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Abstract In dogs, degenerative joint diseases (DJD)
have been shown to be associated with increased lactate
dehydrogenase (LDH) activity in the synovial Xuid. The
goal of this study was to examine healthy and degenera-
tive stiXe joints in order to clarify the origin of LDH in
synovial Xuid. In order to assess the distribution of LDH,
cartilage samples from healthy and degenerative knee
joints were investigated by means of light and
transmission electron microscopy in conjunction with
immunolabeling and enzyme cytochemistry. Morphological
analysis conWrmed DJD. All techniques used corroborated
the presence of LDH in chondrocytes and in the interterri-
torial matrix of healthy and degenerative stiXe joints.
Although enzymatic activity of LDH was clearly demon-
strated in the territorial matrix by means of the tetrazo-
lium–formazan reaction, immunolabeling for LDH was
missing in this region. With respect to the distribution of
LDH in the interterritorial matrix, a striking decrease

from superWcial to deeper layers was present in healthy
dogs but was missing in aVected joints. These results
support the contention that LDH in synovial Xuid of
degenerative joints originates from cartilage. Therefore,
we suggest that (1) LDH is transferred from chondrocytes
to ECM in both healthy dogs and dogs with degenerative
joint disease and that (2) in degenerative joints, LDH is
released from chondrocytes and the ECM into synovial
Xuid through abrasion of cartilage as well as through
enhanced diVusion as a result of increased water content
and degradation of collagen.

Keywords Dog · Degenerative joint disease · 
Immunolabeling · Electron microscopy · Enzyme 
cytochemistry

Abbreviations
AP Alkaline phosphatase
ASAT Aspartate amino transferase
CCB 0.1 M sodium cacodylate, 2 mM CaCl2, 

pH 7.4
CCL Cranial cruciate ligament
CFG Cold Wsh gelatin
DJD Degenerative joint disease(s)
ECM Extracellular matrix
ICC Immunocytochemistry
IHC Immunohistochemistry
LDH Lactate dehydrogenase
NAD Nicotinamide adenine dinucleotide
NBT Nitroblue tetrazolium chloride
NDS Normal donkey serum
SF Synovial Xuid
TEM Transmission electron microscopy
TNBT Tetranitroblue tetrazolium chloride
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Introduction

Degenerative joint disease (DJD) is known as a slowly pro-
gressive degenerative condition that gradually leads to
complete loss of joint function (Hayashi et al. 2003). This
debilitating condition has been reported to aVect as many as
20% of the canine population over 1 year of age (Johnston
1997). The most common cause of canine DJD in stiXe
joints is the rupture of the cranial cruciate ligament (CCL).
This is usually the result of adaptive or degenerative
changes within the ligament tissue and, thus, is inXuenced
by age, body weight, and phenotype. Lactate dehydroge-
nase (LDH) is a ubiquitous cytosolic enzyme that catalyses
a critical step in the glycolytic pathway, the reversible con-
version of pyruvate to lactate. The enzyme is a tetramer,
with either H or M subunits or a combination of both. Five
diVerent isoenzymes are known to date. In cartilage tissue,
LDH4 and LDH5 are the predominant isoforms, as they
play a pivotal role in anaerobic metabolic pathways (Yan-
cik et al. 1987). Whereas the diagnosis of arthritis can fall
back upon a number of reliable indicators present in syno-
vial Xuid (SF), convenient markers for DJD are still lacking
in the dog. However, an increase in synovial LDH levels
was recently associated with degenerative joint diseases
(DJD) (Hurter et al. 2005; Schmöckel et al. 2001). The goal
of the present study, therefore, was to elucidate the signiW-
cant increase of LDH in SF from degenerative joints in the
dog. Blood and SF samples were analyzed to monitor the
inXammatory status, and articular cartilage from healthy
and diseased joints were analyzed morphologically by light
and electron microscopy. Furthermore, the presence and
activity of LDH were determined by means of immunola-
beling and enzyme cytochemistry. We herewith show that
the presence of LDH is similar in chondrones of both
healthy and degenerative cartilage. However, distribution
of LDH within the extracellular matrix (ECM) diVers, as
the gradient from superWcial to deeper layers observed in
healthy tissue was lacking in diseased cartilage. These Wnd-
ings suggest that LDH is released from chondrocytes to
ECM in both healthy dogs and dogs with DJD. Whereas,
extracellular LDH remains constrained to ECM in sound
cartilage, it is lost from damaged cartilage into the synovial
Xuid through abrasion and enhanced diVusion as a result of
increased water content and degradation of collagen.

Materials and methods

Animals

Both stiXe joints from three male and three female
healthy Beagles and from one male Jack Russell Terrier
(mean age 6.0 § 4.1 years) were used as controls. These

animals were euthanized for reasons not related to joint
diseases or inXammatory processes. They had no history
of lameness, nor did they show any macroscopic evi-
dence of DJD.

Nine biopsies were from patients with degenerative
stiXe joints (one female and two neutered female Labra-
dor Retrievers, two neutered female Bernese Mountain
Dogs, one neutered male Australian Shepherd dog, one
neutered male Boxer, one male English Bulldog, and one
neutered female Hovawart, (mean age 5.3 § 2.3 years).
These animals had been diagnosed clinically with a rup-
ture of the cranial cruciate ligament. Arthroscopic exami-
nation conWrmed a partial rupture in Wve dogs and a total
rupture in the remaining four individuals, with all patients
showing signs of DJD. None of the dogs had received
anti-inXammatory drugs within at least 2 weeks prior to
surgery.

Materials and tissue processing

Synovial Xuid

No SF was collected from control animals. From dogs with
DJD, native and EDTA samples of SF were taken prior to
surgery. Care was taken to avoid blood contamination.
Samples were analyzed for color, clarity, and viscosity and
were processed further within 30 min from sample collec-
tion. To reduce viscosity for further processing and analysis
(Hurter et al. 2005; Schmöckel et al. 2001), SF was
digested with hyaluronidase (Wnal concentration of 0.1 mg
hyaluronidase/ml, 20 min at 25°C). Aliquots for total cell
counts and diVerential cell counts (EDTA samples) were
removed and concentrated at 72£g (Cytospin 3, Shandon,
Pittsburgh, USA). The remaining synovial Xuid was centri-
fuged at 1,400£g for 15 min, and total protein content was
determined with a Hitachi 912 laboratory analyzer (High
Technology Inc, Walpole, USA). Enzymes assessed
included LDH, alkaline phosphatase (AP), and aspartate
amino transferase (ASAT); their activities were measured
at 37°C with the Hitachi 912 laboratory analyzer. LDH
activity was determined according to Schmöckel et al.
(2001).

Blood

Blood was collected by venipuncture prior to anesthesia
both from control animals and from dogs suVering from
DJD. Parameters determined included cell count, diVeren-
tial blood count, total protein content, and albumin, lactate,
glucose, ASAT (in EDTA sample) and AP (in heparinized
blood) concentrations. One aliquot of every sample was
centrifuged without delay in order to determine the concen-
tration of LDH in plasma with a Hitachi 912 laboratory
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analyzer (High Technology Inc, Walpole, USA) immedi-
ately after blood collection.

Cartilage

Thin cartilage slices were obtained from control animals
immediately after euthanasia. In degenerative stiXe joints,
cartilage biopsies were collected from the region immedi-
ately lateral to the femoral notch during arthroscopy by
means of a miniature double-spoon forceps. From dogs
with DJD, specimens for morphology, enzyme histochem-
istry and cytochemistry, and immunolabeling were col-
lected during arthroscopy.

For morphological examination of cartilage samples,
2.5% glutaraldehyde in CC-buVer (CCB 0.1 M sodium
cacodylate, 2 mM CaCl2, pH 7.4) was used as a Wxative.
Specimens were Wxed for 5 h at room temperature, washed
overnight in CCB, and post-Wxed for 1 h with 1% osmium
tetroxide in CCB. After dehydration through an increasing
ethanol series, tissue was embedded in either paraYn wax or
an Epon/Araldite mixture according to standard protocols.
Ultrathin sections (70 nm) of Epon/Araldite-embedded
material were mounted on collodion-coated copper grids
and counterstained with uranyl acetate and lead citrate.

Tissue for immunolabeling was Wxed with 0.5% glutar-
aldehyde, 4% paraformaldehyde, and 50 mM lysine–HCl in
0.1 M cacodylate buVer, pH 7.4. Samples were again Wxed
for 5 h at room temperature, dehydrated through an ascend-
ing ethanol series, and embedded in LR-White (British Bio-
cell International, Brunschwig, Germany) by thermal
curing in an incubator.

Immunohistochemistry and immunocytochemistry

For immunohistochemistry (IHC), semithin sections
(0.5 �m) of LR White-embedded samples were transferred
to glass slides and immunostained as shown in Table 1. A

highly puriWed polyclonal goat anti-rabbit LDH antibody
(L1011-09 from US Biological, Swampscott, Massachu-
setts, USA) that identifys all isoforms was used. After
immunogold labeling and subsequent silver enhancement,
sections were examined under epipolarization illumination.

For immunocytochemistry (ICC), ultrathin sections
(80 nm) of LR White-embedded material were collected
onto collodion-coated 200 mesh nickel grids and immuno-
stained as described in Table 2. Control reactions for IHC
and ICC included omission of both primary and secondary
antibody, omission of primary antibody, and substitution of
primary antibody with either normal goat IgG or goat anti-
human choline acetyltransferase (Chemicon International,
Inc., Lucerne) as an irrelevant primary antibody.

Enzyme histochemistry and cytochemistry

Enzymatic activity of LDH was assessed by histochemistry
and cytochemistry in two healthy dogs and in two dogs
with DJD.

Thick sections (200 �m) of unWxed joint cartilage were
produced with a Vibratome (Oxford Laboratories, Foster
City, USA). Incubation was performed with a reaction
medium containing 150 mM sodium L-lactate (substrate),
3 mM NAD (co-enzyme), 0.32 mM 1-methoxyphenazine
methosulphate, and 5 mM sodium azide in 100 mM phos-
phate buVer containing 18% polyvinyl alcohol, pH 7.45
(Van Noorden 1984). Finally, either 4 mg TNBT or 4 mg
NBT chloride (Boehringer Mannheim GmbH) were dis-
solved in 20 �l of dimethylformamide and then added as a
chromogen to 1 ml of the reaction medium. All chemicals
were from SIGMA (Buchs, Switzerland) unless stated
otherwise. Tissue slices were incubated for 2 or 3 h in a dark
humid chamber at 37°C. The viscous incubation medium
was rinsed oV with warm 100 mM phosphate buVer (pH
5.3, approx. 50°C). Thereafter, slices were Wxed in 10%
formalin for 10 min, dehydrated in an increasing series of

Table 1 Incubation for 
immunohistochemistry 
(light microscopy)

Steps Reagents Duration Temperature

Blocking step 5% NDS, 0.1% Tween 20, 1.35% CFG 30 min RT

Primary antibody Goat anti-rabbit LDH: 1:50 in 
blocking solution

5 h RT

overnight 4°C

Washing step Blocking Solution 2 £ 5 min RT

5% NDS, 0.1% Tween 20 3 £ 5 min RT

Secondary antibody Donkey anti-goat IgG, 12 gold conjugate: 
1:100 in 5% NDS, 0.1% Tween 20

90 min RT

Washing step 5% NDS, 0.1% Tween 20 3 £ 5 min RT

Distilled water 3 £ 5 min RT

Silver enhancement Silver kit 20 min RT (in the dark)

Washing steps Tap water 3 £ 5 min RT

Distilled water 5 min RT

Primary antibody: Goat anti-rab-
bit lactate dehydrogenase (LDH) 
antibody (USBiological)

Secondary antibody: 12 nm col-
loidal gold-aYnipure donkey 
anti-goat IgG (H+L) antibody 
(Jackson ImmunoResearch)
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ethanol, and inWltrated and embedded with Unicryl (Poly-
science Inc, BBI International, Brunschwig, Germany). In
order to enhance tissue contrast for better orientation, a
number of sections from one dog were osmicated following
a cytochemical reaction. For control reactions, sodium
L-lactate and NAD were replaced by distilled water. sections
of 5–15 �m were used for light microscopy. For electron
microscopic examination, 80 nm sections were mounted on
collodion-coated 200 mesh copper grids.

A Zeiss Axioskop with an AxioCam HR (Feldbach,
Switzerland) was used for light microscopic observation,
whereas ultrathin sections were examined in a Zeiss trans-
mission electron microscope 109 (Zeiss, Oberkochen, Ger-
many) equipped with a GATAN wide angle slow scan CCD
Camera 689 (GATAN GmbH, Munich, Germany).

Results

Distinction between intact and ruptured CCL in stiXe joints
was based on clinical examination of cruciate ligaments.
Clinical diagnosis was extremely reliable, as arthroscopy
and microscopical analysis of cartilage samples fully con-
Wrmed the presence of a ruptured CCL and of articular
damage in the diseased animals as opposed to healthy dogs.

Morphology

Light microscopical analysis of specimens included assess-
ment of overall tissue organization, state of cartilage sur-
face, and cell characteristics. Cartilage samples from
healthy dogs were smooth-surfaced and displayed the typi-
cal stratiWcation (Fig. 1) and cell shapes (Arsenault and
Hunziker 1988). Though usually present, the amorphous

layer at the articular surface (Fig. 3a, inset) occasionally
was discontinuous in healthy dogs. Underneath, the dense
network of collagen Wbers running in parallel with the
articular surface was obvious (Fig. 3a, inset). The territorial
and interterritorial ECMs were clearly distinct (Fig. 3b).
These features applied to all cartilage strata. Most chondro-
cytes showed large nuclei and an abundance of organelles
(Fig. 3a, b). Intracellular inclusions (Fig. 3a) were noted in
all three zones, the largest ones occurring in the radial zone.

In contrast, biopsies from degenerative stiXe joints
revealed damage to the articular surface, formation of
clefts, destruction of the tangential zone, and a disorganiza-
tion of cartilage layering (Fig. 2a, b). The articular surface
was rough and the amorphous layer was completely lacking
(Fig. 4) except for some remnants in one single dog. Fibers
were arranged at random with extensive amorphous foci
between single Wbers and Wber bundles (Fig. 4). Character-
istic signs of cartilage degeneration, such as hypocellularity
and hypercellularity, were obvious. Cell cloning was usu-
ally localized to transitional and tangential zones. As com-
pared to healthy cartilage, chondrocytes from degenerative
joints were smaller, cell nuclei were often big when pres-
ent, and depletion of cytoplasmic organelles occurred.
Instead, chondrocytes displayed intracellular vacuoles and
pericellular blebs. In half the biopsies, small ovoid, amor-
phous, cell-shaped, translucent structures that contain a net-
work of Wner Wbrils were observed underneath the surface
(Fig. 4).

Immunolabeling

In healthy dogs, chondrocytes in all three zones were
clearly immunopositive for LDH, with the strongest signal
observed in the transitional and radial zones (Fig. 5). The

Table 2 Incubation for immu-
nocytochemistry (transmission 
electron microscopy)

Steps Reagents Duration Temperature

Blocking step 5% NDS, 0.1% Tween 20, 1.35% CFG 30 min RT

First antibody Goat anti-rabbit LDH: 1:50 in blocking solution 5 h RT

overnight 4°C

Washing step Blocking solution 1 £ 5 min RT

5% NDS, 0.1% Tween 20 2 £ 5 min RT

Second antibody Donkey anti-goat IgG, 12 nm gold conjugate: 
1:100 in 5% NDS, 0.1% Tween 20

90 min RT

Washing step 5% NDS, 0.1% Tween 20 2 £ 5 min RT

PBS 4 £ 5 min RT

Fixation 1% glutaraldehyde in PBS 10 min RT

Washing step PBS 3 £ 5 min RT

Distilled water 3 £ 5 min RT

Silver enhancement Silver kit 5 min RT (in the dark)

Washing step Tap water 3 £ 5 min RT

Distilled water 5 min RT
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signal was evenly distributed all over the cytoplasm and on
mitochondria but was absent from vacuoles. The territorial
matrix was basically devoid of labeling (Figs. 5, 8). With
respect to the interterritorial ECM, labeling intensity
decreased from the tangential zone to the radial zone. How-
ever, the amorphous layer and the most superWcial layer of
collagen Wber displayed a faint signal only (Fig. 6).

In degenerative cartilage (Fig. 6), overall labeling was
faint. Chondrocytes in the tangential zone were virtually
devoid of any signal, whereas cells in the transitional and
radial zones displayed an increasing immunoreactivity. In
contrast to healthy cartilage, the gradient in labeling inten-
sity of the ECM was missing except for those areas where

remnants of the tangential zone were still present. As in
healthy dogs, signal was absent from the pericellular matrix
(Fig. 6, inset).

All negative control samples were devoid of immunola-
beling (Figs. 7, 9).

Tetrazolium formazan reaction

Enzyme histochemistry and cytochemistry provided a
highly speciWc and conspicuous signal especially when
using NBT chloride as a substrate. As tissue penetration is
subject to limitations, observations were made in peripheral

Fig. 1 Light micrograph of a Richardson-stained semithin section of
healthy cartilage showing obvious stratiWcation into tangential (I),
transitional (II) and radial zones (III). The articular surface is smooth
and even

Fig. 3 Electron micrographs of healthy cartilage. a A dense superW-
cial network of collagen Wbers running in parallel with the articular sur-
face is present. Chondrocytes contain numerous organelles and
vesicles. Inset An amorphous layer (double arrow) extends at the sur-

face. Underneath, densely packed collagen Wbers run in parallel with
the articular surface. b Territorial (A) and interterritorial (B) zones of
extracellular matrix are clearly demarcated. Note the large nucleus and
abundance of organelles in the chondrocyte

Fig. 2 Light micrographs of Richardson-stained semithin sections of
degenerative cartilage. a Note loss of stratiWcation as well as roughness
and unevenness of articular surface. b Note damage to articular sur-
face. Spindle-shaped chondrocytes, typical of the tangential zone, are
almost completely missing. Articular surface and chondrones are dam-
aged. The cytoplasm of chondrocytes contains cell debris and large
vacuoles
123
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regions of tissue samples. Osmication following enzyme
histochemistry did not aVect speciWcity when exposure to
OsO4 was limited to 1 h but yielded false positive results
when incubation was extended to 2 h.

Negative controls showed no or only a faint background
staining underneath the cell membrane (Figs. 12, 14).

In healthy cartilage, nuclei of chondrocytes were free
of reaction product, whereas the cytoplasm exhibited an
intense staining strongest beneath the cell membrane
(Figs. 10, 13). With regard to the ECM, signal decreased
from the tangential to radial zones, with a narrow layer at
the articular surface remaining devoid of reaction product
(Fig. 10). Furthermore, a concentric gradient was
observed within the territorial matrix, where the signal

Fig. 5 Epipolarization micrograph of silver-enhanced immunogold-
labeling of healthy cartilage with anti-LDH. Chondrocytes in all three
zones are strongly immunopositive, with the strongest cellular signal
being noted in the radial zone. The pericellular extracellular matrix is
devoid of labeling (encircled). A decrease in extracellular labeling
intensity from tangential to radial zones is conspicuous. Signal in the
amorphous layer and in most superWcial collagen Wbers is faint.
(Arrow) Cartilage surface

Fig. 4 Electron micrograph of 
degenerative cartilage. The 
amorphous layer is missing, and 
the articular surface is uneven. 
Collagen Wbers are loosely 
packed and arranged at random. 
Note amorphous foci in the 
extracellular matrix (arrows). 
(A) Territorial extracellular 
matrix

Fig. 6 Epipolarization micrograph of silver-enhanced immunogold-
labeling of degenerative cartilage with anti-LDH. Labeling of chon-
drocytes is faint. Unlike in healthy cartilage, labeling intensity in the
extracellular matrix does not increase from deeper to superWcial layers.
(Arrow) Cartilage surface. Inset Signal is absent from the pericellular
zone of the extracellular matrix (encircled)
123
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decreasing from the cell border to the periphery (Fig. 10,
inset).

In some respects, cellular staining in degenerative carti-
lage was similar to the signal observed in healthy animals.
Thus, ECM of degenerative cartilage exhibited the concen-

tric gradient in pericellular matrix as well, most promi-
nently in the radial zone (Fig. 11, inset). The gradient from
superWcial to deeper layers, however, was absent in dis-
eased animals (Fig. 11).

Synovial Xuid

Synovial Xuid (SF) was obtained from eight out of nine
dogs with DJD, as aspiration of Xuid failed in one dog. Vol-
umes collected ranged from 0.5 to 1.9 ml. Results of labo-
ratory analyses are summarized in Table 3.

Cytology was performed in seven cases. Mainly mono-
nuclear cells (macrophages and synovial lining cells) with a
moderately to markedly enlarged cytoplasm in combination
with cytoplasmic vacuolization were observed. Polynucle-
ated giant cells were present in one dog. Lymphocytes and
polymorphonuclear granulocytes were within the normal
range. Occasionally, a few osteoclasts (5 dogs), blood cells
(4 dogs), and plasma cells (1 dog) were found.

Blood

Blood parameters from all control animals were within nor-
mal range except for a slight neutrophilia with left shift in
one dog suVering from a protein-losing enteropathy (as
based on gastro-intestinal endoscopic Wndings).

Fig. 7 Negative control for immunohistochemistry of degenerative
cartilage. A goat anti-human choline acetyltransferase antibody was
used as an irrelevant primary antibody for silver-enhanced immuno-
gold-labeling. Note complete absence of signal except for a few solitary
unspeciWc precipitates. a phase contrast, b epipolarization micrograph

Fig. 8 Immunogold-labeling of healthy cartilage with anti-LDH. a
Chondrocyte and interterritorial matrix are strongly immunopositive.
The territorial extracellular matrix, however, is devoid of signal (double

arrows) in this stained ultrathin section. b The dense labeling of the cyto-
plasm reveals regional diVerences in the abundance of LDH. The nucle-
us is also moderately labeled in this double stained ultrathin section
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Results of blood sample analyses from all the dogs
suVering from DJD are summarized in Table 3.

Discussion

Chronic joint diseases are commonly characterized as being
either inXammatory or degenerative. Whereas, the diagnosis
of arthritis can fall back upon a number of reliable indica-
tors present in synovial Xuid (SF), convenient markers for
degenerative joint diseases (DJD) are still lacking in the
dog. Although a number of indicators of articular damage,
such as collagen fragments, aggrecan fragments, metallo-
proteinases, and tissue inhibitor of metalloproteinase, have

Fig. 9 Negative control for 
immunocytochemistry. A goat 
anti-human choline acetyltrans-
ferase antibody was used as an 
irrelevant primary antibody for 
immunogold-labeling. Note 
complete absence of any back-
ground labelling, unstained ul-
trathin section

Fig. 10 Enzyme histochemical demonstration of LDH in healthy car-
tilage. The tetrazolium formazan reaction reveals an obvious decrease
in LDH-concentration from tangential to radial zones. Furthermore,
enzyme activity is completely absent from the most superWcial layers
at the articular surface. Inset: The territorial matrix displays a concen-
tric gradient with decreasing enzyme activity from the cell border to
the periphery

Fig. 11 Enzyme histochemical demonstration of LDH in degenerative
cartilage. Unlike in healthy cartilage, no vertical gradient in enzyme
activity is discernible. Inset The concentric gradient in the pericellular
extracellular matrix is similar to its counterpart in healthy cartilage

Fig. 12 Negative control for enzyme histochemistry. Light micro-
graph of healthy cartilage after incubation in the absence of substrate.
Note complete absence of reaction product
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been determined in blood, urine, or SF, none of these
parameters provides any speciWc clues as to the presence of
DJD (Chu et al. 2002; Lohmander 1994; Lohmander et al.
1998; Slater et al. 1995; Thonar et al. 1992). Similarly,
early reports implied that DJD might not alter enzyme
activities in SF (Cohen 1964). However, later studies in

horses and humans unanimously demonstrated an overall
increase in synovial LDH activity in conjunction with a
number of inXammatory and non-inXammatory joint dis-
eases, such as infectious arthritis, rheumatoid arthritis,
gout, and osteochondrosis dissecans (Lindy et al. 1971;
Messieh 1996; Pejovic et al. 1992; Rejno 1976; Yancik
et al. 1987). As for the dog, it has been shown recently that
LDH activity in SF is likely to correlate with the extent of
degenerative lesions, thus making LDH a potentially useful
and speciWc marker for DJD (Hurter et al. 2005; Schmöckel
et al. 2001).

The present study was designed to corroborate the corre-
lation between increased LDH activities in SF and DJD in
dogs and determine where the enzyme found in SF origi-
nates. Analyses of blood and SF samples were performed in
order to eliminate dogs with immune mediated or acute
inXammatory joint diseases from the study. Thus, only dogs
with arthroscopically and microscopically diagnosed DJD
but with blood and synovial leucocyte and neutrophil
counts within normal range were included. Taking into
account the diluting eVect owing to the large sample vol-
ume in dog 4, the activity of LDH in SF was increased in
six out of eight cases of DJD, thus supporting the conten-
tion of LDH as being a valuable indicator of DJD. Our
results also conWrm that LDH activity in SF from degenera-
tive joints does not correlate with synovial cell counts
(Hurter et al. 2005; Pejovic et al. 1992; Schmöckel et al.
2001). Thus, the enzyme cannot originate from blood cells.

The synovial membrane is another possible source of
LDH that must be considered. However, permeability of
synovial membranes is limited to molecules up to 100 kDa

Fig. 13 Enzyme cytochemical 
demonstration of LDH in 
healthy cartilage. Conspicuous 
intracellular formazan deposits 
are present in the cytoplasm but 
are absent from vacuoles

Fig. 14 Control reaction in the absence of substrate. Note complete
lack of reaction product
123
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(Lipowitz 1985; Lipowitz and Newton 1985; Maroudas and
Schneiderman 1987). Molecular weight of LDH is 140 kD,
and in addition, this enzyme carries a net negative charge.
Bearing in mind that analysis of SF speaks against an
increase in permeability, the possibility that LDH might
originate from the synovial membrane can be ruled out.

The presence of LDH in joint cartilage has been docu-
mented in various species including the dog (Altman 1981;
Dunham et al. 1986; Pelletier et al. 1985; Schiefke et al.
1998; Tushan et al. 1969; Weseloh and Fiesselmann 1975).
In tibial plateau cartilage of normal dogs, LDH was
reported to be homogeneously spread in superWcial, upper
transitional, and radial zones, with higher values noticed in
the deeper transitional zone (Dunham et al. 1986). The
present study now provides additional information as to the
distribution of LDH in articular cartilage. Enzyme cyto-
chemistry and immunolabeling clearly demonstrated high
levels of cytosolic LDH activity in viable chondrocytes of
both healthy dogs and dogs with DJD. Furthermore, some
labeling was also seen in nuclei as shown by electron
microscopy. LDH is known to be a soluble glycolytic
enzyme. However, its intracellular distribution is not
restricted to the cytoplasm. Rather, early reports on the
presence of LDH in the nucleus date back to 1965 (Siebert
and Humphrey 1965; Siebert et al. 1966). More speciW-
cally, LDH-5 has been located to the nucleus, and evidence
has been provided that it may function in the regulation of
gene transcription or DNA replication. It is considered to
be a single-stranded DNA-binding protein that stimulates
the activity of DNA poymerase � in vitro (Cattaneo et al.
1985; Grosse et al. 1986; Zhong and Howard 1990).

In addition, substantial amounts of LDH were present in
the cartilage matrix. The enzyme has been suspected to be
contained in matrix vesicles (Hosokawa et al. 1992, 1988;
Maki et al. 2000; Ohashi-Takeuchi et al. 1990). In our

material, such vesicles were commonly noticed by electron
microscopy. However, neither enzyme cytochemistry nor
immunolabeling were indicative of any LDH accumulation
within vesicles.

In healthy dogs, a decrease in LDH activity in the ECM
from superWcial to deep cartilage layers was substantiated
by both immunolabeling and enzyme cytochemistry, thus
suggesting accumulation of LDH within the tangential zone
as compared to the transitional and radial zones. We con-
sider this to be a corollary of the higher metabolic activity
in superWcial cartilage layers (Dunham et al. 1986). Such a
gradient, however, was absent in degenerative cartilage.
The lack of a density gradient in degenerative joints was
always associated with the erosion of the tangential layer as
revealed by morphological analysis. Inversely, the gradient
was still present in those areas in which the most superWcial
cartilage layer was preserved. Thus, an intact tangential
zone, including a lamina splendens, obviously provides
containment, and its absence predictably will allow leakage
of LDH into SF. This contention is further supported by the
observation that the exposed cartilage surface in degenera-
tive joints was virtually devoid of LDH. Furthermore,
homogeneous distribution of LDH in DJD obviously reX-
ects diVerences between healthy and degenerative cartilage
matrix with respect to permeability. This correlates with the
observation of dissociated collagen Wber bundles and loss
of Wber orientation in tangential and transitional zones,
these characteristics being indicative of increased water
content in the cartilaginous matrix (Adams and Billingham
1982; Roughley et al. 1992; Stockwell et al. 1983). Thus,
whereas healthy cartilage is able to restrict the diVusion of
molecules larger than albumin (Van Bree et al. 1994),
diVerences in LDH distribution are leveled out in degenera-
tive tissue due to increased permeability (Thonar et al.
1992).

Table 3 Results of SF and blood

Synovial Xuid Blood Plasma

Patient Color Turbidity Viscosity Protein 
(g/l)

Cells 
(£109/l)

Volume 
(ml)

ASAT 
(IU/l)

AP 
(IU/l)

LDH 
(IU/l)

ASAT 
(IU/l)

LDH 
(IU/l)

Normal 
range

None to light 
yellow

Clear +/++ 20–25 0–3 ¡1 10–76 14–126 Healthy: 61 § 9 
DJD: 120 § 9

20–73 66–319

1 Yellow Turbid + 29 0.9 50 46 116 87 187

2 Yellow Clear ++ 30 0.7 18 34 64 29 246

3 Yellow to reddish Clear ++ 20 0.7 0.5 36 238 34 156

4 Light yellow Clear ++ 32 0.8 1.9 26 40 64 23 79

5 Red 26 2.5 0.5 346 53 868

6 Light yellow Turbid ++ 26 0.8 110 30 174

7 Yellow Light turbid + 24 1.3 1.5 24 46 181 20 660

8 Yellow Clear 13 0.9 1 19 58 87 39 310
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In summary, we suggest that cytosolic LDH is released
from chondrocytes into the cartilage matrix. Whereas LDH
is retained in healthy cartilage due to permeability limita-
tions, it is released into SF in degenerative joints through
abrasion as well as through unrestricted diVusion as a result
of increased water content and degradation of collagen.
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