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[1] Instrumental temperature series are often affected by artificial breaks (“break points”)
due to (e.g.,) changes in station location, land-use, or instrumentation. The Swiss climate
observation network offers a high number and density of stations, many long and relatively
complete daily to sub-daily temperature series, and well-documented station histories
(i.e., metadata). However, for many climate observation networks outside of Switzerland,
detailed station histories are missing, incomplete, or inaccessible. To correct these records,
the use of reliable statistical break detection methods is necessary. Here, we apply three
statistical break detection methods to high-quality Swiss temperature series and use the
available metadata to assess the methods. Due to the complex terrain in Switzerland, we are
able to assess these methods under specific local conditions such as the Foehn or crest
situations. We find that the temperature series of all stations are affected by artificial breaks
(average = 1 break point / 48 years) with discrepancies in the abilities of the methods to
detect breaks. However, by combining the three statistical methods, almost all of the
detected break points are confirmed by metadata. In most cases, these break points
are ascribed to a combination of factors in the station history.

Citation: Kuglitsch, F. G., R. Auchmann, R. Bleisch, S. Brönnimann, O. Martius, and M. Stewart (2012), Break detection of
annual Swiss temperature series, J. Geophys. Res., 117, D13105, doi:10.1029/2012JD017729.

1. Introduction

[2] Instrumental surface temperature series are the founda-
tion for studies of paleo [e.g., Stewart et al., 2011], recent past
and present [e.g., Alexandersson and Moberg, 1997; Vincent
et al., 2002; Caussinus and Mestre, 2004; Trenberth et al.,
2007], and future [Giorgi and Mearns, 1991; Stott and
Forest, 2007] climate change. However, most instrumental
(“observational”) climate series suffer from non-climatic effects
(e.g., the relocation of weather stations, land-use changes, new
instruments, and changes in observational hours [Peterson et al.,
1998; Aguilar et al., 2003]) which result in inhomogeneities
(“break points” or BPs [e.g., Peterson et al., 1998;
Szentimrey, 1999; González-Rouco et al., 2001; Cocheo and
Camuffo, 2002; Maugeri et al., 2002; Brandsma and
Können, 2006; Della-Marta and Wanner, 2006; Kuglitsch
et al., 2009, 2010]). Usually, these effects are not docu-
mented in metadata. Or, where they are documented, the
metadata are in archives which are not readily accessible.
Fortunately, statistical methods have been developed to

detect inhomogeneities [e.g., Caussinus and Lyazrhi, 1997;
Vincent, 1998; Szentimrey, 1999; Caussinus and Mestre,
2004; Wang et al., 2007; Wang, 2008a, 2008b].
[3] Here, we apply three statistical methods (CAUME

based on Caussinus and Mestre [2004]; WANG based on
Wang et al. [2007], Wang [2008a, 2008b] and X. L. Wang
and I. Feng (RHtestV3 User manual, 2010, available at
http://cccma.seos.uvic.ca/ETCCDMI/software.shtml, 2010);
TORETI based on Toreti et al. [2012]) to high-quality daily
and sub-daily temperature series, integrating reference series
from the Swiss, French, and German observation networks.
Specifically, we consider more than 60 stations in the Swiss
observation network of the Federal Office of Meteorology
and Climatology (MeteoSwiss) and explore the potential of
different statistical method combinations for detecting major
historical station changes and accompanied break points. We
chose to use the Swiss observation network as the focus of
this study because it has: (1) a high number and density of
stations in different environment conditions (e.g., high-
lands, low-lands, urban and rural areas, and areas affected by
local climate effects); (2) many long and relatively complete
daily to sub-daily temperature series going back to 1864;
and (3) well-documented station histories and metadata that
allow a detailed comparison with break points found through
statistical methods.
[4] Then, we determine the consistency among statistical

break detection methods and metadata. This is fundamental
for developing a comprehensively homogenized Swiss sta-
tion network and for determining the effectiveness of these
statistical methods for climate observation networks outside
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of Switzerland (i.e., regions where detailed station histories
may be missing, incomplete, or inaccessible).

2. Data and Methods

[5] The Swiss climate observation network was estab-
lished in 1864 (cf. Figures 1 and 3–5). Since then, three daily
observations and (at most sites) maximum and minimum
temperatures have been registered. Around 1980, the network
was automated. Currently, these automatic stations are being
modernized. A subset of stations, selected by MeteoSwiss as
a National Baseline Climatology Network (NBCN), has had
historical temperature data digitized in the framework of the
DigiHom project [Füllemann et al., 2011]. Previous attempts
to homogenize Swiss temperature records have only consid-
ered: monthly mean temperatures [Baudenbacher, 1997;
Begert et al., 2005], daily maximum temperatures [Della-
Marta et al., 2007; Kuglitsch et al., 2009], a small number of
stations, and a sole statistical break detection method without
the validation or homogeneity assessment of subdaily data.

[6] Here, daily mean (TT), maximum (TX), minimum (TN),
morning (Tmor; 06:00 UTC), noon (Tnoo; 12:00 UTC), and
evening (Teve; 18:00/20:00 UTC) temperatures, from 61 sta-
tions in Switzerland, are screened for artificial break points
using statistical methods. These results are compared with
metadata. In 1971, the observation times of the evening values
changed from 20:00 UTC to 18:00 UTC, affecting evening
temperatures and the daily mean temperature. Therefore, the
daily mean temperature for non-automatic stations is calcu-
lated as:

until 1970: TT ¼ Tmor þ Tnooþ 2� Teveð Þ=4
since 1971 : TT ¼ n� k � n� TNð Þ

where n = (Tmor + Tnoo + Teve)/3, and k = factor; dependent
on location and time [Begert et al., 2003]. For all non-
automatic stations, detected breaks in TT must be validated
by a simultaneous break in either Tmor, Tnoo and/or Teve.
For automatic stations, introduced around 1980 (ANETZ,
see auxiliary material, Table S1), daily TT is the mean of

Figure 1. The geographical distribution of (1) the 56 Swiss stations (black, red, blue, and brown dots)
used to analyze artificial break points in daily TT, TX, TN, Tmor, Tnoo, Teve series and (2) the 5 stations
(gray dots with black, red with brown contours) used to analyze daily Tmor, Tnoo and Teve only. Grey
and blue shaded areas indicate altitudes above 1000 m a.s.l. and water bodies, respectively. The inset
map shows the geographical distribution of the French and German station network recording TT, TX,
and TN, used for reference.

Figure 2. A summary of the detected break points for TT, TX, TN, Tmor, Tnoo, and Teve in (top) Basel, (middle) Altdorf,
and (bottom) Grand St. Bernard using metadata and the statistical methods of: (1) CAUME, (2) WANG, and (3) TORETI.
The black lines correspond to the length of the daily TT, TX, TN, Tmor, Tnoo, and Teve series. The black crosses indicate
the years of detected break points following the respective statistical method. Colored vertical lines represent years when
major problems are indicated by metadata. Dotted lines designate longer periods of changes and problems. Grey vertical
lines summarize the break points found with statistical methods.
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Figure 3
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24 hourly values.1 Therefore, detected breaks in automatic
stations cannot be validated using Tmor, Tnoo, and Teve.
All the data is publically available at IDAweb, MeteoSwiss,
and can be downloaded under http://www.meteoschweiz.
admin.ch/web/en/services/data_portal/idaweb.html. The TT,
TX, and TN from 32 and 53 stations of the French and
German network, respectively, are included in the analysis
as reference stations (see section 2.2). These data stem from
the European Climate Assessment & Data set (ECA&D
(eca.knmi.nl) [Klein Tank et al., 2002]). The geographical
distribution of the 61 Swiss stations analyzed, and the Ger-
man and French reference stations, is presented in Figure 1.
[7] According to environmental conditions and regional

climate effects, all stations can be categorized into: (1) JURA
MOUNTAINS (4 stations, >1,000 m a.s.l.), (2) SWISS
PLATEAU (21 stations, <1,000 m a.s.l.), (3) LOW ALPS
(22 stations, <1,500 m a.s.l.), and (4) HIGHALPS (15 stations,
>1,500 m a.s.l.). This enables us to explore the effects of the
environmental and regional conditions on the performance of
the different break detection methods.
[8] All time series (besides Montreux which stops at

2005) cover the period from 1974 to 2010. Most of the time
series go back to 1960, and many extend beyond 100 years.
A summary and detailed overview of the time series lengths
is provided in Table 1 and Figures 3–5, respectively.

2.1. Data Quality Control

[9] Before assessing homogeneity, the quality of the data
must be analyzed in detail. We follow the method of Aguilar
et al. [2003] to identify suspicious values (e.g., outliers) and
to verify the consistency, tolerance, and temporal coherency
of the time series. Missing values replace temperature values
exceeding: (1) �50.0�C, (2) �4 standard deviations (s) of
the full length of the respective station series, and/or (3) a
difference of 25�C between consecutive observations. Fur-
thermore, four or more equal consecutive values are removed
and we verify that the number of days for each month is
represented in the data. Finally, we consider a month to be
complete when ≤3 days are missing. A year is considered
complete when all months are present. A station series is
considered complete when no more than three years are
missing [Moberg and Jones, 2005].
[10] After applying these criteria to the whole data set, the

most complete time period spanned from 1971 to 2000 (for
61 stations; showing a maximum of three missing years).
Therefore, this 30-year climatological standard-normal
period is the base period for the break detection and calcu-
lating correlations [cf. Kuglitsch et al., 2009, 2010].

2.2. Break Detection: Using Statistical Approaches

[11] Under ideal circumstances, statistical break detection
should be applied to the mean annual data of multiple

“difference” time series (Y-Rn, where Y denotes a so-called
candidate and Rn various reference series) with a highly
correlated (r > 0.8) reference series [e.g., Aguilar et al.,
2003; Toreti et al., 2010a]. Break points are more reliably
detected in mean annual series because these are less noisy
than monthly, daily or sub-daily series [Easterling and
Peterson, 1995; Alexandersson and Moberg, 1997; Vincent,
1998; Caussinus and Mestre, 2004]. The use of highly cor-
related reference series helps to distinguish non-climatic
break points from climatic break points [i.e., Kuglitsch et al.,
2009; Toreti et al., 2010a]. However, a non-climatic net-
work-wide break point (e.g., the simultaneous introduction of
new instruments) can be difficult to detect because it exists in
both Y and Rn. To overcome this problem, and to increase the
probability of detecting break points affecting an entire net-
work, series from independent meteorological networks (i.e.,
from different countries) should be included whenever
possible.
[12] To detect an unknown number of artificial break

points, we apply three methods to identify artificial changes
in mean and/or variance: (1) Caussinus and Mestre [2004]
(hereafter referred to as CAUME), (2) Wang et al. [2007],
Wang [2008a, 2008b], and Wang and Feng (online publica-
tion, 2010) (hereafter referred to as WANG), and (3) Toreti
et al. [2012] (hereafter referred to as TORETI). The method
ofWANG, also called RHtestsV3, is available online at http://
cccma.seos.uvic.ca/ETCCDMI/software.shtml. The methods of
CAUME and TORETI are programmed using R Statistical
Computing. Each of these methods is applied to the mean
annual TT, TX, TN, Tmor, Tnoo, and Teve difference series
between a candidate station and its ten highest correlated (r >
0.8) neighboring stations from the Swiss, French and German
(French and Swiss only TT, TX, TN) network (Figure 1). For
example, for the candidate station “La Chaux-de-Fonds”
(Jura, TX) we used the following reference stations: Adel-
boden 0.94, La Brevine 0.92, Chaumont 0.92, Hinterrhein
0.91, Davos 0.90, Engelberg 0.90, Disentis 0.90, La Dole
0.90, Château-d’Oex 0.89, Gstaad/Saanen 0.89. If one
method detects the same break point (i.e., within two con-
secutive years) in three or more of the ten reference series,
this break point is considered to be “true.” A break point year
is assumed to be “valid” if either two or three methods show a
break point within the same two consecutive years. The year
with the greatest number of break points is defined as the year
of an inhomogeneity [cf. Kuglitsch et al., 2009].
[13] We highlight the statistical results from Basel (316 m a.

s.l., SWISS PLATEAU), Altdorf (440 m a.s.l., LOW ALPS)
and Grand St. Bernard (2,472 m a.s.l., HIGH ALPS) and their
relationship to their respective metadata. These three stations
were selected because they: (1) have a relatively long station
history and complete data coverage going back to 1864, (2)
represent very different environmental and climatic conditions
such as Foehn (Altdorf), a Central European low land situation
(Basel), and a high elevation situation on the Alpine divide
(Grand St. Bernhard), but at the same time, and (3) are cli-

Figure 3. A summary of the detected break points for the Swiss TT series. The black lines correspond to the length of the
daily TT series. The orange crosses indicate the years of detected break points. The gray, red, and blue rectangles indicate
periods when metadata suggest major problems and changes in the weather station history.

1Auxiliary material is available in the HTML. doi:10.1029/
2012JD017729.
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matologically representative for their region (as classified by
Figure 1).

2.3. Break Detection: Using Metadata

[14] To test the reliability of the three statistical break
detection methods, we compare their results with the meta-
data provided by MeteoSwiss. These metadata contain
information about individual Swiss stations including details
about: (1) instrumentation- and station-related changes and
problems (e.g., changes in instruments, screens, ventilation,
roofs, stairs, type of weather station, station decay, mainte-
nance, renovation, reparations, and paintwork); (2) observation-
related changes and problems (e.g., changes of the observer,
changes of observational hours, failures and erroneous
records, and new instructions to the observer), (3) location-
related changes and problems (e.g., station relocation and
land-use changes), (4) accidents (e.g., floods), and (5) a
combination of the aforementioned causes.

2.4. Combination of Statistical and Metadata
Approaches

[15] Identifying a break point using statistical methods can
be risky. Statistical methods have different sensitivities to
break points [e.g., Toreti et al., 2012; Venema et al., 2012],
which introduces the risk of, for example, falsely identifying
break points. To minimize this risk, we verify that each break
point can be identified using at least two of the three inde-
pendent statistical methods (which we assume to have com-
parable detection skills) listed in Section 2.2. This is a similar
approach as used in multimodel climate projections [e.g.,
Randall et al., 2007]. Consistently, in Toreti et al. [2012], a
combination of statistical break detection methods (evaluated
on a simulated data set and instrumental precipitation data)
was employed. Then, in a further independent test, we com-
pare these model results with the metadata provided by
MeteoSwiss. Specifically, once a break point is deemed
“valid” by statistical methods, we investigate whether a
corresponding metadata entry (i.e., a discrete date) is found
within �2 years of the statistically detected year of break
point. In case the break point coincides with several (or
continuous) dates of metadata entries, the statistically found
break point is attributed to the respective year (i.e., a break
point attributed to 1980 is between 1980 and 1981). If a sta-
tistically “valid” break point is not confirmed by metadata (a
rarity; see section 3.1), the break is accepted and attributed to
the respective year. Finally, where metadata indicate station
changes or problems that are not detected statistically, it is
assumed that the time series is free of inhomogeneities.

3. Results and Discussion

3.1. Comparison of Statistical Break
Detection Methods

[16] The statistically confirmed (“valid”) break points
for Basel, Altdorf, and Grand St. Bernard are presented
in Figure 2 according to different parameters, statistical

methods, and metadata. The results for the entire Swiss sta-
tion network are shown in summarized form in Figures 3–5.
[17] We find strong agreement among the “valid” break

points (using the combined application of statistical methods)
and metadata, emphasizing the reliability of the proposed
approach. However, during the most recent decades, an
increasing amount of metadata complicates the confirmation
of the detected break points. In particular, the technical
development of instruments and the automation of the weather
stations often results in complex and time-consuming main-
tenance works, transmission errors, or other failures spanning
over several years (e.g., Basel, 1976–1980, 1994–1999;
Altdorf, 1994–1997). Therefore, the associated break points
during these periods cannot be reliably detected by meta-
data and require a statistical evaluation.
[18] A detailed analysis of the statistically detected break

points and metadata identifies inhomogeneities that either:
(1) affect only certain parameters, or (2) affect all or
most of the parameters (e.g., station relocation in Basel,
1929; change from thermometer to thermograph in Grand
St. Bernard, 1965; issues with thermograph in Grand
St. Bernard, 1974; introduction of automatic station network
ANETZ and station relocation in Grand St. Bernard, 1981).
This demonstrates that statistically significant break points can
be caused by different or even compound reasons.
[19] In contrast, Basel (Tmor) highlights the importance of

combining different break detection methods. Depending on
the method, Basel (Tmor) is either homogeneous (WANG,
TORETI) or affected by six break points (CAUME). This
suggests that the CAUME method tends to overestimate the
number of break points and a statistical break detection using
only CAUME is not sufficient. Moreover, Basel and Altdorf
are affected by statistically significant break points that are
not confirmed by metadata (Basel, TN, 1916; Basel, Teve,
1962; Altdorf, TX, 1921; Altdorf, TN, 1958). Local (e.g.,
spatial exposure of the crest situation at Grand St. Bernard)
and often short-time climate effects (e.g., the Foehn in
Altdorf) do not affect the reliability of statistical break
detection (based on annual means of reference series corre-
lating r > 0.8) because: (1) the station network in Switzerland
is sufficiently dense that multiple stations (≥10) are often
exposed to the same local and/or short-term climate effects
and (2) the statistical break detection methods are based on
mean annual temperature data.
[20] To test the potential of the three break detection

methods, the break points detected by only one of the three
statistical methods are analyzed and compared with the
metadata for Basel, Altdorf and Grand St. Bernard (Table 2).
[21] For Basel, six years of break points are found by

CAUME (TT, 1883; TN, 1936, 1941, 1952; Tmor, 1883,
1970; Tnoo, 1987). One single year of break point is found
by WANG (Teve, 1939) and TORETI (TN, 1960). The
metadata indicate that in 1987 the screen was painted and the
ventilator was replaced. All other break points are not sup-
ported by metadata. This confirms that only break points

Figure 4. A summary of the detected break points for the Swiss TX and TN series. The black lines correspond to the length
of the daily TX and TN series. The red and blue triangles indicate the years of detected break points for the TX and TN tem-
perature series, respectively. The red, blue, and gray rectangles indicate periods when metadata suggest major problems and
changes in the weather station history.
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found by two or all three break detection methods are
reliable.
[22] In the case of Altdorf, eight years of break points are

found by CAUME (TX, 1948, 1959; TN, 1945; Tmor, 1891,
1957, 1999; Tnoo, 1958, 1966). The metadata show: (1) a
station relocation in 1892 and (2) a new observer in 1956.
For the other years, no metadata is available. WANG and
TORETI do not find any single break points.
[23] At Grand St. Bernard, two years of break points are

found by CAUME (Tnoo, 1924; Teve, 1970), two single
years of break points are found by TORETI (TN, 1988;
Teve, 1998), and one year is found by WANG (Teve, 1995).
The metadata only confirm: (1) 1971 when the observational
times in the evening were changed and (2) 1988 when the
weather screen was destroyed by a storm.
[24] For these three locations, perfect consistency was

found for TT and the three times daily data (i.e., there was no
case where a break was statistically confirmed in TT but not
in any of the three sub-daily time series �2 years). Overall,
the application of three statistical break detection methods
and comparison with metadata shows that the CAUME
approach detects more breaks than WANG and TORETI,
with WANG and TORETI most often in agreement. Break
points which were found exclusively by one statistical
method and supported by metadata (e.g., CAUME, Basel,
Tnoo, 1987) were disregarded. This is because they were
sufficiently small to avoid detection by the other statistical
methods (WANG and TORETI).

3.2. Results for the Swiss Station Network

[25] When the entire Swiss network is considered, the
combined application of the three statistical methods shows
that the majority (89%) of the time series is affected by
artificial break points. Depending on the temperature
parameter, this value can vary from 79% (TX) to 97%
(Tnoo), an average of one break point per 48 years (0.021
breaks per station year). However, we find fewer breaks
occurring before 1970 (0.010 breaks per station year) and
after 1982 (0.013 breaks per station year). Between 1970
and 1982, 68% of the time series are affected by break points

and of all break points, 48% are found between 1970 and
1982 (0.069 breaks per station year). Concurrently, only
23 TX, 23 TN, 23 TT, 24 Tmor, 11 Tnoo, and 8 Teve series,
are deemed homogeneous. The high number of break points
from 1970 to 1982 can be attributed to the change in the
observation times (1st of January, 1971), the introduction of
the automatic station network ANETZ, and the frequent
instrument changes during the first years of operation
[cf. Begert et al., 2005]. Details are given in Table 3.
[26] Statistical break detection aims to find all break points

which substantially impact a temperature time series and,
therefore, need to be corrected to have a homogeneous
temperature time series. Set break points, the break points
identified by two or three statistical methods (and therefore
needing correction to homogenize a time series), should
agree with major changes or problems described in weather
station metadata.
[27] The three methods (CAUME, WANG, and TORETI)

are well-known for their potential to detect artificial break
points in climate series. When all of the temperature parameters
for all the stations are considered, CAUME overestimates the
number of break points (1,140 break points with only 45%
confirmed by metadata), WANG finds fewer break points but
with improved accuracy (438 break points with 72% con-
firmed by metadata), and TORETI isolates 683 break points
with 70% confirmed by metadata. When we combine the
three methods, we find the best agreement between the sta-
tion history and the statistics. Specifically, they reveal 649
break points which are “valid” (i.e., have been confirmed by
either two or three statistical methods), of which 612 (or
94%) can be confirmed by metadata. A detailed overview of
the total number of break points according to different tem-
perature parameters, statistical methods, and relevant meta-
data is presented in Table 4.
[28] Among the 612 break points of all the temperature

parameters which are supported by station metadata, 55.0%
can be attributed to a combination of causes, 16.1% are
related to changes in location and associated problems,
15.9% are due to changes in observation and related pro-
blems, 12.9% are associated with changes in instrumentation
or station and accompanying problems, and 0.1% are caused
by accidents. A summary of these break points and stations
is given in the auxiliary material, Table S2.
[29] The use of statistics to detect break points is particu-

larly valuable because metadata can have several limitations.
First, not all of the changes and problems at a weather station
can cause break points of a statistically significant size.
Second, the volume of metadata spanning over several years
makes it difficult to confirm the detected break points. Third,
not all changes and problems are recorded in the metadata.
Fourth, too many set break points can prevent a reliable
correction step in homogenization. Specifically, correction
studies based on highly correlated reference series have
shown that too many break points (and associated short
overlapping periods) render a reliable correction impossible

Figure 5. A summary of the detected break points for the Swiss Tmor, Tnoo, and Teve series. The black lines correspond
to the length of the daily Tmor, Tnoo, and Teve series. The pink, red, and burgundy rectangles indicate the years of detected
break points for the Tmor, Tnoo, and Teve, respectively. The gray, red, and blue rectangles indicate periods when metadata
suggest major problems and changes in the weather station history.

Table 1. A Summary of the Temporal Data Coverage for Each
Temperature Parameter

Temporal Data Coverage in Percent
(Number) of Time Series

1960–2010 1910–2010

TT 85 (52) 43 (26)
TX 52 (29) 23 (13)
TN 52 (29) 23 (13)
Tmor 85 (52) 39 (24)
Tnoo 85 (52) 39 (24)
Teve 80 (49) 39 (24)
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[e.g., Della-Marta and Wanner, 2006; Toreti et al., 2010b].
However, statistical break detection methods also have
strengths and weaknesses (e.g., certain methods might be
more or less sensitive and therefore might over- or under-
estimate the number of breaks). For more details on the
accuracy of statistical break detection methods, the reader is
advised to consult, for example, Venema et al. [2012].
[30] A detailed overview of all detected break points and

associated metadata is presented for the Swiss TT (Figure 3),
TX, TN (Figure 4), Tmor, Too, and Teve series in Figure 5.
Detailed information about the specific metadata is given in
the auxiliary material, Table S1.
[31] To test the consistency of statistically detected break

points, results from TT are compared with results from Tmor,
Tnoo and Teve. As TT at non-automatic stations is calculated
from Tmor, Tnoo and Teve (cf. section 2 for details), breaks
in TT must be confirmed by a simultaneous break in Tmor,
Tnoo, and/or Teve. For the Swiss station network, problems
in consistency have been found for 5 out of 102 set break
points in TT (Bever/Samedan in 1968, Langnau in 1976,
Lugano in 1892, Elm in 1907, and Montreux in 1965).
According to the metadata, Bever/Samedan was affected by
new evening observation times in 1971. This is consistent
with a break point in Teve in 1972. Langnau was affected by
a station relocation in 1980, which caused a break point in
Teve in 1979. Lugano and Elm had instrumentation changes
in 1895 and 1908. However, this did not cause breaks in
Tmor, Tnoo, or Teve. Montreux changed observers in 1965.

4. Conclusion and Outlook

[32] Overall, the application of three statistical break
detection methods to high-quality Swiss temperature series
and the comparison with the metadata show that the CAUME
approach detects more breaks than WANG and TORETI.
However, in this study, CAUME also appears to overestimate
the number of breaks. Alternatively, WANG and TORETI
produce fewer breaks but are more accurate, as confirmed by
metadata.

[33] On the other hand, by combining the three statistical
approaches, we are able to detect the maximum number of
breaks which can be confirmed by metadata. In most
instances, these breaks are ascribed to a combination of
problems (e.g., instrumentation, station, and observer).
These findings confirm that a combined break detection
method can provide a wealth of statistical information (even
across complex terrain) where metadata are not readily
available [cf. also Kuglitsch et al., 2010]. However, for
inconsistent breaks (i.e., breaks detected in TT but not in one
of the sub-daily series, when TT is based on Tmor, Tnoo,
and Teve), metadata may be a valuable tool for interpreting a
break point. In these cases, we suggest not to correct break
points in TT. For all other cases, if a statistical break point is
supported by major station changes �2 years in the station
history, the set break point for the correction part should be
the year confirmed by the station history. Where there is
insufficient or too much metadata available, the suggested
approach of combining different statistical methods should
be effective. When the metadata indicate breaks that are not
detected statistically, or are only indicated by one statistical
method, the time series can be considered to be free of
inhomogeneities.

Table 2. A Summary of the Break Points Detected by Only One of the Statistical Methods (1=CAUME, 2=WANG, 3=TORETI) and
Related Metadataa

Basel Altdorf Grand St. Bernard

1 2 3 1 2 3 1 2 3

TT 1883 (NRM)
TX 1948 (NMA)

1959 (1956, NO)
TN 1936, 1941, 1952

(NRM)
1960 (NRM) 1945 (NMA) 1988 (weather

screen destroyed
by storm)

Tmor 1883, 1970
(NRM)

1891 (1892,
station relocation)
1957 (1956, NO)
1999 (NMA)

Tnoo 1987 (weather
screen newly
painted, ventilator
replaced)

1958 (1956, NO) 1924 (NRM)
1966 (NMA)

Teve 1939 (NRM) 1970 (1971, NOT) 1995 (NMA) 1998 (NMA)

aNMA means no metadata available, NRM means no reference in metadata, NO means new observer, and NOT means new observation times.

Table 3. A Summary of the Time Series Affected by Break Points
(BP) Categorized by Temperature Parameter

Time Series
Affected by BPs

in Percent
(Number)

1 BP per
Period in
Years

1970–1982

Time Series
Affected by

BPs in Percent
(Number)

Amount of
All BPs in
Percent
(Number)

TT 93 (57) 57 62 (38) 48 (48)
TX 79 (44) 56 59 (33) 60 (41)
TN 86 (48) 45 59 (33) 50 (42)
Tmor 85 (52) 51 61 (37) 44 (47)
Tnoo 97 (59) 41 82 (50) 44 (60)
Teve 95 (58) 36 87 (53) 50 (75)
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[34] Break detection is the first step in homogenization.
For the Swiss network temperature series (TT, Tmax, Tmin,
Tmor, Tnoo, and Teve), the results of this first step are
presented in this paper. In a next step the set break points
will be corrected.
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