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Abstract

Automatic identification and extraction of bone contours
from x-ray images is an essential first step task for further
medical image analysis. In this paper we propose a 3D
statistical model based framework for the proximal femur
contour extraction from calibrated x-ray images. The auto-
matic initialization is solved by an Estimation of Bayesian
Network Algorithm to fit a multiple component geometrical
model to the x-ray data. The contour extraction is accom-
plished by a non-rigid 2D/3D registration between a 3D sta-
tistical model and the x-ray images, in which bone contours
are extracted by a graphical model based Bayesian infer-
ence. Preliminary experiments on clinical data sets verified
its validity.

1. Motivation

Fluoroscopic images are still playing a crucial role in
diagnosis and surgery. Accurate detection and extraction
of bone contours from fluoroscopic images is an essential
component for computer analysis of medical images for di-
agnosis [1][2][3], planning [4][5][6] or 3D reconstruction of
anatomic structures [7][8][9][10]. Fluoroscopic images can
vary a lot in terms of brightness and contrast as well as in the
imaged region of anatomy. Therefore conventional segmen-
tation techniques [1][5][6] can not offer a satisfactory solu-
tion and model based segmentation is usually implemented
to obtain robust and accurate results [3][7][11][12][13].

In [3][12][14][13][15], 2D statistical models, Adap-
tive Shape Model (ASM) or Adapative Appearance Model
(ASM), are constructed from a training image set under the
assumption that the images are taken from a certain view
direction. 2D statistical models can contain both the shape
and texture information learnt from training data set, which
is helpful in improving robustness and accuracy in noisy
images. 2D statistical model asks for a proper initialization
due to the limited convergence region. Fully automatic ini-

tialization can be accomplished by the generalized Hough
transformation [12], neural nets [13] or evolutionary algo-
rithms [14][15]. But both the initialization and segmenta-
tion performance relies on that the view direction assump-
tion can be fulfilled.

In [7][8][9][10] 3D statistical models are used for 2D
segmentation and 3D reconstruction from calibrated 2D
fluoroscopic images (location and orientation of the flu-
oroscopic source w.r.t. the image acquisition planes are
known). Compared with 2D statistical modes, 3D statis-
tical model usually only contains shape information but not
the intensity information on the 2D images. In principle it
can be used for segmenting an image taken from an arbitary
view direction. 3D statistical model also need an initializa-
tion, which is usually manually defined [7][9]. Due to the
dense mesh of the 3D statistical model [16], fully automated
solutions based on evolutionary algorithm is computational
expensive [17].

In this paper we propose a 3D statistical model based
fully automatic segmentation framework for calibrated flu-
oroscopic images. In our approach, the initialization is ac-
complished by an Estimation of Bayesian Network Algo-
rithm on a simplified multiple component model instead of
the triangulated surface mesh of the 3D model, which re-
duces the computational complexity. The statistical model
based fine shape extraction is achieved by a Bayesian infer-
ence on a Bayesian network, which encodes the shape and
texture information of the model and therefore enhances the
robustness and accuracy of the contour extraction.

2. Related Work

Bayesian network based approach [18][19][20] is used to
identify or track object such as human body, which is com-
posed with multiple subparts and among the subparts struc-
tral or kinematic constrains exist. The Bayesian network
embeds the subparts constraints in a graphical model associ-
ated with image observations. Bayesian network is also ex-
ploited for finding deformable shapes [21][22], where both
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the local and relative shape information can be encoded in
a graphical model and a Bayesian inference is carried out to
find the solution.

3. Methods

3.1. Image acquisition

We use calibrated fluoroscopic images from C-arm. Due
to the limited imaging volume of C-arm, we ask for four im-
ages for the proximal femur from different view direction,
of which two images focus on the proximal femoral head
and the other two focus on the femoral shaft. The calibrated
fluoroscopic image set is represented by I.

3.2. Statistical model of the proximal femur

A Principle Component Analysis (PCA) based 3D sta-
tistical model M with 4098 vertices of the proximal fe-
mur is constructed from a training data set containing the
CT data of 13 bones [16] as shown in Fig. 1(a). An in-
stance generated from the statistical model with parameter
set Q = {α, β0, β1, . . . , β11} can be described as

M : S(Q) = α(S0 +
11∑

i=0

βiλ
1
2
i Pi) (1)

where S0 is the mean model, α is the scaling factor, λi and
Pi are the ith eigenvalue and the the correspondent eigen-
vectror.

3.3 Automated initialization

To find the initial rigid transformation T0 and param-
eter set Q0 to align the model instance S(Q0) with the
observed fluoroscopic images, a multiple component geo-
metrical model is constructed for the proximal femur. A
Bayesian network is established to encode the constraints
among the components and an Estimation of Bayesian Net-
work Algorithm (EBNA) is used to align the geometrical
model with the fluoroscopic images. Then T0 and Q0 can
be calculated from the geometrical model accordingly.

3.3.1 Multiple component model of the proximal fe-
mur

The proximal femur is modeled by a geometrical model
consisting of 3 components: head, neck and shaft, which
are described by a sphere, a trunked cone and a cylinder
with parameter set Xgeo = {XH ,XN ,XS} respectively as
shown in Fig. 1(b). On one hand the three components
are constrained by the anatomical structure of the proxi-
mal femur. Compared with 2D model based initialization

(a) PCA based 3D statistical model (b) Multiple component geometri-
cal model

Figure 1. 3D models of the proximal femur for
automatic femur contour extraction

Figure 2. Graphical model for the multiple
component geometrical model fitting, π(·)s
are the prior distributions of nodes and p(·|·)s
are the conditional distributions, I is the ob-
served image data

[1][12][15], the simplified 3D model is less view direc-
tion dependent and has the capability to catch the global
structure of the anatomy from the fluoroscopic images. On
the other hand the simplified geometrical model is much
less computational expensive than the statistical model with
dense surface mesh [17].

3.3.2 Bayesian network for the proximal femur model

The constraints among components are encoded in the con-
ditional distributions among the nodes in a graphical model
[18][20][23] as shown in Fig. 2. The conditional distribu-
tions are set so that the geometrical model can represent a
meaningful anatomical structure of the proximal femur.

3.3.3 Geometrical model fitting by EBNA

A combination of particle filter and probability logic sam-
pling, which can also be regarded as an EBNA is imple-
mented to fit the geometrical model with the fluoroscopic
images by solving the maximal likelihood estimation

(X∗
geo) = max

Xgeo

Prob(I|Xgeo) (2)
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where Prob(I|Xgeo) is called observation model. It’s con-
structed by a similarity measurement between the fluoro-
scopic images and the silhouettes of the projected geomet-
rical model on the correspondent image planes, which is
calculated as the AAM. The EBNA is given in Algorithm 1.

1. Initialization
Generate the first generation of particle set with N
particles {P 0

i = X0
geo,i}i=0,...,N−1 from the proposal

distributions

q0(XS) = π(XS)

q0(XN ) = π(XN )q0(XS)p(XN |XS)

q0(XH) = π(XH)q0(XS)p(XH |XN )

2. Observation
Given the current generation of particle set, calculate
the weight of each particle as wn

i ∝ Prob(I|Xn
geo,i).

3. Update
Update the proposal distributions as

qn+1(XS) = NPDE(wn
i ,Xn

S,i)

qn+1(XN ) = π(XN )qn+1(XS)p(XN |XS)

qn+1(XH) = π(XH)qn+1(XN )p(XH |XN )

where NPDE(wn
i ,Xn

S,i) is a nonparametric density
estimation. Generate the next generation of particle
set from the updated proposal distributions.
4. Go to 2 until the particle set converges.

Algorithm 1. EBNE for geometrical model fitting

3.3.4 Statistical model initialization

From the mean shape of the 3D statistical model S0, the
model vertices can be classified into three regions, femoral
head, neck and shaft. The femoral head center and radius,
axes of femoral neck and shaft can be determined in the
model coordinate space by a 3D sphere fitting to the femoral
head region and cylinder fittings to the femoral neck and
shaft regions. The initial rigid transformation and scale
can then be computed to fit the statistical model (the scaled
mean shape) to the geometrical model.

3.4 3D statistical model based contour ex-
traction

After the statistical model initialization, the contour ex-
traction is accomplished by a joint registration and segmen-
tation as summarized in Algorithm 2.

(a) Fitting the geometrical 3D model with fluoroscopic images

(b) Fitting the statistical model with the geometrical model

Figure 3. Automatic 3D statistical model ini-
tialization
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1. Simulated fluoroscopic and silhouette extraction
Given the current instanced statistical model M : S(Qn)
and the transformation Tn to align the 3D model to
the observed fluoroscopic images, project the aligned
statistical model on each of the K fluoroscopic image
planes using the projection geometry of each fluoro-
scopic image. From the simulated fluoroscopic images
the silhouettes {Ck,n

model}k=0,...,K−1 are extracted [8].

2. 2D template based segmentation
On each fluoroscopic image, taking the correspondent
silhouette of the projected statistical model Ck,n

model as a
template, a Bayesian network based shape matching is
implemented to search for the bone contour Ck,n

image.

3. Nonrigid 2D/3D registration
A 2D/3D nonrigid registration procedure as described
in [8] is carried out to fit the extracted bone contours
Ck,n

imagek=0,...,K−1
and the statistical model M, which

results in an updated instanced model M : S(Qn+1) and
rigid transformation Tn+1

4. Go to 1, until the procedure converges.
Algorithm 2. Statistical model based segmentation

3.4.1 2D template based segmentation using belief
propagation

Usually active contour or statistical model (ASM or AAM)
[1][11] are used for model based 2D segmentation. Ideally
the model should keep the global shape information as well
as involve the local feather information such as the edge and
intensity distribution. Active contour emphasizes on search-
ing for local features along the contour and therefore usually
lacks of the ability to hold the global structure. ASM/AAM
consider both the global shape and the local features. But its
shortcoming is that its searching strategy usually indepen-
dently estimate each point to a new target position by a local
search along the normal direction of the contour. Therefore
the inaccuracies in this estimation can not be appropriately
accommodated for by the global shape information and can
only be regularized by a projection to the shape space dur-
ing the nonrigid registration step [8]. In [21][22] the shape
matching problem is formalized as an Bayesian inference
on a graphical model and solved by loopy belief propaga-
tion and Bathe free energy approximation respectively. In
this approach, a graphical model is established so that the
correspondence assignment for each point involves both the
global shape and local feature information.

From the silhouette of the projected 3D statistical model,
we sample M points(nodes) tracing the contour as the
shape prior. Each point is described by a parameter set
qi = {xi,gi}, i = 0, . . . ,M − 1, where xi = (xi, yi)

is the position of ith point on the image coordinate sys-
tem, gi = (gxi, gyi) is the image gradient of the current
node. Due to the lack of 2D training data set, we define
that ‖gi‖ = 1 and its direction is parallel with the lo-
cal direction of the contour on the normalized gradient im-
age. The configuration of our model can then be written as
Qmodel = {qi}i=0,...,M−1 and the configuration of a can-
didate contour can be written as Qcand = {q′

i}i=0,...,M−1.
We then establish a partially connected graph with

M vertices as: G(V,E),V = {vi, }i=0,...,M−1,E =
{ei,j}i,j=0,...,M−1,where ei,j = 1 for (i − j)modM <
4, i 6= j, i.e., each vertex is connected with its 6 nearest
neighbours. We define the potential between vertices i and
j with ei,j = 1 as

Ui,j(q
′

i,q
′

j) = e
−(µ

(x
′
i−x

′
j)·(xi−xj)

‖x′
i
−x

′
j
‖‖xi−xj‖

+ν
‖‖x

′
i−x

′
j‖−‖xi−xj‖‖

‖xi−xj‖
)

(3)
The potential is set so that the global shape of the model
will be kept by penalizing the deviation of the angle and
distance between vertices from our model.
The local observation is defined as

Bi(q
′

i) = eξ‖g
′
i·gi‖ (4)

which means to penalize candidates with weak gradient am-
plitude and inconsistent gradient direction with the model.

Under these definitions, a bone contour that keeps the
global shape of our model and at the same time locates itself
to the strong edge positions can be obtained by a Maximal
Likelihood(ML) estimation as

C∗
image = max

Qcand={q′i}

M−1∏
i=0

Bi(q
′

i)
∏

i,j,ei,j=1

Ui,j(q
′

i,q
′

j)

(5)
In our approach, the candidate positions for each node of
the bone contour are sampled along the normal direction
of the model and standard loopy belief propagation[21] is
used to approximate the ML estimation and an example of
the method is shown in Fig. 4.

3.4.2 2D/3D nonrigid registration

Our statistical model can be fitted to the extracted bone
contours {Ck,n

image} as a 2D/3D nonrigid registration pro-
cedure. The method described in [8] is applied here
as follows. For each point Pl on the extracted bone
contour, the correspondence between its backprojection
line BP (Pl) and a vertex vcorr(Pl) on the current in-
stanced statistical model M : S(Qn) and its current
transformation Tn can be established. Project vcorr(Pl)

on BP (Pl) will generate a correspondent 3D point pair
(vcorr(Pl), P roj(vcorr(Pl), BP (Pl))). A rigid transforma-
tion Tn+1

update can be calculated to align the current statisti-
cal model M : S(Qn) to the extracted contours. The rigid
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Figure 4. Bayesian network based 2D seg-
mentation, where circles show the projected
silhouettes and dots show the extracted con-
tours

Figure 5. 2D/3D nonrigid registration

transformation can then be updated as Tn+1 = Tn+1
updateT

n.
The residual error between correspondent point pairs can
then be compensated by the constrained deformation of the
statistical model [16]. An example of the nonrigid registra-
tion is shown in Fig. 5.

4 Experimental Results

We verified our approach on three set of clinical data,
each data set includes four calibrated fluoroscopic images of
the proximal femur. To test the robustness of the automatic
initialization, we run the initialization algorithm for 10 trails
on each data set with particle number N = 200. In each trial
the proximal femur is correctly identified and the statistical
results are shown in Table 1. The extracted proximal femur
contours are shown in Fig. 6.

5 Conclusions

In this paper we propose a 3D statistical model based
fully automatic bone contour extraction framework from
calibrated fluoroscopic images. We solve the automatic ini-
tialization by fitting a simplified multiple component ge-
ometrical 3D model to the observed fluoroscopic images.
The 3D model based initialization algorithm does not ask
for strict view direction assumption compared with 2D

Table 1. Statistical results of the automatic
initialization algorithm, all results are relative
to the mean values of the 10 trials

Parameter Data Set 1 Data Set 2 Data Set 3

Head Center (mm) 1.4±1.1 0.1±0.1 0.1±0.2

Head Radius (mm) 0.3±0.4 0.6±0.2 1.0±0.8

Neck Radius (mm) 0.8±1.1 0.6±0.9 1.0±1.2

Neck Length (mm) 1.0±1.4 1.3±1.8 1.2±1.7

Neck Axis (degree) 0.8±0.7 2.3±1.0 1.8±1.1

Shaft Radius(mm) 0.2±0.3 0.1±0.2 0.2±0.2

Shaft Length(mm) 0.5±0.2 0.9±0.5 1.8±1.0

Neck/Shaft Angle(degree) 0.8±1.0 2.0±2.5 1.8±2.6

(a) Data set 1

(b) Data set 2

(c) Data set 3

Figure 6. Results of automatic proximal femur
bone contour extraction on clinical data
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model or 2D image feature based initialization. Since the
fitting is accomplished by a particle filter based evolutionary
algorithm, it has a strong capability to overcome local op-
tima and converge to the global optimal. The 3D statistical
model based bone contour extraction is solved as a simul-
taneous 2D/3D registration and segmentation. The model
based segmentation is accomplished by a Bayesian infer-
ence procedure which in principle can overperform active
contour and AAM/ASM by simultaneously optimize both
the global shape constraints and local image feature infor-
mation. Experiments on clinical data sets verified the valid-
ity and performance of this approach.
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