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Abstract

We consider self-similar iterated function systems in the sub-Riemannian setting of
Carnot groups. We estimate the Hausdorff dimension of the exceptional set of translation
parameters for which the Hausdorff dimension in terms of the Carnot—Carathéodory metric
is strictly less than the similarity dimension. This extends a recent result of Falconer and
Miao from Euclidean space to Carnot groups.

1. Introduction
1-1. Preliminaries

One of the most common ways to construct and describe fractal sets (cf. [11, 17]) is by
the action of a system of contractions—known as an iterated function system (IFS)—on

a metric space. Let (X, d) be a complete metric space and f = {fj, ..., fy} be a finite
set of contraction mappings on X. That is, for each j = 1,..., M, themap f;: X — X
satisfies

d(fij(x), f;(y) <rjd(x,y) 1-1
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148 ZOLTAN M. BALOGH AND OTHERS

for all x, y € X and some r; < 1. Then the (unique) nonempty, compact set K = Ky C X
which satisfies

M
Urw =k
j=1

is called the invariant set of f; in most cases it is a fractal.

When equality holds in (1-1) for all x, y € X, the mapping f; is called a similarity
transformation of X with similarity ratio r;. In this case the underlying invariant set is self-
similar. The Hausdorff dimensions of self-similar invariant sets can be calculated using the
celebrated Moran—Hutchinson theorem [11, 15]. According to this theorem, if f satisfies the
open set condition, i.e., there exists a nonempty open set U C X with the property that
fiU), ..., fu(U) are disjoint subsets of U, then the Hausdorff dimension of K is equal to
the similarity dimension of f:

dim K = d.

Here the similarity dimension dy is defined as the (unique) positive number satisfying

M
> =1 (1-2)
j=1

In its original formulation [15] this theorem was set in the Euclidean space X = RV, It
continues to hold in metric spaces satisfying a doubling condition, see [2].
In the Euclidean case, similarities are precisely described by the formula

f(x) = Ax +a, (1-3)

where A is a linear map in the conformal group R, - O(N) and a € RY is a translation
vector. By results of Falconer [10], [12] and Solomyak [22], the equality of Hausdorff and
similarity dimensions persists almost surely for generic IFS. More precisely, let f be a self-
similar IFS with maps f;(x)=A,;x + a; as in (1-3) and let a := (aj,...,ay) € R¥M.
Denote the invariant set for f by K,. According to [10] and [22], if r; = ||A;|| <1/2 for
j =1,..., M, then the equality dim K, = d; holds for L"" a.e. a € RVM,

In a recent paper [8], Falconer and Miao estimated the size of the exceptional set of
parameters a € RV for which the equality dim K, = d; fails. To recall their result, let us
denote by

E(s) ={a e R" :dimK, < s}

the exceptional set of parameters associated to a value s < d;. Then, according to the main
result of [8], the estimate

dimE(s) < NM — (N — ) (1-4)

holds for 0 < s < dr < N. We emphasize that the setting of [8, 10, 12 and 22] is significantly
more general, encompassing arbitrary self-affine fractals: we have merely stated the special
case of their results covering the self-similar situation.

The purpose of the present paper is to generalize (1-4) to the sub-Riemannian metric set-
ting of Carnot groups. Our main theorem is Theorem 1-1. Recent years have seen a rapid
development of geometric measure theory in the setting of Carnot—Carathéodory spaces,
where Carnot groups play a major role. Carnot—Carathéodory spaces themselves have a
fractal nature as their Hausdorff dimension is typically strictly greater than the topological
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Exceptional sets for self-similar fractals in Carnot groups 149

dimension [14]. The metric in these spaces is defined by vector fields satisfying the
Hormander condition and is useful for describing various nonlinear phenomena as seen
e.g. in [20]. The literature on geometric measure theory in Carnot groups and Carnot—
Carathéodory spaces is by now too extensive to recall in detail. We note in particular re-
cent work of Mattila and coauthors, [18, 19], on tangent measures and rectifiability in the
Heisenberg group. Following work of Strichartz [23], Balogh, Hofer—Isenegger, and Tyson
[1, 3], studied fractal geometry in the Heisenberg group. Recently Balogh, Tyson and War-
hurst [4, 5] extended the results of Falconer and Solomyak to the setting of Carnot groups.
In order to state our main theorem precisely, we shall next recall the primary results from
[5] and fix notation to be used throughout the paper.

1-2. Statement of the main result

As references for the following basic material on stratified Lie algebras and Carnot
groups, we recommend Corwin—Greenleaf [7] and Folland—Stein [13]. Let g be a finite di-
mensional, stratified, nilpotent Lie algebra of step S > 2 and dimension N. We denote by

[-, -] the commutator in g. Then there are vector spaces gi, ..., gs C g such that
g=g1® - ®gs, 1-5)
andforalli =1,..., S we have
giv, ifi=1,...,8—-1,
» 5il = 16
(g1, 8i] {{0} i (1-6)

The first layer g;, which generates the full Lie algebra g, is called the horizontal layer. We
denote by m; > 1 the dimension of g;,i = 1,...,S,and we let N = m; + --- 4+ mg.
According to (1-5), any element x € g has the unique decomposition

x=xV 4. 4 x®, (07
with x@ € g;,i =1,..., S. For any r > 0, the linear mapping §,: g — ¢
8(x) =rxW 4 4 r5x® (18)

is a Lie algebra automorphism, which is called dilation by r > 0.

The Baker—Campbell-Hausdorff formula provides a group operation *: g X g — g which
makes G = (g, *) a nilpotent and stratified Lie group of step S. Such groups are called Carnot
groups. More details can be found in Section 3.

We fix on G a distance function d with the following properties:

(1) d(z*x,z*%y) =d(x,y)forall x, y, z € G (i.e. d is left invariant);
(i) d(5,(x),8,(y)) = rd(x,y) forall x,y € G and r > 0 (i.e. d is 1-homogeneous with
respect to the dilations §,).

Any such metric we will call a Carnot—Carathéodory or sub-Riemannian metric on G. The
existence of such metrics is well known. For instance, one may use the metric constructed by
taking the infimum of lengths of horizontal curves, see [14] or [6]. (Recall that a piecewise
C' curve taking values in G is called horizontal if its tangent vectors lie in the subbundle
HG of TG spanned by the horizontal layer g, viewed as a space of left invariant vector
fields. Length of such a curve is computed with respect to a fixed smoothly varying family of
inner products defined on the subbundle HG.) Other more explicit sub-Riemannian metrics
can be constructed directly, such as the Kordnyi metric on the Heisenberg group H! (see
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150 ZOLTAN M. BALOGH AND OTHERS

Example 6-1). For our purposes the precise choice of metric is not important since all sub-
Riemannian metrics on a given Carnot group are bi-Lipschitz equivalent and the results of
this paper are bi-Lipschitz invariant. Any sub-Riemannian metric d on G is complete.

The topological dimension of (G, d) is equal to N (the dimension of the underlying Lie
algebra). On the other hand, the Hausdorff dimension of (G, d) is equal to

Q=m;+2my+---+ Sms, (1-9)

the homogeneous dimension of G. We observe a discrepancy between these two dimen-
sions: Q > N. This discrepancy persists for arbitrary subsets A C G. A quantitative de-
scription of this dimension discrepancy was presented in [S] in terms of certain piecewise
linear dimension comparison functions B.: [0, N] — [0, Q]. More precisely, it was shown
[5, theorem 2-4] that

p-(dimg A) < dim,. A < B (dimg A) (1-10)

for every A C G. Here we denote by dim,, the Hausdorff dimension in the metric space
(G, d), i.e. with respect to the Carnot—Carathéodory metric, and by dimg the Hausdorff
dimension in the usual Euclidean metric on the underlying space R".

Furthermore [5, theorem 2-6], the estimates in (1-10) are sharp as shown by explicit ex-
amples constructed using IFS on G. This observation is closely related with dimension for-
mulae for generic IFS generalizing the above Falconer—Solomyak theorem. The existence
of a self-similar dilation structure (§,), - o on Carnot groups which interacts well with the
group law = and the left invariant metric d makes such spaces natural settings in which to
study self-similar iterated function systems.

To be more precise, consider a system of similarities f = { fi, ..., fi} in G of the form
fi(x) = a; *3§,,(x), (1-11)
j=1,...,M,wherea = (aj,...,ay) € GM is an M-tuple of translation vectors and r =
(r1,...,ry) € (0, )™ is an M-tuple of contraction ratios. The invariant set Ky depends on

a and r. Fixing the contraction ratios, we denote this self-similar set by K, with no reference
to r. We associate to K, the Carnot—Carathéodory similarity dimension d, satisfying (1-2).
Then (see [5, theorem 2-8]) the following dimension formulas are valid for almost every
aeGM:ifd. < Qandrj<1/2forall j=1,..., M, then:

(a) dim.. K, < d, for alla € G
(b) dimg K, < B='(d,) for alla € GM;
(c) dim.. K, = d, for a.e. a € GM;
(d) dimg K, = B-'(d,) for a.e. a € GM.

The measure on G in question is the M-fold product Haar measure, which is equivalent
with either the Lebesgue measure £L¥” on GM = R"M or to the Hausdorff measure H2 in
the product Carnot—Carathéodory metric.

The most interesting statements above are (c) and (d) which give almost sure dimension
formulas in terms of the Carnot—Carathéodory and also in terms of the Euclidean metric. In
particular, K, is almost surely a horizontal set (in the terminology introduced in [§]), i.e.,
dim.. K, = B_(dimg K,).

We are interested in quantifying the previous statement by measuring precisely (in terms
of Hausdorff measures on the parameter space) the set of values a for which K, fails to be
horizontal. See Problem 6-2. In this paper, we take a first step in this direction by proving
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Exceptional sets for self-similar fractals in Carnot groups 151

a result analogous to the Falconer—Miao estimate (1-4) on the size of the exceptional set of
parameters a € G™ for which estimate (c) above fails. To do so, we introduce for s < d; <
O the exceptional set

E(s) = {a e GM : dim, K, < s}.

According to the preceding discussion, the (QM)-dimensional Carnot—Carathéodory
Hausdorff measure (equivalently, the (N M)-dimensional Euclidean Hausdorff measure) of
E (s) vanishes for all s < d,. The primary result of this paper is the following theorem.

THEOREM 1:1. Let G be a Carnot group of topological dimension N and homogeneous

dimension Q. Fix M positive real numbers 0 <r; <1/2, j = 1,..., M, and let d, be the
corresponding similarity dimension. Then
dim. E(s) < QM — (N — BZ'(s)) = OM — B (Q —s) (1-12)

fors <d, < Q.
COROLLARY 1-1. We have dim,. E(dy) < OM — B;'(Q — dy).

Since in the Euclidean case Q = N and B_ = B4 = id |jo n), (1-12) extends the Falconer—
Miao estimate (1-4). For the second equality in (1-12) we observe the identity

Q — Bi(a) = B_(N —a), 0<a <N,

which follows from the definitions of S. (see (5-1) and (5-3)). Note that 8_ : [0, N] —
[0, Q] is an increasing homeomorphism, thus B~!'(s) < N whenever s < Q. Corollary 1-1
improves on the result from [S] by showing that the dimension of the exceptional set E (d,)
is bounded away from QM whenever d, < Q. Theorem 1-1 may be useful in solving the
more difficult Problem 6-2 on exceptional sets; see the discussion following the statement of
that problem for more information. In Example 6-1 we illustrate our theorem by indicating
the precise exceptional sets for the almost sure dimension results (b) and (d) above, in the
case of two-element IFS’s on the first Heisenberg group H'.

As additional motivation for the study of the exceptional sets problem in this nonlinear
environment, we observe that self-similar IFS in Carnot groups of high step are comprised
of nonlinear, nonconformal maps of the underlying Euclidean space R". Indeed, the ap-
pearance of the group operation in (1-11) means that the constituent maps f; of the IFS f,
when viewed as maps of R", are polynomial maps of degree at most (and typically equal
to) S — 1. Our results from [5] and in the present paper thus provide almost sure statements
and estimates on exceptional sets for parameterized families of nonlinear, nonconformal IFS
in Euclidean space. We point out that other approaches to the exceptional sets problem ex-
ist in the literature which apply in nonlinear settings; see for example [21] for the use of
transversality in this context.

To conclude this introduction we briefly explain the idea of the proof of Theorem 1-1. We
note first that the points in K, can be parameterized by words as follows. Denote by Wy, »
the set of all words w = w;w,ws - - - with countably many letters w,, each selected from the
alphabet {1, ..., M}, and define the projection map 7, from W, 5 to K, by

ﬂa(w) =zli>rgof“" O"'Ofwg(x0)7 (113)

where x is any point in G. The mapping 7, does not depend on xy. Our approach follows
the one of Falconer and Miao [8] and goes back to the idea of Falconer [10]. The main
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152 ZOLTAN M. BALOGH AND OTHERS

point is to realize a transition from the parameter space onto the dynamical space. More
precisely, for any pair of words w, v € W,y such that w, = 1 the transition map T, ,, =
(T),.....T)) : GM — GM is defined by

Ti (@) = Ta(w) '« m,(v)  for ] =1, (1.14)
’ a; for j#1,
forall j =1,..., M.

In the Euclidean case [8], the transition map is an invertible linear map with norm bounded
from below by a positive constant independent of the words @ and v, as soon as w; =+ vj.
In our case the transition map is nonlinear and is not bi-Lipschitz continuous with respect
to the product metric on GM that is generated by the Carnot—Carathéodory metric of G. The
main technical difficulty of our work is to deal with the complex nonlinearity of the map-
ping. The solution of the problem is that we will show that T,,, ,, is bi-Lipschitz continuous on
GM with respect to the Euclidean metric. Passing from the Euclidean metric to the Carnot—
Carathéodory metric is done by a covering argument akin to the technique used in [S]. The
discrepancy between the two metrics resurfaces in the appearance of the dimension compar-
ison functions B in the statement of Theorem 1-1.

The paper is organized as follows. In the second section we present results on symbolic
dynamics and of potential theoretic nature which will be used in the proof. In section three
we develop an iterated version of the Baker—Campbell-Hausdorff formula in order to deal
with the infinite products appearing in the formula for the transition map as seen in (1-13)
and (1-14). The results obtained in this section may be of independent interest in the theory
of Carnot groups. In the fourth section we prove the main properties of the transition map
culminating in its Euclidean bi-Lipschitz continuity. In section five we prove Theorem 1-1.
The last section is for comments and open questions.

2. Symbolic dynamics, energy and Hausdorff dimension
2-1. Symbolic dynamics

We review the language and notation of symbolic dynamics for iterated function systems.
The material in this section is mostly standard. A useful reference is Kigami [16].

We may parameterize the points of the invariant set of an iterated function system in a
natural fashion by taking into account its dynamical construction. To this end we define
abstract word spaces. For £, n € N, we define the following three sets:

Weo={ulu:{l,2,....0 - {1,2,...,n}},
Wen=U W, U {e:@—>{1,2,...,n}}

teN
and
Woo,nz{w |w:N—> {1,2,...,n}}.

The notation has a natural generalization to the case n = oo.

An element u € W, , is called a finite word of length £(u) = £, where e is the so called
empty word of length zero. Elements of W, are called infinite words. The set W, ,, is the
collection of all finite words. The kth letter w; of a word w is simply the value w (k). We
will write

U=ujly - Uy
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Exceptional sets for self-similar fractals in Carnot groups 153
foru € W,,, and
w=wwrws---

for w € W ,,. Concatenation of a finite word with a finite or infinite word is defined in the
obvious way: if u = ujuy---u, € W, , and w = wyw, --- € W, , U W, then

UW = U Uy Uy W WrW3 = - - .
The longest common prefix v A w of two words v, w € W, , U W, is defined by

e if U1 + w1
vAw=1u if v=wuv and w =uw’ and v| F w;
v if v=w.
The shift operator o : W, — Wy, and its n right inverses 0; : Wy, — Wy ,, are
given by the formulas o (wwows - -+) = wowswy -+ and o; (W wWow3--+) = jwwy---.
Foru =u,---u, e W,, weseto, :=0,, 000y,
The space W, ,, of infinite words is naturally topologized with the product topology com-

ing from the discrete topology on {1, 2, ..., n}. This topology is metrizable, an explicit
generating metric being

2-EWAW) f gy g,

doo (v, W) 1=
( ) 0 ifv=w.

By the Tychonoff Product Theorem, (W, doo) 1S compact.
To each word u € W, , we associate the cylinder set

Q, = {uw eEWenlwe Woo,n}.

We observe that every open ball in (W ,, dw) coincides with a cylinder set €2, for some
ueW,,.
Leta : W,, — [0, +00) satisfy the consistency relation

a(u) =) o)) 1)

j=1

for all u € W, ,,. Then there exists a unique Borel measure A : P(W,,,) — [0, 4-00] whose
value on cylinder sets is given by A(£2,) = a(u) for all u € W, ,. In particular,

A(Weon) = a(e). (2-2)

Letf = {f1,..., fu} be an iterated function system defined on a complete metric space
(X,d). Foreach j, 1 < j < M, let r; be the contraction ratio associated to f;. For u =
iy - --up € W,y we define amap f, : X — X and a real number r, by

fu:fuloﬁlzo"’ofug and r”:ru]ruz"'ru@-

We denote the invariant set for f by Ky. We equip W,y with the product topology as de-
scribed in the previous section.
The map 7y : Woo 4 — Ky given by

me(w) = eliglo fwlwz»»»wg(xo)s (23)
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154 ZOLTAN M. BALOGH AND OTHERS

where x is an arbitrary point in X, is continuous and surjective. It is easy to check that ¢ is
independent of x,. We observe the key relation

moo, = fiomy,  ue W, (2-4)

The similarity dimension for the iterated function system f is the unique nonnegative real
number d; for which

M

df_
E ri =1.
Jj=1

As this value depends only on the vector r = (ry, ..., ry) of contraction ratios associated
to f, we will write d, for the similarity dimension of f. Define « : W, » — [0, +00) by the
formula o (u) := rL‘fr. This function satisfies (2-1) since
M M M
Za(uj) = r,f]‘- =k r}j‘ =r% = a(u).
j=1 j=1 j=1
Hence there exists a Borel measure A, on W, 5, with
)Vr(Qu) = rjr (25)
forall u € W, y. By (2-2), A, is a probability measure.

2-2. Energy and dimension

Let (X, d) be a complete metric space and s a positive real number. The s-energy of a
mass distribution v supported on a compact set K C X is defined to be

(K, v) = / / d(x, y) ™ dv(x) dv(y).
K JK
The following theorem relates energy to Hausdorff dimension. For a proof, see [9].

PROPOSITION 2-1 (s-energy versus Hausdorff dimension). Let K C X be a Borel set
and let s be a positive real number. Then the following holds:
(a) if the s-energy E;(K, v) is finite for some mass distribution v supported on K, then
dim.. K > s;
(b) if H°(K) > 0, then for each t, 0 <t <s, there exists a mass distribution v supported
on K whose t-energy &,(K, v) is finite.

Let G be a Carnot group. Denote by 7,: G — G the operation of left translation by
a € G,ie., 1,(p) = a * p. Fix positive real numbers r; <1, j = 1,..., M, and let r,,, <1
denote the largest of these values. We denote by d, the similarity dimension for the M-
tupler = (rq, ..., ry). We will always assume that M > 2 which implies that d, > 0. For
a = (a,...,ay) € GM we denote the self-similar set for the iterated function system
{ta, 064, ..., Tay, ©6,,) by K. Let m, be the symbolic representation map from W, 4 to
K, asin (2-3).

PROPOSITION 2-2 (Finiteness of the s-energy). Let s <d, be a positive real number. If
there exists a measure |1 on GM such that the inequality

/ d(ma(v), ma(w)) " dp(a) < Lr,), (2-6)
By
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Exceptional sets for self-similar fractals in Carnot groups 155

holds for all R > 0 and all distinct words v, w € Wy y with constant L = L(G, R) inde-
pendent of v and w, then dim.. K, > s for p-almost every a € GM.

. . .. M 2d .
Proof. Since d, is positive, > i< 1. We consider the Borel measure A, on Wy, y

described in subsection 2-1. The product measure A, ® A, on the diagonal A := {(v, w) €
Wgo’ u | v = w} vanishes, because A C Uuewm Q, x Q, for each ¢ and therefore

¢
M
@)D < Y AP = Y =[S 2] =Xo. 27)
j=1

ueWe m ueW; m

Using this fact and (2-6) we get

f / d (). Ta(w))” dpt(@) (e ® i) (v, w)
o Y BY

< L. R)/ 5 d (e ® A) (v, w).
Wi

The integrand ¢ (v, w) = r_? in the latter integral has the property that

VAW
¢(W§O,M \ A) = {rf | u e W*,M}
is a countable subset of R, since W, j is countable. Thus

/ r,dOw @ Ap) (v, w) = Z r e @A) ({0, w) € W2, \ AlvAw =u})
W2, \A

LtEW*'M

<Dl 0e @M@ =D D ()

UEW*'M teN uEWLM

< Zrma)c(dr_S)Z Z )‘-r(Qu) = Zrma}c(dr_x)lZ

LeN MEW[M £eN
—_—
= (Woo,m)=1

which is finite since s < d; and r,,,, < 1. Applying Fubini’s theorem, we see that
/ / / d (ma(v), Ta(w)) ™" dAr(v) dAr(w) dp(a) (2-8)
BY JWoors  Woomt

is finite. The image measure v, = (77,)#()\;) is a mass distribution supported on K,, since
0 <Ar(Weom) = 1 < 4 o0. From (2-8) it follows that the s-energy

//d(x,y)“*dva(x)dva(y)=/ / d(ma(v), Ta(w)) ™" dAr(v) dAr(w)
K, JK, Weomt ¥ Weom

is finite for p-almost every a € BA. The result now follows from Proposition 2-1, after
passing to the limit as R — oo.

3. Iterated Baker—Campbell-Hausdorff formula

Let g be a finite dimensional, stratified, nilpotent Lie algebra of step S > 2. For any word
w € W;,,s,n €N, we define the nested commutator or nested bracket of s elements chosen
from xi, ..., x, € g and specified by w in the following way

(xla BRI xn)w = [xwlv [ .. [xwkl, wa] .. ]] (31)

The number s € N is the length of the commutator.

Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 30 May 2017 at 19:46:36, subject to the Cambridge Core terms of use, available
at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/5S0305004110000083


https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0305004110000083
https:/www.cambridge.org/core

156 ZOLTAN M. BALOGH AND OTHERS

LEMMA 3-1. Any bracket of s elements chosen from x,, ..., x, € g is a linear combina-
tion with coefficients 1 of nested commutators of the form (xy, ..., X,)y with w € Wy ,.

Proof. The easy proof of this lemma relies upon the Jacobi identity (see e.g. [6, p. 12]).
The proof is by induction on the length of the commutator and the induction basis is the
identity [[x1, x21, [x3, x4l = [x4, [x3, [x1, x211] — [x3, [x2, [x1, X211

The Baker—Campbell-Hausdorff formula provides a Lie group structure on the Lie al-
gebra g. From now on, the number S > 2 is fixed and we let

Vn:Wl,nU"‘UWS,m neN,

and

v, =Uvn.

neN

THEOREM 3-2 (Baker—Campbell-Hausdorff formula). There exist constants ¢, € Q,
w € V,, making the operation * : g X g — g given by

Xpxxp =y cuX Xy (32)

weV,

into an associative group law on g.
For a proof of this theorem, see e.g. [7, theorem 1-2-1].

Example 3-1. When the step S is equal to 2, formula (3-2) reads

1
X1 % Xy = X +xz+§[xl,xz]- (3-3)
When the step S is equal to 3, the formula reads
1 1 1
X1 ® Xy =X +x + E[xh x] + E[XL, [x1, x2]] — ﬁ[xz, [x1, x21], (3-4)
ie.co=c=1,cpn=1/2,¢c31 =0, c112 = 1/12, c210 = —1/12, whereas all other constants

vanish.

From now on, the constants c,, for w € V, are given by Theorem 3-2. We are not interested
in their precise value. We are rather interested in the following iteration of the formula.

THEOREM 3-2 (Iterated Baker—Campbell-Hausdorff formula). For any S > 2 there exist
a finite set A C Q and constants ¢,, € A, w € V., such that for any stratified nilpotent Lie
algebra g of step S we have

oo (Crr#x) % X3) )k = Y CulXis s X (3-5)

weV,

forallxy,...,x, €g n =2

The parentheses on the left-hand side of (3-5) can be dropped since = is an associative

operation. We shall denote the iterated product on the left hand side by k*l Xp = X1k %X,

Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 30 May 2017 at 19:46:36, subject to the Cambridge Core terms of use, available
at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/5S0305004110000083


https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0305004110000083
https:/www.cambridge.org/core

Exceptional sets for self-similar fractals in Carnot groups 157
Example 3-2. When S = 2, formula (3-5) reads

xl*---*xn=2xi+% Z [xi, x;].
i—1

1<i<j<n

When S = 3, the formula reads

n 1 1
xl*"'*xn:Z,:lxi +§ Z [Xi,Xj]+Z Z [xia[xjyxk]]

1<i<j<n 1<i<j<k<n
1 n—1 1 n (36)
o5 20 D b b gl = 5 D0 D Tl byl
i=li<j<n j=1ik>j

This formula can be proved by induction on n > 2 starting from (3-4).

Proof of Theorem 3-2. We define recursively subsets A, C Q, n € N, in the following
way. Let A; = {0, 1}, fix the constants c¢,,, w € V,, as in Theorem 3-2, and let

Ay ={c, €Q:w e Va}. 3-7)
Now assume that A; C A, C --- C A, are already defined. Let £,,; = (n5)" and define

erH»l

A = { Zdhdo,hdl,h ceodipldp € {1}, doy € Ay dipy .o dip €Ay T <SS — 1}-
h=1
(3-8)
Foranyn € Nand m = 1,...,n, we denote by V" the set of all words w € V,, with
w=w;---w; forsomei =1, ...,.S, such that the set

{w,...,w;} C{1,...,n}

contains exactly m distinct elements.
We claim there is a choice of constants ¢,, € Q for all w € V, such that (3-5) holds for
any xi, ..., X, € g and moreover that

Cw € A forallw € V", 2 < m < min{n, S}. 3-9)

The claim implies Theorem 3-2. Indeed, suppose that the claim holds. Then the set A = Ag
is finite and by (3-9) the formula (3-5) holds with constants c¢,, € A. In fact, commutators
of more than S elements vanish by (1-6), and thus the sum in (3-5) ranges only over those
w e W withm < S.

The proof of the claim is by induction on x. The induction basis is n = 2. In this case,
(3-5) reduces to (3-2). Now assume that (3-5) holds for n, i.e. there are constants c¢,, € A,
such that the formula holds for any n elements x, ..., x, € g. Moreover, assume that (3-9)
holds. Let xy, ..., x,.; € g and set x = x; * --- % x,,. Here and in the sequel, we use the
notation x,, = (xy, ..., X,),. By the inductive hypothesis,

X= ) cuxy (3-10)
weV,
with ¢,, € A,. By (3-2) and by the associativity of the operation *, we obtain

n+1
X Xp =X kX = ch(x,xn+1)v- (3-1D)

UEVZ

k=1
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158 ZOLTAN M. BALOGH AND OTHERS
For any word v € V,, withv = v, ---v; forsomei =1, ..., S, we let
[v]y :card{h e{l,...,i}|lv, = 1}.
Then we define the word v € V|, 4 in the following way:

(i) the |v|; indexes 1 in v are progressively relabeled to 1, ..., |v];;
(i1) the i — |v|; indexes 2 in v are relabeled to |v|; + 1.

We denote the resulting word by . For example, if v = 11221211 then v = 12663645. Using
this notation, we have

(xs xn+1)v - (.X', ey X, xn+1)ﬁ = Z Cy, " Cw‘v“ (xw1 PRI wal s anrl)ﬁ‘
— —

ol Wi, Wiyl €Vy

By Lemma 3-1, there exist constants d e {0, £1}, u € V,44, such that

VW Wiy
2 u
(xwl e Xy xn-H)g = dv,w] _____ Wi, (x5 .-, xn-H)u- (312)
UEVp1

From (3-11) and (3-12), we finally obtain

n+1
kil X = Z cu(xl, ey Xn+1)u, (313)

UEVy+1

where

u
cy = E E CyCy, " - -cledv’w1 ’’’’ W, €A,

VeV, wi,. wpy €V,

In the sum, there are at most £,,; = (nS)% summands.
Now we show thatc, € A,, forallu € V", | with2 < m < min{n + 1, §}. Assume that in

(x1, ..., Xp41), there appear at most m < § distinct elements chosen from xy, ..., x,,; (if
m > S then (xy, ..., X,11), = 0by (1-6)). From (3-12), we deduce that in the commutator
(xwl, N )c,H_l)ﬁ there appear at most m distinct elements chosen from x1, ..., x,.

On the other hand, x,,;; must appear at least once. If this is not the case, then we have either
(x,Xy+1)y = 0 or v € W, and there would be nothing to prove. It follows that in each

COMMUIALOT Xy, . - -, Xy, there can appear at most m — 1 distinct elements chosen from
X1, ..., X,. Then, by induction we have ¢, ..., Cuy, € A,,_1. This shows that ¢, € A,,.
Fori =1,..., S, let us introduce the ordered pairs of words
Gi,n = Win X ‘/Vi,S and Gn = Gl,n U e U GS.n- (314)

For any pair (w, k) € G, define

Gty Xk = [0, [ xS0 1807 (3:15)
see (1-7) for the notation used here. The first word w = w; - - - w; of the pair (w, k) in G,
selects i elements out of n elements xy, ..., x, € g. The second word k = k; - - - k; selects

corresponding strata in the Lie algebra decomposition (1-5). We also define the weight of a
word k € W; s to be
k| =k +---+k;.
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COROLLARY 3-1. Let x = x| % -+ % X, with x|, ..., X, € g and x = xV 4+ ... + x©®
with x© € g;. Then, foranyi =1, ..., S we have
=" cu(en o X (3-16)
(w,k)eG,
[k[=i
Proof. First notice thatif w € W;,,,i =1,..., S, then
(xl’ ey xn)w = Z (xl’ ey xn)w,k'
kEW,‘,S

Then by Theorem 3-2 we obtain

X = Z Cw(xlv s v-xn)w = Z Cw(xlv .- -axn)w.k-

wevV, (w,k)eG,

On the other hand, from (1-6) it follows that for all i, j > 1

[gi, g1 C giy)s

and thus (xy, ..., x,)yx € g if |k| = i. Formula (3-16) follows.

4. Transition map

Let us recall that we have identified the group G and its Lie algebra g via the Baker—
Campbell-Hausdorff formula. Throughout this section, we write g in place of G to conform
with the notation of the previous section.

Letay,...,ay € gandry, ..., ry > 0. Throughout this section, we assume that

1
Foaxy = Max{ry, ..., ry} < E “4-1)

Let f; : g — g denote the contraction f;(x) = a; *4,,(x), j = 1,..., M. Denote by
K, the invariant set of f = {fi, ..., fy}, where a = (a, ..., ay) € g" is the M-tuple of
translation vectors. The projection 1w, : W iy — K, i

Ta(w) = Zli)ngo fwl ©---0 fwg(o)

For w, v € Wy u, define the transition map 7, , = (T, T)) g — gM

U ’

TJ (@) = Ta(w) ' xma(v) for j=1 42)
’ a; for j=2,..., M.
In what follows, we make use of words in W, ), indexed by words chosen from another
symbol set W; ... For this reason, in the rest of this section we denote elements of W, 5 by
Greek letters.
The aim of this section is to prove the following theorem.

THEOREM 4-1 (Euclidean bi-Lipschitz continuity of the transition map). Let w,v be
elements of Wuo y satisfying 1 = w, + v,. For any compact set K C gM there exists
a constant C = C(K) = 1 independent of w and v such that T, ,|x is C-bi-Lipschitz
continuous on K with respect to the standard metric.
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By standard metric, we mean any metric on the vector space g which is induced by a
norm, e.g., the Euclidean metric. Under the aforementioned identification of g and G, this
corresponds to the Euclidean metric on GY.

4-1. Projection map

Our first task is to compute an explicit formula for the mapping r,. Recall that, according
to (3-14), we have
s

GM = U Wi,M X W,'ys.

i=1

We use the following notation. For (g, k) € W,y x W, s we let

s = [0 [ a0 0] ) @3)
This is consistent with (3-15). Moreover, for ® € Wy p, v € W, o and k € W; 5 we let
(@) = [af) [, [afi " al?] . ]]. (4-4)
Forany g € W; iy and @ € Wy i, let Wo(w) C W, o denote the set of all v € W, o, such
that
(awl,l, R awVi) = (ag,...,ay). 4-5)

Finally, let r,,..,, = 7w, - - - 7w,, Where we stipulate that the empty product is equal to one.
Forw € Wy, v e W, cand k € W, g let

ryx(w) == rh (4-6)

O] .0y, 1"
h=1

LEMMA 4-1 (Representation Formula for ,). For any w € Wy, y we have

Ta@) = Y Yex(@ags, (47)

(8:k)eGu

where the coefficients y, i (w) € R are given by

Ver(@) = Y crou(o). (4-8)

veW, (w)

Here, the constants ¢, € R are given by Theorem 3-2.

Proof. We prove by