Comparison of GPS/GLONASS Clock Solutions

R. Dach¹, S. Schaer², and M. Meindl¹

¹Astronomical Institute, University of Bern Sidlerstrasse 5, CH-3012 Bern

 $^2 {\sf Federal}$ Office of Topography swisstopo

IGS–Workshop on GNSS–Biases Bern, Switzerland, 18.-19. January 2012 CORE

Comparison of GPS/GLONASS Clock Solutions

- 1. Direct comparison of the satellite clocks
- 2. Comparison of the submitted ISB/IFB
- 3. Precise Point Positioning solutions

Overview on the Contributions

		Clock Solution			
Analysis Center		Systems	satell.	stations	
COD	Center for Orbit	GPS+GLONASS	30 sec	300 sec	
	Determination in Europe,				
	AIUB, Switzerland				
EMR	Natural Resources Canada,	GPS+GLONASS	30 sec		
	Canada				
ESA	European Space Operations	GPS+GLONASS	30 sec	300 sec	
	Center, ESA, Germany				
GFZ	GeoForschungsZentrum,	GPS+GLONASS	300 sec	300 sec	
	Germany				
GRG	GRGS-CNES/CLS,	GPS+GLONASS	900 sec	900 sec	
	Toulouse, France				
IAC	Information-Analytical	GPS+GLONASS	300 sec	300 sec	
	Centre, Russia				

Deviation from the median

Deviation from the median

Biases in GPS/GLONASS (Clock) Processing

- DCB: differential code bias
 different hardware delays for
 P- and C-Code
- ISB: inter-system bias different hardware delays for measurements of different GNSS
- IFB: inter-frequency bias frequency-dependent hardware delays for the different GLONASS-signals

We can only extract the sum of delays from a GPS/GLONASS data processing.

The different biases are realized in different ways in the six contributing solutions. We can extract the following biases from the (satellite) clock time series:

■ ISB: inter-system bias

one common offset between all GPS and GLONASS clocks from each of the solutions

IFB: inter-frequency bias

one offset for each GLONASS clock with respect to all GPS clocks of the solution

Note, all offsets are realized as *median* to be robust against outliers.

Deviation from the median, ISB subtracted

Deviation from the median, ISB+IFB subtracted

Dach, Schaer and Meindl: Comparison of GPS/GLONASS Clock Solution – 9 / 34

ISB/IFB as Extracted from Satellite Clocks

Conclusion

- The ISB/IFB can be estimated from the satellite clock solutions of different ACs.
- Appling these corrections allows for a GLONASS satellite clock combination following the same technology as for GPS.
- The estimated ISB/IFB can be rather inhomogeneous if a satellite is not included in all solutions (which has no influence on a PPP-solution).

Deviation from the median

AIUB

Dach, Schaer and Meindl: Comparison of GPS/GLONASS Clock Solution – 11 / 34

Deviation from the median, ISB subtracted

Deviation from the median, ISB+IFB subtracted

ISB/IFB as **Extracted** from Satellite Clocks

ISB/IFB as Extracted from Satellite Clocks

Conclusion – 2

- To apply the mean ISB/IFB per satellite from the satellite clock solutions helps to reduce the differences between the solutions.
- Nevertheless, additional ISB/IFB need to be estimated from the satellite clock solutions of different ACs to achieve the consistency level necessary for the combination.
- The problem of ISB/IFB estimation from satellites not included in all solutions is reduced but not solved.

Repeatability of the IFB/ISB (as they are)

Station: MATE – Matera, IT

Repeatability of the IFB/ISB (as they are)

Station: CONZ – Concepcion, CL

Repeatability of the IFB/ISB (unified reference)

Station: MATE – Matera, IT

Repeatability of the IFB/ISB (unified reference)

Conclusion

- The IFB/ISB series from daily independent solutions need to be unitfied regarding their reference.
- The stability of the IFB with unified reference depend on the stability of the differences between the IFB between two satellites from the day to day in the original series.
- In the best cases we achieve a peak-to-peak stability of 2 to 3 ns.

ISB characteristic of the receivers

Analyse centrum: COD

AII/R

ISB characteristic of the receivers

Analyse centrum: GFZ

AIUB

Dach, Schaer and Meindl: Comparison of GPS/GLONASS Clock Solution – 20 / 34

ISB characteristic of the receivers

Analyse centrum: ESA

Olations

AIUB

Dach, Schaer and Meindl: Comparison of GPS/GLONASS Clock Solution – 20 / 34

ISB characteristic of the receivers

Analyse centrum: GRG

II /R

Differences between ISB characteristic of the receivers

Differences between ISB characteristic of the receivers

Analyse centrum: COD-ESA

Differences between ISB characteristic of the receivers

Analyse centrum: GFZ-ESA

Stations

AII/B

Dach, Schaer and Meindl: Comparison of GPS/GLONASS Clock Solution - 21 / 34

Differences between ISB characteristic of the receivers

Analyse centrum: COD-GRG

Differences between ISB characteristic of the receivers

Stations

Analyse centrum: GFZ-GRG

AIL/B

Dach, Schaer and Meindl: Comparison of GPS/GLONASS Clock Solution – 21 / 34

Differences between ISB characteristic of the receivers

Analyse centrum: ESA-GRG

AII/B

Differences between ISB characteristic of the receivers

	Num. of	Mean	Median	RMS
Difference	Stations	in ns	in ns	in ns
COD – GFZ	52	-210.6	-209.4	4.9
COD - ESA	39	-377.5	-377.6	5.1
GFZ – ESA	36	-167.7	-168.2	6.1
COD - GRG	50	-371.9	-372.2	18.7
GFZ – GRG	46	-162.1	-163.0	19.2
ESA – GRG	34	6.1	5.8	20.6

- High consistency (low RMS) with a proper IFB-handling (enough weight for the code measurements?)
- Test whether the ACs select the same type of code observations (CODE differs from ESA and GFZ)

Number of Satellites in the Solutions

Number of satellites per system

RMS of Orbit–fit using Bernese Software

Mean over all satellites of each system

RMS of Orbit–fit using Bernese Software

Median from all satellites of each system

Comparison in the PPP–Performance

How the following Solutions Have Been Generated?

- 1. Data import and screening
 - (a) if high-rate satellite clock corrections are available:
 Phase-data are screened based on PPP with a sophisticated algorithm before the first PPP-solution using post-fit residual screening.
 - (b) without high-rate satellite clock corrections: Only the consistency between code- and phase-data is checked before the first PPP-solution using post-fit residual screening.
- 2. static PPP using GPS/GLONASS data

assuming satellite-specific inter-system/inter-frequency code biases without ambiguity resolution for the phase data

3. pseudo-kinematic PPP using GPS/GLONASS data (same as above)

Statistics of the PPP Solution (after screening)

Number of code measurements (300 sec. sampling)

Statistics of the PPP Solution (after screening)

Number of phase measurements (300 sec. sampling)

Statistics of the PPP Solution (after screening)

Number of ambiguity parameters

A posteriori unit of weight

Coordinate difference to IGS08.SNX

RMS of the differences w.r.t. the static solutions

RMS of the differences w.r.t. the static solutions

RMS of the differences w.r.t. the static solutions

RMS of the differences w.r.t. the static solutions

RMS of the differences w.r.t. the static solutions

RMS of the differences w.r.t. the static solutions

GLONASS: Interfrequency–Biases

IFB as they are estimated in the static PPP-solution

GLONASS: Interfrequency–Biases

IFB as they are estimated in the static PPP-solution

Station: MATE – Matera, IT

AIL/B

