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The development of drugs for neglected infectious diseases often uses parasite-specific enzymes as targets. We

here demonstrate that parasite enzymes with highly conserved human homologs may represent a promising

reservoir of new potential drug targets. The cyclic nucleotide-specific phosphodiesterases (PDEs) of

Trypanosoma brucei, causative agent of the fatal human sleeping sickness, are essential for the parasite. The

highly conserved human homologs are well-established drug targets. We here describe what is to our knowledge

the first pharmacological validation of trypanosomal PDEs as drug targets. High-throughput screening of

a proprietary compound library identified a number of potent hits. One compound, the tetrahydrophthala-

zinone compound A (Cpd A), was further characterized. It causes a dramatic increase of intracellular cyclic

adenosine monophosphate (cAMP). Short-term cell viability is not affected, but cell proliferation is inhibited

immediately, and cell death occurs within 3 days. Cpd A prevents cytokinesis, resulting in multinucleated,

multiflagellated cells that eventually lyse. These observations pharmacologically validate the highly conserved

trypanosomal PDEs as potential drug targets.

Kinetoplastid protozoa (Kinetoplastida, Excavata [1])

cause severe diseases of humans and/or their domestic

animals. In sub-Saharan Africa, the fatal human

African trypanosomiasis (HAT, sleeping sickness) is

caused by Trypanosoma brucei subspecies and threat-

ens 38 countries. The therapeutic armamentarium

against sleeping sickness and many other protozoan

infections is extremely limited and ineffective, with

almost no new drugs introduced for decades [2]. In

addition, the standard medication against late-stage

sleeping sicknessdmelarsoproldis encountering

increasing problems with drug refractoriness [3, 4].

Although many compounds with antiparasitic activity

have been reported, new paradigms are required for

a more efficient development of urgently required

antiparasite chemotherapies.

The development of antiparasitic compounds has

long focused on parasite-specific targets. This approach

has generated some promising lead compounds [5–7]

but often encountered difficulties during the transi-

tion from basic research to drug development. We here

show that a class of enzymes whose catalytic domains

are highly conserved between T. brucei and its human

host, the cyclic nucleotide-specific phosphodiesterases

(PDEs), are promising drug targets. Human PDEs are

being intensely investigated as drug targets for nu-

merous clinical conditions, and several PDE-inhibitor

based drugs are on the market [8]. The genomes of

T. brucei and all other kinetoplastids were analyzed to

date code for 4 distinct PDE families (PDEs A–D; [8]).

Their catalytic domains are structurally highly simi-

lar to those of the human PDEs ([10]; Hengming Ke,

University of North Carolina, personal communi-

cation, September 2010). In T. brucei, the PDE-B
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family consists of 2 highly similar enzymes (75.3% overall

sequence identity) that are coded for by 2 tandemly arranged

genes (located on chromosome 9 in the T. brucei genome;

[9]). Despite their similarity, TbrPDEB1 and TbrPDEB2

show distinct subcellular localizations [10]. The 2 enzymes

TbrPDEB1 and TbrPDEB2 are the predominant controlling

elements of intracellular cyclic adenosine monophosphate

(cAMP) levels, and their disruption by RNA interference

(RNAi) both dramatically increases intracellular cAMP and

induces complete trypanosome cell lysis, both in culture and

in vivo [11]. The current study identifies a class of potent

small-molecule inhibitors of TbrPDEB1 and TbrPDEB2 by

high-throughput screening of a chemical library. A repre-

sentative compound, compound A (Cpd A), causes a rapid

and sustained elevation of intracellular cAMP that leads to

parasite cell death through inhibition of cytokinesis during

cell division. Because PDEs are highly conserved between

host and parasite, and because human PDEs are well-ex-

plored drug targets, using parasite PDEs as drug targets al-

lows exploitation of the existing vast expertise in developing

PDE inhibitors against human PDEs. The study thus dem-

onstrates that parasite enzymes that are highly similar to

well-studied human drug targets represent an interesting

reservoir of new parasitic drug targets. Using this strategy,

we identified PDE inhibitors as a new generation of trypa-

nocidal agents that represent a completely new chemical class

and show no cross-resistance with existing drugs.

MATERIALS AND METHODS

Strains and Cultures
The trypanosome line used was strain MiTat1.2(221) [12].

Strain TbAT1KO was constructed by deletion of the TbAT1/P2

transporter from MiTat1.2(221) and consequently was resistant

to the veterinary trypanocide diminazene [13, 14]. Strain B48

was derived from TbAT1KO by stepwise adaptation to pent-

amidine in vitro and has lost the high-affinity pentamidine

transporter [15], rendering it highly resistant to both pentami-

dine and melarsoprol [16]. Strains were grown as bloodstream

forms in HMI-9 medium [17]. Ex vivo parasites were purified

from whole rat [18], and purified trypanosomes were main-

tained in HMI-9 medium.

High-Throughput Screening
A proprietary library of .400 000 compounds was screened

using a homogenous assay that determines [3H]-cAMP hy-

drolyzing PDE activity by scintillation proximity assay

(SPA). In a first step, PDE activity hydrolyzes [3H]-cAMP

into [3H]-5#AMP. In a second step, substrate and product

are distinguished by addition of SPA yttrium silicate beads

(GE Healthcare). In the presence of zinc sulfate, the linear

[3H]-5#AMP binds to the beads, whereas the cyclic [3H]-

cAMP does not. Close proximity of bound [3H]-5#AMP then

allows radiation from the tritium to the scintillant within

the beads, resulting in a measurable signal, whereas the un-

bound, hence distant [3H]-cAMP does not generate this sig-

nal. The enzymatic reaction was conducted in a total assay

volume of 100 lL, comprising 20 mmol/L Tris (pH 7.4)

supplemented with bovine serum albumin (0.1 mg mL21) and

5 lmol/L Mg21 in the presence of 0.5 lmol/L cAMP substrate,

containing �50 000 cpm of [3H]-cAMP, and test compound.

Recombinant TbrPDEB1 was added in a quantity that re-

sulted in 10%–20% hydrolysis of cAMP. The reaction was

initiated by adding the substrate, followed by an incubation

for 15 minutes at 37�C. Adding SPA beads with zinc sulphate

(50 lL) terminated the reaction, and the SPA signal was

analyzed by standard luminescence detection devices.

The final concentration of solvent (1% dimethyl sulfoxide

[DMSO]) was identical in all assays and did not affect

enzymatic activity. In the initial screening campaign, all

compounds were added at 10 lmol/L. Compounds showing

$50% inhibition of TbrPDEB1 activity were retested. The

Z factor was 0.716 in the primary screen and 0.740 in the

retesting of positive candidates. About 600 compounds

showed half-maximal inhibitory concentration (IC50) values

for TbrPDEB1 inhibition of #5 lmol/L.

Expression of Recombinant TbrPDEB1
TbrPDEB1 was expressed in SF21 insect cells. TbrPDEB1

complementary DNA was amplified by polymerase chain

reaction (PCR) and cloned into the pCR-Bac vector (In-

vitrogen). SF21 cells were infected with a high-titer virus

supernatant, and infected cells were cultured for 48–72 hours

to allow optimal protein expression. Cells were collected in

20 mmol/L Tris pH 8.2, 140 mmol/L sodium chloride,

3.8 mmol/L potassium chloride, 1 mmol/L ethylene glycol

tetraacetic acid, 1 mmol/L magnesium chloride2, 10mmol/L ß-

mercaptoethanol, 2 mmol/L benzamidine, 0.4 mmol/L Pefa-

bloc, 10 lmol/L leupeptin, 10 lmol/L pepstatin A, and

5 mmol/L soybean trypsin inhibitor. After sonication, a 1000

g supernatant was used for enzyme assays.

Determination of PDE Activity
PDE activity of Triton X-100 lysates of whole trypanosomes

or of recombinant enzyme was determined by published

procedures [19, 20]. Enzyme concentrations were always

adjusted so that ,20% of substrate was consumed. Blank

values (measured in the presence of denatured protein) were

always ,2% of total radioactivity.

Cell Proliferation Assay
Test compounds were serially diluted in 96-well plates

in HMI-9 medium [21]. After 48 hours of incubation, 20 lL
of 0.5 mmol/L resazurin in phosphate-buffered saline (PBS)

was added. Fluorescence was measured after an additional
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24 hours with excitation and emission filters of 544 and

590 nm, respectively. The detailed assessments of efficacy

against T. brucei strains of differing drug sensitivities, and

comparing Cpd A with a panel of established trypanocides,

were performed at the University of Glasgow.

Enzyme-Linked Immunosorbent Assay for Direct Quantification
of Intracellular cAMP Concentration
Intracellular cAMP concentrations were quantified by enzyme-

linked immunosorbent assay, using the Direct Cyclic AMP

Enzyme Immunoassay kit (Assay Designs). Bloodstreams from

trypanosomes were cultured in vitro and incubated at 37�C
with or without test compounds at a density of 53 106 cells/mL.

At predetermined time points, 2-mL samples were centrifuged

at 855 g for 10 minutes at 4�C. The supernatant was removed,

and the cell pellet was resuspended in 100 lL of 0.1 mol/L

hydrochloric acid. After centrifugation at 16 000 g for 10

minutes, the supernatant was removed and stored at 220�C.
The cAMP content was assessed by enzyme-linked immuno-

sorbent assay, according to the manufacturer’s instructions.

Samples were taken in duplicate, and all assays were con-

ducted independently $3 times.

Determination of In Vivo [3H]-cAMP Synthesis
Ex vivo bloodstream trypanosomes were obtained from infected

rats and resuspended in HMI-9 medium containing 10% fetal

calf serum (FCS) medium (with 100 lmol/L inosine substituted

as the purine source instead of hypoxanthine as the latter might

block [3H]-adenine incorporation). [3H]-adenine (40 lCi) was
added, and the cultures were incubated at 37�C, 5% carbon

dioxide (CO2) for 2 hours. Cells were then washed 3 times with

10 mL of HMI-9/10% FCS (1inosine, -hypoxanthine) and

finally resuspended to give a cell density of 1 3 108 trypano-

somes/mL. At predetermined times, 0.5-mL samples were taken

and quenched by adding an equal volume of ice-cold 5% tri-

chloroacetic acid containing 1 mmol/L adenosine triphosphate

(ATP) and 1 mmol/L cAMP. Samples were centrifuged at 16 000

g for 2 minutes, and the supernatants stored at 220�C until

[3H]-cAMP extraction.

Columns loaded with 2 mL of Dowex 50WX4-400 ion-

exchange resin (Sigma) were placed above 20 mL scintillation

vials, and the supernatant samples were loaded onto columns. In

total, 3 mL of water was added to the column to elute [3H]-ATP

and [3H]–adenosine diphosphate. The columns were then placed

above a corresponding set of alumina columns prewashed with

0.1 mol/L imidazole, and 10 mL of water was added to each

Dowex column to transfer the remaining [3H]-adenine nucleo-

tides onto the alumina column. The alumina columns were then

mounted above a fresh set of 20-mL scintillation vials. The [3H]-

cAMP was eluted from the alumina with 6 mL of 0.1 mol/L

imidazole. Then 8 mL of scintillation fluid was added to each

vial, and radioactivity was determined by scintillation counting.

Intracellular [3H]-cAMP levels were expressed as a percentage of

the total pool of [3H]-adenine nucleotides.

Cell Lysis Assay
This assay was performed essentially as described by Gould et al

[21]. Briefly, 100 lL of HMI-9 medium containing twice the

desired concentration of test compound and 18 lmol/L propi-

dium iodide was added to a well of a 96-well plate; a well con-

taining 100 lL of medium with propidium iodide only was set up

as a control. An equal volume of medium containing blood-

stream-form trypanosomes was added to each well to give a final

cell density of 53 106/mL and propidium iodide concentration of

9 lmol/L. Fluorescence was monitored over time at 37�C and 5%

CO2 using a FLUOstar OPTIMA fluorimeter with excitation and

emission filters at 544 and 620 nm, respectively.

Cell Death Assay
Bloodstream form trypanosomes were diluted in fresh HMI-9

medium to a cell density of 53 105 trypanosomes/mL to which

the required volume of test compound, diluted in DMSO, was

added to give the desired final concentration. Cultures were

incubated at 37�C and 5% CO2. Samples were taken periodically

and assessed for cell density using a hemocytometer and a phase-

contrast microscope at 400-fold magnification.

Cell Cycle Analysis Using Flow Cytometry
Cells were incubated with the test compounds in HMI-9 me-

dium. After collection by centrifugation for 10 minutes at 610 g,

cell pellets were suspended in 70% methanol–30% PBS at 4�C
overnight. After storage, the cells were washed twice in PBS by

centrifugation at 855 g for 10 minutes, finally being resuspended

in PBS containing 10 lg/mL propidium iodide and ribonuclease

A. The fixed cells were then incubated for 1 hour in the dark at

room temperature. Finally, flow cytometry was performed using

a Becton Dickinson FACSCalibur flow cytometer and using the

FL2-A detector with an amplification gain of 1.75.

Nucleus/Kinetoplast Configuration Assessment Using
Fluorescence Microscopy
Culture aliquots were spread onto glass slides. After drying, they

were fixed overnight in methanol at 220�C. After rehydration in

PBS, slides were stained with 50 lL of PBS containing 1 lg/mL

4,6-diamidino-2-phenylindole (DAPI) and 1% (wt/vol) 1,4-

diazabicyclo[2.2.2]octane (DABCO) and analyzed using a Zeiss

Axioskop microscope (excitation wavelength 365 nm; emission

wavelength 445 nm). For each sample, .500 cells were analyzed.

Cells were manually scored and assigned to the following

categories: 1N1K (1 nucleus 1 1 kinetoplast; G1-phase cells);

1N2K (1 nucleus 1 2 kinetoplasts; early S-phase); 2N2K-early

(2 nuclei 1 2 kinetoplasts, no cleavage furrow; late mitosis);

2N2K-late (2 nuclei 1 2 kinetoplasts, with cleavage furrow;

ongoing cytokinesis); and .2N2K (aberrant cells with .2 nuclei

and 2 kinetoplasts).

PDE Inhibitors as Antitrypanosomal Drugs d JID 2012:206 (15 July) d 231



Mouse Infections
Young adult female NMRI mice were infected intraperitoneally

with 5 3 105 bloodstream-form trypanosomes per animal.

Parasitemia was monitored daily in tail blood and reached

.108/mL at day 4 in animals infected with control trypano-

somes. All experiments were conducted under the rules and

regulations on animal experimentation issued by the Swiss

federal authorities and regularly inspected by the Committee on

Animal Experimentation.

RESULTS

Two highly similar PDEs from T. brucei, TbrPDEB1 and

TbrPDEB2, are essential for parasite survival in vitro and in

vivo [11]. The extensive structural conservation between

human and trypanosome PDEs [22, 23] (Hengming Ke,

University of North Carolina, personal communication)

allows the exploitation of current technology and expertise

developed for human PDE inhibitors to be applied against

parasitic diseases. Accordingly, a proprietary compound library

(�400 000 compounds; Nycomed Pharma) was screened with

recombinant TbrPDEB1. Hits were defined as compounds

that inhibited enzyme activity by .50% at 10 lmol/L; �600

hits were identified. All of the highly potent inhibitors

belonged to 2 main chemical classes: the 4-phenyl-4a,5,8,8a-

tetrahydrophthalazinones and the 4-phenyl-4a,5,6,7,8,8a-

hexahydrophthalazinones (Figure 1A). For 35 hits, the potency

to inhibit recombinant TbrPDEB1 (IC50) was correlated with

the potency to suppress trypanosome proliferation (half-

maximal effective concentration [EC50]) (Figure 1B). The

tetrahydrophthalazinone Cpd A was identified as the most

potent inhibitor of TbrPDEB1 (IC50, �10 nmol/L; Figure 1C),

and it also inhibited the isoenzyme TbrPDEB2 with similar

potency (see Figure 4A). For these and all subsequent

experiments, Cpd A was used in a racemic form. Inhibition of

TbrPDEB1 and TbrPDEB2 by Cpd A was closely paralleled by

the suppression of trypanosome proliferation (Figure 1D).

Cpd A has been disclosed as a potent inhibitor of human

PDE4 (IC50, 0.6 nmol/L; example 16n in reference [24]).

Cpd A inhibits cell proliferation with an EC50 of

30–70 nmol/L (depending on strain, inoculum density,

growth medium, etc), similar to that of the trypanocides

suramin or diminazene, and it is $10-fold more active than

nifurtimox (Figure 2A). In addition, Cpd A is �200-fold

more potent than dipyridamole, currently the most potent

inhibitor of both TbrPDEB1 and TbrPDEB2 activity [25].

Because resistance to diamidine and melaminophenyl

arsenical drugs is an increasing problem [3, 4], Cpd A was

Figure 1. A, Structure A: 4-phenyl-4a,5,8,8a-tetrahydrophthalazinone; structure B: 4-phenyl-4a,5,6,7,8,8a-hexahydrophthalazinone. B, Correlation
between TbrPDEB1 inhibition and trypanocidal activity by compounds of different chemical classes identified in the high-throughput screening. A best-fit
line was calculated using linear regression (r2 5 .6), and 95% confidence intervals are indicated by dotted lines. EC50, half-maximal effective
concentration. C, Structure of compound A (Cpd A). Inset indicates half-maximal inhibitory concentration (IC50) values (nmol/L) of Cpd A against TbrPDEB1
and human PDE4. D, In vitro trypanocidal activity of Cpd A assessed using Alamar blue (filled circles) or microscopic cell counts (open circles). After 72-
hour incubation with the indicated drug concentrations. The EC50 values were 18 and 15 nmol/L, respectively, for the experiment shown.
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tested for potential cross-resistance, using 2 well-defined cell

lines resistant to the most important trypanocides in clinical

and veterinary use today. TbAT1-KO [16] and B48 [17] are

strongly resistant to diminazene (TbAT1-KO) and to all

diamidine and melaminophenyl arsenical trypanocides

(B48). These multidrug-resistant cell lines were as sensitive

to Cpd A as were wild-type cells (Figure 2B).

High intracellular cAMP concentrations are lethal for

bloodstream-form trypanosomes [11]. This effect can also be

mimicked by membrane-permeable cAMP analogs such as

8-(4-chlorothiophenyl)-cAMP, 8-bromo-cAMP, or N6,O2’-

dibutyryl-cAMP, which all inhibit cell proliferation at low

micromolar concentrations. This apparent inhibition of cell

proliferation by the cAMP analogs is due to progressive cell

lysis, similar to what was observed when RNAi against

TbrPDEB1 and TbrPDEB2 was induced [11], or after ex-

posure of cells to Cpd A. Exposure of cultured trypanoso-

mes to Cpd A for 3 hours raised intracellular cAMP levels

44-fold, from 3.3 6 0.2 to 146 6 12 pmol/108 cells (P , .01,

Figure 3A). In contrast, the low-potency PDE inhibitors

dipyridamole (40 lmol/L) and etazolate (100 lmol/L) [25]

did not induce significant changes in intracellular cAMP

concentrations.

The effects of Cpd A are both time and concentration de-

pendent. At 1 lmol/L Cpd A, cAMP levels increased linearly

over 9 hours (Figure 3B). This response is concentration de-

pendent, and even at 30 nmol/L, Cpd A raised cAMP signif-

icantly (Figure 3C). The action of Cpd A occurs extremely

rapidly, as determined using [3H]-adenine prelabeled cells

(see Materials and Methods). The concentration of cAMP

Figure 2. A, Comparison of cell proliferation inhibition by compound A
(Cpd A) and by other trypanocides. Diminazene aceturate (diamonds),
suramin (squares), Cpd A (crosses), nifurtimox (filled circles) dipyridamole
(open circles). Diminazene, suramin, and nifurtimox are clinically used
antitrypanosomal drugs. Panel represents a single experiment that is
representative of 4 identical but fully independent experiments. B,
Trypanosome lines resistant to diminazene and pentamidine do not exhibit
cross-resistance to Cpd A. B28 carries resistance to pentamidine. EC50,
half-maximal effective concentration; TbAT1-KO, drug-resistant derivative
of MiTat1.2(221) that is resistant to diminazene [16]; wt, wild-type
bloodstream forms of MiTat1.2(221). *Not significantly different from wt;
**P , .05, ***P , .01, ****P , .001.

Figure 3. A, compound A (Cpd A) (A ) increases intracellular cyclic
adenosine monophosphate (cAMP) levels more potently than 100 lmol/L
etazolate (B ) or 40 lmol/L dipyridamole (C ). Dimethyl sulfoxide (DMSO)
control is given in D. Bar chart shows the intracellular cAMP concentration in
bloodstream-form trypanosomes incubated with the compounds for 3 hours.
Each experiment was performed in duplicate. Bars represent means (and
standard error of the mean) for 3–4 independent experiments. P values were
calculated using 2-tailed paired Student t test. **P, .01. B, Time-dependent
cAMP increase in trypanosomes incubated with 1 lmol/L Cpd A (filled
squares ) and in a control culture (DMSO only) (open squares ). Data shown
are means for 3 independent experiments; error bars indicate standard
errors. C, Concentration dependence of cAMP accumulation. Trypanosomes
were incubated with Cpd A at the indicated concentrations for 3 hours, and
cAMP levels were determined by enzyme-linked immunosorbent assay.
*P , .01; ***P , .001 (2-tailed unpaired Student t test). D, Effect of
0.3 lmol/L Cpd A on intracellular cAMP levels in bloodstream-form
trypanosomes (ex vivo) prelabeled for 2 hours with [3H]-adenine. Cells were
incubated with (squares) or without (circles) Cpd A at a cell density of
1 3 108/mL in HMI-9 medium at 37�C. Graph shown is representative of
3 separate experiments performed in triplicate. Data are expressed as fold
difference relative to 0-minute control value, with standard errors.
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increased almost instantaneously after adding the compound

(Figure 3D), demonstrating that Cpd A enters the cell rapidly

and acts primarily by inhibiting PDE activity. To our knowledge,

these results for the first time demonstrate the crucial role of

trypanosomal PDEs in maintaining a constant low level of

cAMP, counteracting a high constitutive level of cAMP synthe-

sis [26]. Although Cpd A inhibited TbrPDEB1 and TbrPDEB2

with similar IC50 values of �12 nmol/L, the IC50 value for in-

hibiting total cellular PDE activity was �70 nmol/L (Figure 4A).

At 1 lmol/L, Cpd A inhibited total PDE activity completely,

in contrast to several reference PDE inhibitors that showed no

effect at this concentration (Figure 4B).

Despite its rapid effect on cAMP, Cpd A had no observable

effect on cell integrity for $15 hours, even at 3 lmol/L

(1503 EC50) as determined by a cell lysis assay [21] (Figure 5A).

Cell lysis is a slow process, reaching completion after 42 hours (at

10 lmol/L Cpd A) to 55 hours (at 1 lmol/L Cpd A; Figure 5B).

To explore cell cycle effects, trypanosomes cultured in the

presence or absence of 1 lmol/L Cpd A were analyzed by flow

cytometry. Control cultures displayed a constant distribution

between diploid (2C) and tetraploid (4C) cells (Figure 6). In

Cpd A-treated cells, the relative numbers of tetraploid cells

increased progressively, whereas diploid trypanosomes di-

minished steadily over time. The data show that elevated

cAMP levels did not immediately affect DNA synthesis but

block cell cycle progression. The accumulation of higher

ploidy cells (.4C) at longer incubation times suggests that

Figure 5. A, Cell lysis after exposure to various concentrations of
compound A (Cpd A). Trypanosomes were incubated in medium containing
9 lmol/L propidium iodide (PI) and varying concentrations of Cpd A.
Fluorescence was continuously monitored (excitation: 544 nm; emission
620 nm). Slow upward slope of traces corresponding to the control and
low concentrations of Cpd A reflects gradual entry of PI into live, intact
trypanosomes. Background fluorescence from unbound PI was subtracted.
The experiment is representative of several independent experiments.
B, Growth inhibition and cell lysis induced by Cpd A. Separate
trypanosome cultures at starting densities of 4 3 105 cells/mL were
incubated with 1 lmol/L (open squares ) or 10 lmol/L (filled squares ) Cpd
A. Control culture with the same starting density was run in parallel
without drug (inset ). Cell densities were determined by microscopic
counts (in duplicate) in a hemocytometer. At both concentrations tested,
Cpd A induces complete cell lysis, albeit with different time courses.
Panel displays a single experiment representative of several similar,
independent experiments.

Figure 4. A, Potency of compound A (Cpd A) against total cellular
phosphodiesterase (PDE) activity (filled squares) (half-maximal inhibitory
concentration (IC50), 76.6 nmol/L), TbrPDEB1 (open circle) (IC50, 12.4 nmol/
L) and TbrPDEB2 (filled circles) (IC50,12.0 nmol/L). All assays were
performed in triplicate, and figure represents 1 of 2 independent
experiments that produced essentially identical results. The slightly
higher IC50 values (compared with Figure 1C; 12 vs 3.8 nmol/L) most likely
reflect different enzyme sources used (Figure 1C, expression in SF2 cells;
this figure, expression in Saccharomyces cerevisiae ). B, Total cellular PDE
activity inhibited at 1 lmol/L inhibitor concentration, comparing activity
of Cpd A with that of reference PDE inhibitors. DMSO, dimethyl sulfoxide.
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DNA synthesis, and possibly nuclear division, continue but

without intervening cytokinesis. Fluorescence microscopy

analysis of cells fixed after 12 hours of Cpd A treatment

confirmed that nuclear division did take place and identified

the abscission into 2 daughter cells, after near-completion of

cytokinesis, as the specific defect induced by Cpd A-elevated

cAMP levels. Cells were manually scored for numbers of

nuclei (N) and kinetoplasts (K) and assigned to the follow-

ing categories: 1N1K, 1N2K, 2N2K-early, 2N2K-late, and

.2N2K (for definitions see Materials and Methods and

Figure 7A–F).

For trypanosomes incubated with 1 lmol/L Cpd A, the

percentage of cells in the 1N1K category (G1-phase) was reduced

to 34%, compared with 74.4% in the control (Figure 7I). In

contrast, percentages of 2N2K (late mitosis/cytokinesis) and

.2N2K cells were both dramatically increased in the Cpd

A-treated population. When the 3 categories corresponding to

the normal cell cycle stages (1N1K, 1N2K, and 2N2K-early) were

combined, this category decreased from 90.3% (controls) to

42.9% (P , .01) after Cpd A treatment. This was balanced by

a corresponding increase in the 2N2K-late and .2N2K (aber-

rant cells) categories, from 9.7% (controls) to 57.1% (Cpd A

treated; P , .001). At longer Cpd A treatments, cells become

spherical, multinuclear, and multiflagellated, and they eventu-

ally lyse. This is very similar to what is seen when RNAi is

induced against TbrPDEB1 and TbrPDEB2: after induction of

RNAi, the cells gradually accumulate several nuclei, several ki-

netoplasts, and numerous flagella and finally become rounded

before eventually lysing (Figure 7G and 7H).

To verify whether Cpd A-mediated cell destruction also

reflects the complete elimination of trypanosome infectivity,

cells were treated in vitro with 25 or 250 nmol/L Cpd A for

48 hours before infection. Groups of 5 mice were inoculated

with 5 3 105 trypanosomes via intraperitoneal injection.

Control trypanosomes incubated with vehicle alone caused

a parasitemia of 3 3 108 cells/mL by day 4 postinfection. In

contrast, trypanosomes preincubated with 250 nmol/L Cpd A

were completely unable to initiate an infection. Even a pre-

incubation with as little as 25 nmol/L Cpd A (ie, 0.5 3 EC50)

dramatically reduced infectivity, with just a mild parasitemia

of 5 3 106/mL reached at day 6 after infection.

We conclude that sustained high cAMP levels disrupt cell

cycle regulation and inexorably lead to trypanosome death.

This course of events is similar whether PDE activity is re-

duced with a druglike inhibitor, such as Cpd A, or by RNAi

[11]. Elevated cAMP apparently has no immediate lethal

effect on the cells, even at 10–100-fold excess over normal

levels, but it specifically interferes with cell cycle control

mechanisms, principally abscission, leading to a protracted

but no less certain cell death.

DISCUSSION

This study for the first time, to our knowledge, establishes the

concept of choosing as a drug target a parasite enzyme whose

catalytic domain is highly conserved with human homologs

that are already well explored as drug targets. Human PDEs

enjoy a long story as successful drug targets, and several PDE

inhibitors are on the market as medication for a wide spectrum

of clinical conditions (including the human PDE3 inhibitor

cilostazol (Pletal; Otsuka Pharma; for intermittent claudication),

the PDE4 inhibitor roflumilast (Daxas; Nycomed Pharma; for

Figure 6. Flow cytometry analysis of the DNA content of trypanosomes grown in the presence and absence of 1 lmol/L compound A (Cpd A). Cells
were incubated under standard culture conditions in the absence (top row ) or presence (bottom row ) of 1 lmol/L Cpd A. Samples were taken every
4 hours for 24 hours. Histograms indicate the number of cells with particular fluorescence intensities (that correlate with their DNA content). Peaks
labeled 2C represent diploid cells; those labeled 4C represent cells that have replicated their DNA but have not yet undergone cytokinesis and thus are
tetraploid. Longer incubations with Cpd A cause an increase in cells with .4C DNA content. FL2-Area: total fluorescence emission.
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chronic obstructive pulmonary disease) or the PDE5 inhibitors

sildenafil (Viagra; Pfizer), tadalafil (Cialis; Lilly ICOS) or

vardenafil (Levitra; Bayer); for erectile dysfunction). Thus,

a vast experience of developing PDE inhibitors from screening

to registration is available and can be tapped for the deve-

lopment of parasite-specific PDE inhibitors. Issues concerning

parasite-vs-host specificity can be addressed using the prowess

of medicinal chemistry, combined with new structural informa-

tion that the PDE catalytic domains show interesting parasite-

specific structural features that could be exploited for rendering

compounds more parasite-specific [22]. This approach of

repurposing the available know-how and technology for

human PDE inhibitors toward developing parasite-specific

compounds may help break the deadlock between the urgent

medical need for new antiparasitic drugs and the techno-

logical and financial obstacles to developing them.
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Figure 7. Images of trypanosomes incubated for 12 hours with 1 lmol/L compound A (Cpd A). Cells were stained with diamidino-2-phenylindole (DAPI)
and were categorized as follows: A, Cell with 1 nucleus and 1 kinetoplast (1N1K). B, Cell with 1 nucleus and 2 kinetoplasts (1N2K). C, Cell with 2 nuclei
and 2 kinetoplasts but before a cleavage furrow has started to divide the mother and the daughter cells (2N2K–early [E]). D, 2 nuclei and 2 kinetoplasts,
but with cell division almost completed (2N2K–late [L]). E, Cell with replicated and segregated nuclei and kinetoplasts and complete cleavage furrow but
not having completed mother-daughter cell separation before replicating 2 more kinetoplasts (2N4K). Arrows: kinetoplasts. F, Cell with 4 nuclei and 4
kinetoplasts (4N4K) with the 2 daughter cells still attached, but with each undergoing a further round of mitosis and$1 of the 2 daughter cells (left side
of image ) having made progress toward a further cell division. G, H, Normal trypanosomes before (G ) and multiflagellated cells after (H ) inducing RNA
interference (RNAi) for TbrPDEB1 and TbrPDEB2 for 38 hours, with staining of flagellum with antibody against the paraflagellar rod (red) and DAPI
staining of nuclei and kinetoplasts (blue). I, Percentages of cells in the various nucleus-kinetoplast configurations.
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