 
  
Index Terms— Image shape analysis, Biomedical image 
processing, principal factor analysis, principal component 
analysis, morphometry 
 

1. INTRODUCTION 
 
The analysis of shape variability of anatomical structures is 
of key importance in a number of clinical disciplines, as 
abnormality in shape can be related to certain diseases. 
Statistical shape analysis techniques enjoy a remarkable 
popularity within the medical image analysis community. 
Its flagship, the Active Shape Model (ASM), proposed by 
Cootes et al.[1], provides a method to study the structure of 
point data sets or meshes. This technique was later extended 

to intensity information, and thus image data, as the Active 
Appearance Model (AAM) [2]. 
Nearly all existing statistical shape analysis methods rely on 
Principal Component Analysis (PCA) to build a compact 
model of principal ‘modes of variation’ from a training set. 
PCA belongs to a family of methods for multivariate 
analysis commonly known as Factor Analysis (FA). 
Reviews and comparative studies of FA techniques can be 
found elsewhere [3][4]. Such techniques can be classified 
into linear and non-linear, reflecting whether the shape 
variation can be expressed as a linear combination of basic 
deformation primitives. We contend that a factorial 
decomposition of shape variability, if it is to be easily 
interpretable, must follow a linear model, where each mode 
of variation has a scalar weight. PCA is a linear technique. 
Exceptionally, another linear FA method, Independent 
Component Analysis (ICA) or equivalently Maximum 
Autocorrelation Function (MAF) PCA [5], has been 
proposed. However, ICA does not provide a compact 
representation of shape variability, as one obtains as many 
independent components as there are variables [3]. 
A common difficulty encountered when using PCA for 
shape analysis is that of correlating the resulting modes of 
variation with intuitive shape descriptions employed by 
clinical partners. Thus, these components are often 
described as combinations of several localised shears, 
twists, rotations, etc., but these are most often simplistic 
approximations to complex deformation fields. 
In this paper we compare the performance of PCA with 
another linear factor analysis technique, known as Principal 
Factor Analysis (PFA). According to the FA literature, PCA 
is recommended for dimensionality reduction, whereas PFA 
is adapted for the study of structure in the data [6]. In 
particular, Widaman [7] states that “principal component 
analysis should not be used if a researcher wishes to obtain 
parameters reflecting latent constructs or factors.” 
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This paper will show that, PFA provides a better 
decomposition of shape variation in terms of 
interpretability.  
Sections 2 and 3 describe PCA and PFA, respectively. 
Section 4 compares results of both PCA and PFA on 2D 
landmark data sets, 3D surfaces and 3D vector fields, all 
coming from medical imaging data. Discussion and 
conclusions are provided in section 5. 
 

2. PRINCIPAL COMPONENT ANALYSIS 
 
PCA is a projection model for FA aiming to find a low-
dimensional manifold in the space of the data, such that the 
distance between the data and their projection on the 
manifold is small. PCA is the best, in the mean-square error 
sense, linear dimension reduction technique [3]. 
Given a set of training data {t1,…,tn} in a given 

orthonormal basis of , PCA finds a new orthonormal 
basis {u

D

1,…,ud} with its axes ordered from highest to 
lowest variance. The principal components are the set of 
new ordered basis vectors. 
To find the principal components is to compute the sample 
covariance matrix S of the data set and then find its 
eigenstructure SU=U . U is a DxD matrix which has the 
unit length eigenvectors u1,…,ud as its columns, and  is a 
diagonal matrix with the corresponding eigenvalues 1,…, D. 
The eigenvectors are the principal components and the 
eigenvalues their corresponding projected variances. 
 

3. PRINCIPAL FACTOR ANALYSIS 
 
In opposition to PCA, which is a projection model, PFA 
can be considered as a generative model for FA. Generative 
models try to model the density function that is assumed to 
have generated the data, under constraints that restricts the 
set of possible models to those with low intrinsic 
dimensionality. The following description is mainly based 
on Carreira-Perpiñán's paper [4]. 
PFA represents an observed D-dimensional continuous 
variable t, as a linear function f of an L-dimensional (L<D) 
continuous latent variable x and an independent Gaussian 
noise process: 

ext  
Here  is the DxL ‘factor loading matrix’ defining the 
linear function f, μ is a D-dimensional vector representing 
the mean of the distribution of t, and e is a D-dimensional 
vector representing the noise or individual variability 
associated with each of the D observed variables. 
PFA assumes a Gaussian distributed prior and noise model, 
and a linear mapping from data space to latent space. 
The columns of the matrix  are referred to as ‘factor 
loadings’. The data space noise model e is normal with 
diagonal covariance matrix : 
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The D diagonal elements of  are referred to as 
‘uniqueness’. 
Following the Bayes rule, the posterior in latent space is 
also normal: 
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The parameters of the PFA model may be estimated using 
the EM (Expectation-Maximization) algorithm: 
- E step: This requires computing the moments. For each 

data point  given the current parameter values  and 
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- M step: This results in the following updated equations for 
the factor loadings  and uniqueness : 
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where the updated moments are used and the diag operator 
sets all off-diagonal elements of a matrix to zero.  
Note that as opposed to PCA, the factor decomposition is 
not unique, since an orthogonal rotation of the factors ( t= 

R, where R is an orthogonal matrix) does not alter the 
distribution in data space. Thus, from all factor loading 
matrices , we are free to choose that which is easiest to 
interpret according to some criterion. We employ Varimax 
rotation, which finds an orthogonal rotation of the factors 
and maximize the sparseness of the retained modes. The 
resulting rotated matrix  has many values clamped to 
(almost) 0. Thus, each factor involves only a few 
orthogonal variables. This simplifies the factor 
interpretation. 

 
4. RESULTS 

4.1. Corpus callosum - 2D landmark data 
 
In this first experiment we attempt to compare the 
performance of PFA vs. PCA in the analysis of the shape 
variability of the corpus callosum. Our training data 
consists of 9 sets of 2D landmarks delimiting the corpora 
callosa of 9 patients as evidenced on MRI. Each data set has 
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63 landmarks. The delineations were performed manually 
by an expert. 
Figure 1 shows the 3 principal components (top) and 3 
principal factors (bottom) resulting from PCA and PFA, 
respectively. PCA does a good job at modelling the 
variance of the data in a few principal modes of variation, 
but such modes can be interpreted as a combination of 
several basic displacements, which are complex in most 
cases. On the contrary, PFA decomposes the variation into 
simple factors that have one or two defined directions of 
displacement.  
 
4.2. Morphological analysis of human left femurs 
 
We compare the results of PCA and PFA on a training set 
of 32 surface models extracted from CT data. These models 
represent the left femur, and are used in on-going research 
at our institute for computer-assisted surgery. 
Correspondences across data sets were established via a 
semiautomatic process in which a set of analogous 
anatomical landmarks (points, lines or surfaces) are 
identified in all data, and the remaining points are evenly 
spread to cover the surface of the object. These 
correspondences are further optimized via a Minimum 
Description Length optimization. 
Figure 2 shows results obtained for PCA and PFA for the 
second, third and fourth mode (for the first mode, both, 
PCA and PFA similarly describe the change in length of the 
femur). The magnitude of deformation has been mapped in 
colors while its direction is represented with streamlines. 
For each mode it can be seen that PFA produces a more 
regular and homogeneous deformation and it also focuses 
more on specific areas of the bone (e.g. PFA mode 2 and 3, 
describes the deformation in the lower and upper part of the 
image, respectively, while PCA presents a mixture of scale 
and shape variations at different locations), which is more 
relevant for medical purposes.  
 
4.3. Results on vector-valued displacement fields 
 
The following example analyses the 3D vector-valued 
displacement fields resulting from non-rigid registration. In 
particular, 6 brain MRI data sets where registered affinely 
to a probabilistic brain atlas [8] for spatial normalization.  
The aim of this study was to determine predominant 
patterns in ventricular shape variability. To this end, the 
images were first non-rigidly registered, resulting in a set of 
3D deformation fields. PCA and PFA were then performed 
on the set of 6 ventricle displacement fields. Figure 3 shows 
the vector norm of the first principal component (left) and 
principal factor (right). It can be observed that the effect of 
the principal factor is more localized (towards the back of 
the ventricles), while the principal component affects most 
of the ventricular surface. 

 

5. DISCUSSION AND CONCLUSIONS 
 
The key difference between PFA and PCA is that PFA 
models covariance between variables, rather than the total 
variance in the data. PCA determines the factors that 
account for the total (unique and common) variance in the 
set of variables; PFA determines the least number of factors 
that can account for the common variance (correlation). 
PFA provides better interpretability than PCA in terms of 
decomposition of shape variability, as evidenced by the 
results provided. The superiority of PFA over PCA has also 
been highlighted recently for fMRI analysis [9]. On the 
other hand, PCA is better suited to describe total variance 
and is optimal in reducing dimensionality, so PFA 
decomposition may require more factors to reconstruct the 
original data up to a certain threshold of accuracy.  
For example, in a clinical setting, size and orientation are 
two important separate factors that must be easily 
distinguishable for understanding the geometrical and 
mechanical properties of organs and tissue. PCA, using 
global variability analysis, intermingles the variation 
components. Although it reduces dimensionality, it does not 
always simplify the interpretable data load or understanding 
of functionality by means of shape analysis. PFA, through 
its modes of variation, offers a better and simpler analysis 
of shape variability by intuitively distinguishable factors. 
Alternative factor analysis techniques may be employed [3]. 
An exhaustive comparative study of such techniques for 
statistical shape analysis is in progress.  
We proposed PFA as a viable alternative to PCA. Our 
results agree with those found in [6]; while still being a 
linear technique for dimensionality reduction, PFA models 
covariance between variables and offers decomposition into 
easily interpretable and distinguishable modes of variation.  
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 Figure 1. PCA and PFA results on 2D landmark data sets 
representing corpora callosa. Top: First 3 principal components 
(ordered from left to right according to the variance explained), 
and bottom: first 3 principal factors after Varimax rotation.  

  
Figure 3. 3D view of the norm (mapped as colors on the surface of 
the mean shape ventricle) of the first principal component (left) 
and principal factor (right) extracted from a training set of 3D 
displacement vector fields on the surface of brain ventricles. 
 

 
Figure 2. Shape analysis of human left femurs. Second, third and fourth mode of variation for PCA and PFA are represented with 
colormaps for the magnitude of the deformation (brighter regions correspond to higher magnitudes) and with lines for its direction. PFA 
represents shape variation with more regular and homogeneous deformations and it is more localized than PCA. 
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