
How Developers Use the Dynamic Features of
Programming Languages: The Case of Smalltalk

Oscar Callaú Romain Robbes
Éric Tanter

PLEIAD Laboratory
DCC, University of Chile

{oalvarez,rrobbes,etanter}@dcc.uchile.cl

David Röthlisberger
Software Composition Group

University of Bern
roethlis@iam.unibe.ch

ABSTRACT
The dynamic and reflective features of programming lan-
guages are powerful constructs that programmers often men-
tion as extremely useful. However, the ability to modify
a program at runtime can be both a boon—in terms of
flexibility—, and a curse—in terms of tool support. For
instance, usage of these features hampers the design of type
systems, the accuracy of static analysis techniques, or the in-
troduction of optimizations by compilers. In this paper, we
perform an empirical study of a large Smalltalk codebase—
often regarded as the poster-child in terms of availability of
these features—, in order to assess how much these features
are actually used in practice, whether some are used more
than others, and in which kinds of projects. These results
are useful to make informed decisions about which features
to consider when designing language extensions or tool sup-
port.

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Constructs
and Features

General Terms
Software Repositories

Keywords
Dynamic languages, static analysis, Smalltalk

1. INTRODUCTION
Dynamic object-oriented languages such as Smalltalk [4]

or Ruby allow developers to dynamically change the pro-
gram at runtime, for instance by adding or altering methods;
languages such as Java, C# or C++ provide reflective in-
terfaces to provide at least part of the dynamism offered by
dynamic languages. These features are extremely powerful:
the Smalltalk language for instance ships with an integrated

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MSR ’11, May 21-22, 2011, Waikiki, Honolulu, HI, USA
Copyright 2011 ACM 978-1-4503-0574-7/11/05 ...$10.00.

development environment (IDE) that uses these dynamic
features to create, remove, and alter methods and classes
while the system is running.

If powerful, these dynamic features may also cause harm:
they make it impossible to fully check the types of a pro-
gram statically; a type systems has to fall back to dynamic
checking if a program exploits dynamic language features.
Until recently, the problem of static analysis in the pres-
ence of reflection was largely sidestepped; current solutions
to it fall back on dynamic analysis in order to know how the
dynamic features are exercised at runtime [2]. Another ex-
ample is the (static) optimization of program code, which is
impossible to achieve for code using any dynamic language
feature. Moreover, tools are affected by the use of these fea-
tures. For instance, a refactoring tool may fail to rename
all occurences of a method if it is used reflectively, leaving
the program in an inconsistent state. In short, dynamic lan-
guage features are a burden for language designers and tool
implementors alike.

This problem is exacerbated since language designers and
tool implementors do not know how programmers are using
dynamic language features in practice. Dynamic features
might only be used in specific applications domains, for in-
stance in parsers/compilers, in testing code, in GUI code, or
in systems providing an environment to alter code (eg. an
IDE). Having precise knowledge about how programmers
use dynamic features in practice, for instance how often, in
which parts, and in which types of systems they are used,
can help language designers and tool implementors find the
right choices on how to implement a specific language exten-
sion, static analysis, compiler optimization, refactoring tool,
etc. If it turns out that a given dynamic feature is used in
a minority of cases, then it may be reasonable to provide
a less-than optimal solution for it (such as resorting to dy-
namic type checking in a static type system). On the other
hand, if the usage is pervasive, then a much more convincing
solution needs to be devised. Hence, it is of a vital impor-
tance to check the assumptions language designers and tool
implementors might have against reality.

In this paper, we perform an empirical study of the usage
of dynamic language features by programmers in Smalltalk.
We survey 1,000 Smalltalk projects, featuring more than
4 million lines of code. The projects are extracted from
Squeaksource, a software super-repository hosting the ma-
jority of Smalltalk code produced by the Squeak and Pharo
open-source communities [8]. We statically analyze these
systems to reveal which dynamic features they use, how of-
ten and in which parts. Next, we interpret these results

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Bern Open Repository and Information System (BORIS)

https://core.ac.uk/display/33038479?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

to formulate guidelines on how language designers can best
deal with particular language features, depending on how
and how frequent such features are used in practice.

We focus on the Smalltalk programming language because
it is a very salient data point. Smalltalk is, alongside with
LISP, one of the languages with the most support for dy-
namic features, since it is implemented in itself. The kernel
of the language (classes, methods, etc), and the develop-
ment tools (compiler, code browser, etc) make extensive use
of the dynamic features in order to implement the vision of
a “live” programming systems. Thus our hypothesis is that
Smalltalk represents an upper bound estimate of the use of
dynamic features in practice. For Smalltalk programmers,
this dynamic behavior is the norm, hence they should use it
more than their counterparts in other languages—especially
since they are so easy to access.

Contributions. This paper explores the usage of dy-
namic features in Smalltalk in order to validate, or not, the
following hypotheses:

1. Dynamic features are not used often. More precisely,
we are interested in determining which features are
used more than others.

2. Dynamic features are mostly used in very specific kinds
of projects. We conjecture that they are used essen-
tially in core system libraries, development tools, and
tests, rather than in regular applications.

3. Some usages of dynamic features are statically tractable,
unproblematic for static analyses and other tools.

4. The specific features that have been integrated in more
static languages over time (eg. Java) are indeed the
most used.

As a consequence of this study, we also expect to gain in-
sight into how language designers and tool providers have to
deal with these dynamic features.

Structure of the Paper. We start with a review of
related work (Section 2), before giving the necessary back-
ground on Smalltalk to the reader (Section 3). We then
describe our experimental methodology, analysis infrastruc-
ture, and the dynamic features we look at (Section 4); our
results follow (Section 5). We then discuss these results and
their implications (Section 6). We close the paper by first
discussing the potential threats to the validity of this study
(Section 7), before concluding (Section 8).

2. RELATED WORK
There have been a number of empirical studies on the

usage of programming language features by developers.
Knuth studied a wide variety of Fortran programs, inform-

ing quantitatively “what programmers really do” [7]. Knuth
performed static analysis on a sample of Fortran programs,
and dynamic analysis on a smaller sample, recording the
frequency of execution of each kind of instruction. Knuth
found several possible optimizations to compilers and sug-
gested compiler writers to consider not only the best and the
worst cases, but also the average case of how programers use
language features in order to introduce optimizations.

Melton and Tempero measured the size of cycles among
classes in 78 Java applications, and found that most applica-
tions featured very large cycles (sometimes in the thousands
of classes) [10].

Tempero et al. characterized the usage of inheritance in
90 Java programs, and found a higher usage of inheritance
than they expected [17]. Rysselberghe and Demeyer took
evolution into account and proposed hypotheses on how the
hierarchies change over time, based on observations about
the evolution of two Java systems [14]. Later, Tempero ana-
lyzed a corpus of 100 Java programs in order to characterize
how fields were used [16]: a large number of classes had non-
private fields, but less were actually accessed in practice.

Muschevici et al. performed an empirical study on how
multiple dispatch is used in 9 applications written in 6 lan-
guages supporting it, and contrasted it with the Java corpus
mentioned above [11].

Malayeri and Aldrich inspected 29 Java programs in or-
der to determine if they would have benefited from struc-
tural (instead of nominal) subtyping; they found that the
programs would benefit somewhat [9].

Finally, a large-scale study (2,080 Java applications found
on Sourceforge) by Grechanik et al. asks 32 research ques-
tions on the usage of Java by programmers [5], related to the
size of the applications, the number of arguments in meth-
ods, whether methods are overriden or not, etc.

Dynamic Features. In addition, several pieces of work
have specifically investigated the usage of dynamic features
in Java, Python and Javascript.

Bodden et al. investigated the usage of Java reflection in
the case of the DaCapo benchmark suite, and found that the
benchmark harness loads classes dynamically, and executes
methods via reflection, causing the call graph extracted from
static analysis to significantly differ from the call graph actu-
ally observed at runtime [1]. Furthermore, the class loaders
that DaCapo uses are non-standard.

Holkner and Harland investigated the dynamic behavior
of 24 Python programs, by monitoring their execution [6].
They found that the Python program in their corpus made
a heavier usage of dynamic features during their startup
phase, but that many of them also used some of these fea-
tures during their entire lifetime.

Most directly related to our work is the study of Javascript
dynamic features by Richards et al. [12]. They analyzed a
large amount of Javascript code found on a number of popu-
lar web sites, in order to verify whether the assumptions that
are made in the literature about the usage of the dynamic
features of Javascript match reality. Some of the assump-
tions they checked were: ”the use of eval is infrequent and
does not affect semantics” (found to be false), or ”the proto-
type hierarchy is invariant” (also false); most of the assump-
tions were found to be violated. In further work, the same
authors performed a more thorough analysis of the usages of
the eval function in Javascript [13]. Again, assumptions that
eval is rarely used were found to be wrong. While Richards
et al. use dynamic analysis to monitor manual interaction
on 103 websites, we use static analysis on 1,000 Smalltalk
projects. An innovation of our study is to consider the kinds
of projects that use the features; this is particularly relevant
in a live environment like Smalltalk, where the whole system
is developed in itself.

Smalltalk Java
foo bar. foo.bar();
foo bar: baz. foo.bar(baz);
foo bar: baz with: quux. foo.bar(baz, quux);
p := Point new. Point p = new Point();
↑ foo return foo;
self this
super super
’String’ ”String”
#symbol String.intern(”symbol”);

Table 1: Smalltalk and Java syntax compared

3. SMALLTALK BASICS
Smalltalk [4] is a pure object-oriented language (every-

thing is an object) with no static typing. Compared to main-
stream OO languages, Smalltalk has a distinct terminology:
Smalltalk objects communicate by sending messages to each
other. Each message contains a selector (method name)
and arguments. When the object receives the message, it
will look up the selector in its method dictionary, retrieve
the associated method, and execute it with the arguments
of the message (if any). Smalltalk’s syntax is also distinct
from C-like languages. We provide equivalent expressions
for common cases in Table 1. Note that since Smalltalk
has first-class classes, there are no constructors; instantiat-
ing a class is done by sending a message to a class object.
Smalltalk features the concept of Symbols, which are unique
strings; selectors are such symbols.

Many concepts that are implicit in other languages are
made explicit through reification, and can be directly ma-
nipulated by programs; this is the case for classes, methods,
and blocks of code. Smalltalk’s programming environment
is defined in itself and makes extensive use of these dynamic
features: one can effortlessly use the compiler to add new
behavior at runtime; in fact, this is the default way programs
are built in Smalltalk. The prominent dynamic features of
Smalltalk, which we investigate in this paper, are:

• Classes as first-class objects. Classes can be passed
as arguments to functions, which makes it hard to
know the type of new objects statically. Classes can
also be created programmatically.

• Behavioral reflection. In Smalltalk, one can invoke
a method based on its dynamically-determined name.
It is also possible to modify the value of a dynamically-
determined field in an object. In addition, Smalltalk
also supports swapping all pointers to two given ob-
jects.

• Structural reflection. Classes can be created and
removed from the program at runtime; their subclasses
can be dynamically changed; methods can be added,
removed, or recompiled dynamically.

All these features are readily available to programmers. We
conjecture that dynamic features are used extensively in the
core language libraries and development tools, yet it remains
to be seen if and how they are actually used in applications.

4. EXPERIMENTAL SETUP
To find out how developers use the dynamic features pro-

vided by Smalltalk in practice, we perform an analysis of a
large repository of Smalltalk projects. This section describes

Project LOC Classes Methods
Morphic 124,729 676 18,154
MinimalMorphic 101,190 483 13,887
System 91,706 502 10,970
Formation 89,172 695 9,833
MorphicExt 69,892 236 9,461
Balloon3D 68,020 397 7,784
Network 58,040 447 8,207
Collections 55,254 405 9,093
Graphics 52,837 139 5,267
SeaBreeze 47,324 228 3,466
Total (1000) 4,445,415 47,720 652,990

Table 2: The 10 largest projects in our study.

the experimental setup, that is, the methodology applied to
perform the analysis, the analysis infrastructure, and an ex-
planation of the dynamic features we are analyzing.

4.1 Methodology
We started our analysis by looking at all 1850 software

projects stored in Squeaksource in a snapshot taken in early
2010. We ordered all projects by size and selected the top
1000 projects, in order to exclude small or toy projects.
Since Squeaksource is the de facto source code repository
for open-source development in the Squeak and Pharo com-
munities, we believe this set of projects is representative of
medium to large sized Smalltalk projects originating from
both open-source and academia. Table 2 summarizes the
top ten projects sorted by lines of code (LOC), and also
shows number of classes and methods. The last row shows
the total for the 1000 projects analyzed in this study.

In order to analyze the 1000 projects, we developed a
framework1 in Pharo2 to trace statically the use of dynamic
features in a software ecosystem. This framework is an ex-
tension of Ecco [8], a software ecosystem model to trace de-
pendencies between software projects. Our analyzer follows
three principal steps: Trace, Collect and Classify.

To Trace, first the analyzer reads Smalltalk package files
from disk and builds a structure (an ecosystem) which rep-
resents all packages available on disk. Later, the analyzer
flows across the ecosystem structure parsing all classes and
methods from each package. In the method parsing process,
the analyzer traces statically all calls of the methods that
reflect the usage of dynamic features in Smalltalk. Section
4.3 describes these dynamic features in more details and lists
the corresponding method names.

The Collect step gathers the sender, receiver and argu-
ments of each traced message call AST nodes. The collected
data is stored in a graph structure, which recursively cata-
logs the sender into packages and classes, and the receiver
and arguments into several categories: literals (e.g. strings,
nil, etc), local variables, special variables (i.e. self or super),
literal class names, and arbitrary Smalltalk expressions.

The third step, Classify, is performed in the graph struc-
ture. Each call site is classified either as safe or unsafe: A
safe call site is one for which the behavior can be statically
determined (e.g. the receiver and arguments are literals, for
instance), whereas an unsafe call may not be fully statically
determined. The exact definition of what is safe and unsafe
depends on each feature, as described in Section 4.3.

1Available at http://www.squeaksource.com/ff
2http://www.pharo-project.org

Characterizing usages as safe or unsafe is an indicator of
how dynamic features are used, and how challenging it may
be for a static analysis or development tool to support it.
This study also answers the where question: which kind of
projects make use of these features. For this, we introduce
project categories, described below.

4.2 Project Categories
In order to characterize in which kinds of projects dynamic

features are used, we classified each project according to five
different categories:

• System core (System, 25 projects): Projects that
implement the Smalltalk system itself.

• Language extension (Lang-Ext., 55 projects): Projects
that extend the language, but are not part of the core
(eg. extension for mixins, traits, etc.).

• Tools and IDE (Tools, 63 projects): Projects build-
ing the Smalltalk IDE and other IDE-related tools.

• Test suites (Tests, 24 projects): Projects or parts of
projects representing unit and functionality tests3.

• Applications (Apps, 833 projects): Conventional
applications, which do not fit in any of the other cat-
egories; this is the overwhelming majority.

4.3 Analyzed Dynamic Features
We consider three groups of dynamic features of Smalltalk

in this study: first-class classes, behavioral reflection, and
structural reflection. In each of these groups, the use of the
different features are identified by specific selectors, which
we have identified based on the experience of the authors as
Smalltalk developers. In addition to describing each feature
and its corresponding selectors, this section explains how
specific usages are characterized are safe or unsafe.

4.3.1 First-class Classes
This category includes features that are related to the

usage of classes as first-class objects. As opposed to other
object-oriented languages such as Java, Smalltalk classes can
be receivers or arguments to methods. The use of first-class
classes complicate matters for static analysis especially with
respect to instance creation and class definition, as one can
not know which class will be instantiated or created.
Instance Creation. In Smalltalk, the typical instance cre-

ation protocol consists of new, which is may be overriden in
classes, while basicNew is the low-level method responsible
for actually creating new instances. When tracing all occur-
rences of invocations of basicNew in the analyzed projects,
we consider only two kind of occurrences to be unsafe:

x basicNew.
(z foo) basicNew.

In the first case the receiver is a local variable, in the second
case the receiver is the result of a method invocation, or more
generally, any arbitrary expression. Usages of basicNew with
a literal class name or the pseudo-variables self or super as
receiver are considered safe. Note that the type of self is
statically tractable using self types, as in Strongtalk [3].

3All subclasses of TestCase are considered to represent tests,
no matter how the rest of the project is categorized.

Class Creation. To create a new class, Smalltalk offers a
range of subclass: methods that only differ in the arguments
they accept. As for instance creation, we only consider a
message send of subclass: to be unsafe if: (1) the receiver
is a local variable or a complex Smalltalk expression, or (2)
the argument (the class name to be created) is not a symbol.
Examples of safe calls are:

Point subclass: #ColorPoint.
self subclass: #ColorPoint.

Examples of unsafe method calls are:

c subclass: #MySubClass.
Point subclass: x name.

The first example subclasses an undetermined class c, while
the second example creates a subclass of Point with an un-
determined name (the result of sending name to x).

4.3.2 Behavioral Reflection
Behavioral reflective features of Smalltalk allow program-

mers to change or update objects at runtime, or to dynam-
ically compute the name of methods to be executed. We
distinguish between the following features: object reference
update, object field update, and message sending.

Object Reference Update. Selectors such as become: allow
Smalltalk programmers to swap object references between
the receiver and the argument. After a call to become:, all
pointers to the receiver now point to the argument, and
vice versa; this affects the entire memory. Determining at
compile time, if this reference swap is safe or unsafe is chal-
lenging. We consider all calls to these selectors to be unsafe.

Object Field Update. In Smalltalk, object fields are pri-
vate; they are not visible from the outside and must be
accessed by getter and setter methods. The Smalltalk re-
flection API provides methods such as instVarAt:put: and
variants, which allows assigning object fields without using
the corresponding setter methods. We consider safe calls to
be those where the object field index (the selector’s first ar-
gument) is a number, symbol or string literal.

Message Sending. The perform: selector invokes a method
by passing its name (a symbol) as the argument of the call,
as well as the receiver object. This feature is also provided
by the Java reflection API. Safe calls are those where the
method name (the argument in the expression) can be de-
termined statically—i.e. a symbol. In unsafe calls, the ar-
gument is a local variable or a composition of message calls
(e.g. a string concatenation). Examples of unsafe calls are:

x perform: aSelector.
x perform: ('selectorPrefix', stringSuffix) asSymbol.

4.3.3 Structural Reflection
With the structural reflective features of Smalltalk, de-

velopers can modify the structure of a program at runtime
by dynamically adding or removing new classes or methods.
We consider the following structural reflective features:

Class Removal. In Smalltalk, classes can be removed from
the system at runtime. We include this feature to be ana-
lyzed through the removeFromSystem selector where the re-
ceiver is the class to remove. In our analysis, we consider

unsafe occurrences to be calls in which the receiver is a local
variable, or a Smalltalk expression. Examples are:

c removeFromSystem.
(x class) removeFromSystem.

Superclass Update. Smalltalk programmers can change at
runtime the behavior of a class by updating the superclass
binding. This powerful feature is handled by superclass: se-
lectors. Safe calls to them are those where both the receiver
(the subclass) and the argument (the new superclass) are
either a literal class name (including nil4) or self. Any other
case is potentially unsafe. Safe examples are:

Point3D superclass: MyPoint.
self superclass: nil.

Method Compilation. Adding behavior at runtime allows
programmers to dynamically load runnable code. Smalltalk
provides selectors such as compile: to compile and add meth-
ods to a particular class. Calls where the argument—the
code to be compiled, or the selector name—is lexically a
string are safe; others are not. We further categorize safe
calls to the compile selector in the following categories: triv-
ial, simple code such as returning a constant or a simple ex-
presion ; getter/setter, which returns/sets an instance vari-
able; and arbitrary code—everything else.

Method Removal. This feature complements the one above,
adding the capability to remove behavior from a class at run-
time, with selectors such as removeSelector:. When tracing
all occurrences of invocations of this kind of selectors, we
categorize those occurrences where the argument (the selec-
tor name) is a variable name or a composition of message
calls (e.g. a string composition) as unsafe. Therefore, safe
occurrences are when the argument is lexically a symbol.
Example of unsafe occurrences are the following:

c removeSelector: aSelector.
c removeSelector: ('prefix' , varSuffix) asSymbol.

5. RESULTS
This section presents the results of the study. After pre-

senting general results showing how many and how often
projects use dynamic features, we analyze the usage of each
dynamic feature in detail. In particular we distinguish be-
tween safe and unsafe usages as explained in Section 4.3 and
application code, and system, tools, language extensions and
tests (Section 4.2). When they exist, we list common pat-
terns of usage of the features.

5.1 General Results
In our analysis of the 1,000 projects, we found 14,184 dy-

namic feature occurrences. Only 8,349 methods use at least
one dynamic feature; this shows that a fair proportion of
methods either use a feature more than once or use several
features at once.

The 8,349 methods using dynamic features represent 1.28%
of the 652,990 methods we analyzed for this study. This
shows that use of dynamic features is punctual: most meth-
ods do not make use of them.

Of the 8,349 methods using dynamic features, 4,869 were
in projects classified as“Applications” (0.75% of all analyzed

4In Smalltalk the root superclass is nil.

Instance Creation
Class creation

Obj. ref. update
Obj. field update
Message sending

Class removal
Superclass update

Method compilation
Method removal

0% 15% 30% 45%

Figure 1: Distribution of dynamic feature usages.

methods) and 2,946 of these use dynamic features that we
consider as unsafe (0.45% of methods); these results confirm
the previous point.

Projects classified as applications represent 83% of the
projects, yet contain barely 57% of the methods using dy-
namic features, confirming the fact that other project cat-
egories use these features more extensively. Of all the dy-
namic feature usages, 8,642 were classified as unsafe (60.92%);
4,047 of those were in applications (46.82%). This confirms
the previous fact, but is not enough to validate our hypoth-
esis that dynamic features are mostly used in specific kinds
of projects. Their usage is clearly more widespread.

Figure 1 shows the distribution of the usage of dynamic
features, with a maximum of 6,048 occurrences of message
sending (42.64%) and a minimum of 114 occurrences for su-
perclass updates (0.8%). Categories are distributed as fol-
lows: first-class classes with 22.22%, behavioral reflection
with 55.99% and structural reflection with 22.79%. Three
dynamic features—Message sending, Instance creation, and
Method recompilation—, account for more than 75% of the
usages. Of these, Java provides two in its reflection API
(message sending and instance creation), catering to 60% of
the usages in the analyzed Smalltalk projects.

Figure 2 exhibits the per-feature distribution of all soft-
ware projects arranged left to right in the following cate-
gories: No Use, projects with no occurrences of the analyzed
feature (blue); Safe, projects that have one or more occur-
rences of the analyzed dynamic feature, but all occurrences
are safe (green); Unsafe in Systems, Tests, Language exten-
sions or Tools represents all projects in those project cate-
gories with at least one unsafe call of the feature (yellow);
Unsafe in Applications includes application projects with at
least one unsafe call (red). Most features (except instance
creation and message sending) follow a common pattern:

• Many projects do not use the analyzed feature. This
category ranges between 725 projects in method defi-
nition and 961 in the superclass update feature.

• Unsafe uses are almost equally distributed between ap-
plications and other categories, with an average of 53
and 52 projects respectively. Applications with 85% of
the projects have comparatively less unsafe uses.

• Finally, projects having only safe usages of a dynamic
feature are a minority (excepting instance creation fea-
tures), with an average of 20 projects.

Instance Creation
Class creation

Obj. ref. update
Obj. field update
Message sending

Class removal
Superclass update

Method compilation
Method removal

0 200 400 600 800 1,000

No use Safe Unsafe non Apps Unsafe Apps

Figure 2: Per-feature distribution of all projects arranged by category of use.

The cases of instance creation and message sending are
distinct: 40% of the projects make use of dynamic instance
creation, but the majority of them only have safe usages; less
than 10% of the projects use it unsafely. Message sending
is even more widespread—60% of all projects use it—, but
follows an opposite distribution of safe/unsafe usages: most
of the projects use it in an unsafe fashion. These two features
are used pervasively by all kinds of projects.

Interpretation.

• The methods using dynamic features are a very small
minority. However, the proportion of projects using
dynamic features is larger, even if still a minority. This
confirms the assumption that dynamic features are not
used often, but shows that they cannot be safely ig-
nored. An analysis of each feature is needed.

• Application projects use less dynamic features than
other types of projects. The assumption that conven-
tional applications use few dynamic features is invalid:
applications constitute nearly half of the unsafe uses.

• The two most pervasive features, Instance creation and
Message sending, are the ones that static languages
such as Java implement, confirming assumption 4.

5.2 First-class Classes
For each feature, we provide basic statistics (number of

uses, number of unsafe uses, and number of unsafe uses in
applications), and a bar chart showing the classification of
each feature in various, feature-specific, patterns of usage.
We also provide percentage distributions among categories
in Table 3. We highlight in italic categories that are par-
ticularly over-represented with respect to the Applications
category: Since applications constitute more than 83% of
the projects, we consider that any other category that has
at least one-third of the number of unsafe calls that appli-
cations have is over-represented.

Instance Creation (2,732 calls, 204 unsafe, 118 in Apps).

Figure 3 reveals that programmers use instance creation
(basicNew) in a statically safe way (92.53%) while unsafe
calls (see Table 3 for distribution) are restricted to a few
occurrences (7.47%). Applications feature the most unsafe
calls (118, i.e. 4.32%), but are actually under-represented

self
Class name

super
Variable

Other
0% 25% 50% 75%

All
Apps
non Apps

Figure 3: Safe/unsafe usages of instance creation.

as 83% of the projects are applications. On the contrary,
System projects are the most over-represented (1.76%).

The most common (and safe) pattern is self basicNew (74%):
Programmers define constructor methods (as class methods)
and inside them call basicNew. A common unsafe pattern
(almost a third of unsafe calls) is to defer the choice of
the class to instantiate via polymorphism (self factoryClass
basicNew).

Class Creation (420 calls, 294 unsafe, 77 in Apps).

Safe

Unsafe

0% 18% 35% 53% 70%

All
Apps
non Apps

Figure 4: Safe/unsafe usages of class creation.

Figure 4 and Table 3 show that a strong minority of cases
are safe uses (30%); 18% of unsafe usages are in applica-
tion, while more than 50% are in other project categories.
Tests are especially over-represented, with nearly a third of
unsafe usages. Indeed, tests often create temporary classes
for testing purposes. Likewise, System and Tools are both
heavily over-represented, each having close to 10% of uses
of the features; both project categories are infrastructural
in nature and may need to create classes as part of their
responsibilities. Most unsafe usages in Apps are in class
factory methods generating a custom class name, such as:

FactoryClass>>customClassWithSuffix: aStringSuffix
↑ Object subclass: ('MySpaceName' , aStringSuffix) asSymbol.

To provide perspective, the code base we analyze contains
47,720 statically defined classes, showing that dynamic class
creation clearly covers a minority of cases, less than 1%.

Dynamic Feature Nb. of Calls % Safe Calls % Apps % Tools % Lang-Ext. % System % Tests
Instance Creation 2,732 92.53 4.32 0.59 0.70 1.76 0.11
Class Creation 420 30 18.33 9.76 1.90 8.57 31.43
Object ref. update 311 0 45.66 12.22 6.75 24.44 10.93
Object field update 1,441 61.14 18.67 5.20 1.80 12.91 0.28
Message sending 6,048 7.03 47.52 26.57 3.17 9.79 5.92
Class removal 385 6.24 10.91 8.05 1.56 10.91 62.34
Superclass update 114 7.89 42.11 18.42 7.02 7.02 17.54
Method compilation 2,296 60.02 18.25 7.10 3.22 6.32 5.10
Method removal 311 39.13 13.27 15.10 3.43 18.76 10.30

Table 3: Per-feature distribution of safe and unsafe calls, where unsafe calls are sorted by project category.
In bold: largest category; In italics: category that is considerably over-represented (< 1/3 of Apps usages)

Interpretation.

• Instance creation is the second-most used dynamic fea-
ture, but its usage is mostly safe, with only 118 unsafe
usages in applications.

• The majority of class creation uses are unsafe, but
most of those are located in non-application code, pri-
marily testing code. A lot of unsafe usages appear to
be related to class name generation.

• Some support is still needed for a correct handling of
these features in static analysis tools. In particular,
support for self-types is primordial to make usages of
self and super tractable and hence safe.

5.3 Behavioral Reflection

Object Reference Update (311 calls, 311 unsafe, 142
in Apps).

Unsafe

0% 25% 50% 75% 100%

Apps non Apps

Figure 5: Unsafe uses of object references updates.

According to Table 3, System projects are over-represented
(2.5% of projects account for 25% of calls). For instance,
some low-level system operations need to migrate objects
when their classes are redefined, and use become: for such
a task. Applications however do use this feature somewhat
extensively, with more than 45% of calls, see Figure 5.

Object Field Update (1,441 calls, 560 unsafe, 269 in
Apps).

Safe
Variable

Other
0% 21% 41% 62%

All
Apps
non Apps

Figure 6: Safe/unsafe usages of object field updates.

Accessing and changing the values of object fields is the
fourth-most used feature. Figure 6 gives the distribution
of safe (61.14%) and unsafe calls. Unsafe calls are split in:
Variable (31.16%), when the first argument is a variable;
and Other (7.7%), when the first argument is a complex
Smalltalk expression, such as a method call. Unsafe calls in
applications make up 18.67% of the total (Table 3), while
unsafe calls in the System category make up 12.91% of all
field updates, for reasons similar to the uses of object refer-
ence updates. The following pattern is extremely common
(664 or 46% of all calls, with 398 calls in Applications):

MyClass basicNew instVarAt: idx1 put: value1 ;
instVarAt: idx2 put: value2;

...
instVarAt: idxN put: valueN.

This code snippet creates a new object and initializes all
its fields with predetermined values. Smalltalk provides the
storeString method, which serializes the object in the form
of a valid Smalltalk expression that, when executed, recre-
ates the object in the same state; it is a relatively common
practice to save objects as executable expressions that way.

Message Sending (6,048 calls, 5,623 unsafe, 2,874 in
Apps).

Safe
Variable

Other
0% 23% 45% 68%

All
Apps
non Apps

Figure 7: Safe/unsafe usages of message sending.

The most used dynamic feature accounts for 42,63% of all
occurrences. Unfortunately, most of these usages (92,97%)
are unsafe (Figure 7). This is not surprising: there is little
value in calling a method reflexively if the message name is
constant. Two thirds of all calls use as argument a local
variable, and more complex Smalltalk expressions are used
in one fourth of cases.

Table 3 indicates that almost half of the message send-
ing feature occurrences (47.62%) are unsafe calls inside App
projects. Tool projects follow with a quarter of all occur-
rences (26.57%); a possible explanation for that large over-
representation is that tools often feature a UI, for which
reflexive message sending is commonly used in Smalltalk—
an example being the Morphic UI framework. The rest

is split between the other project categories in the follow-
ing, descending order: System (nearly 9.79%, also over-
represented), Tests (5.92%) and Language-extensions (3.17%).

Interpretation.

• Supporting message sending is a priority: it consti-
tutes more than 40% of dynamic feature usages; 60%
of projects use it; nearly 93% of uses are unsafe. How-
ever, supporting message sending efficiently may be
challenging. The state-of-the-art solution of Bodden
et al. mixes enhanced static analysis with dynamic
analysis to provide sufficient coverage [2].

• The other two behavioral features—Object reference
and field updates—are used infrequently. System projects
on the other hand do use them pervasively.

• Object field updates are 60% safe, due to their usage
as a serialization mechanism. In addition, unsafe calls
could be tractable by a gradual type system [15]. Ref-
erence updates are much more challenging to support.

5.4 Structural Reflection

Class Removal (385 calls, 361 unsafe, 42 in Apps).

self
super

Variable
Other

0% 20% 40% 60% 80%

All Apps
non Apps

Figure 8: Safe/unsafe usages of class deletion.

Class removal is one of the lesser-used features. According
to Figure 8, safe usages are in the minority (6.24%); calls
with a local variable as receiver make 80% of the calls; more
complex calls make the rest. It is also obvious that unsafe
usages in applications are also a minority (10.91% of usages
according to Table 3), whereas System projects have the
same number of usages. Tests provide the overwhelming
majority of unsafe usages with 62.34%. This behavior ties
up with the heavy usage by tests of dynamic class creation.
A common pattern in tests (208 instances, more than 80%),
is to create a new class, run tests on it, and then delete it.

Superclass Update (114 calls, 105 unsafe, 48 in Apps).

Safe

Unsafe

0% 23% 47% 70% 93%

All
Apps
non Apps

Figure 9: Safe/unsafe usages of superclass updates.

This feature is the least used with just 114 occurrences,
0.80% of all dynamic feature occurrences. As shown in Fig-
ure 9, safe calls account for 7.89% while 42.11% are unsafe
calls inside App projects; Tools and Tests are also heavy
users, with 18.22 and 17.54% respectively. Since tests often
build classes to run test code on, it stands to reason that
they would also need to specify their superclasses.

Method Compilation (2,296 calls, 918 unsafe, 419 in
Apps).

Safe
Variable

Other
0% 20% 40% 60%

All
Apps
non Apps

Figure 10: Safe/unsafe uses of method compilation.

Method compilation is the third-most used feature, with
nearly 2,300 of the 14,184 calls. A majority of the usages
(60%) are statically known strings, and are thus safe (Fig-
ure 10). Of the rest, 17% hold the source code in a variable,
while 23% are more complex expressions— i.e. a string con-
catenation, which represents 40% of complex expressions.

There is no clear distribution of unsafe method compila-
tion among categories. Applications feature a bit less than
half of the usages (18.25%), and are hence under-represented;
other categories fluctuate between 3.22 and 7.10% (Table 3).

In addition, we manually classified the safe method com-
pilations that are known statically in trivial methods (re-
turning a constant or a simple expression), getter/setter
(returning/setting an instance variable), and arbitrary code.
We found that the vast majority (75.91%) of the methods
compiled were trivial in nature, while getter and setters con-
stituted 7.55%, with the remaining 16.55% being arbitrary.
Examples of methods classified as “trivial” follow:

ClassA>>one
↑ 1.

ClassB>>equals: other
↑ self = other.

ClassC>>newObject
↑ self class new.

Note that the code base we analyze contains 652,990 meth-
ods, so we can hypothesize that the number of statically
defined methods vastly outnumbers the quantity of dynami-
cally defined ones, but we cannot be sure of that fact without
performing dynamic analysis.

Method Removal (437 calls, 266 unsafe, 58 in Apps).
Method removals are used relatively sparsely, and unsafe

uses are much more prevalent in Tools, Systems, Language
extensions, and Tests than in Apps, as shown in Figure 11.
Safe calls make up 39.13% of all the calls; unsafe calls with
a variable 40.73%; complex unsafe calls 20.14%. We see in
Table 3 that Apps are clearly under-represented: both Tools
and System projects have more usages than Apps, while Test
projects have nearly as much as Apps (10.3 vs. 13.27%).

Safe
Variable

Other
0% 21% 41%

All
Apps
non Apps

Figure 11: Safe/unsafe uses of method removal.

Interpretation.

• Besides method compilation, structural reflective fea-
tures are rarely used. In addition, the vast majority
of application projects does not use these features. It
appears that support for superclass update, class re-
moval, and method removal does not need to be as
urgent/efficient than other features.

• Class removal seems to be quite correlated with class
creation, which is expected. Table 3 shows that all
project categories show similar numbers of usages (with
Apps creating more classes than they remove); the to-
tal number of calls are also similar (385 vs 420).

• Changes to methods (method compilation and removal)
have a large proportion of safe usages (40 to 60%).
However, the significant proportion of unsafe uses means
that support for method compilation cannot be ne-
glected in the design of static analysis tools.

6. DISCUSSION
We discuss whether each of the assumptions we mentioned

in the introduction is valid or not, and provide guidelines for
each feature we studied.

1. Dynamic features are rarely used. Dynamic fea-
tures were found to be used in a small minority of
methods—1.28%. Assumption 1 is validated.

2. Dynamic features are used in specific kinds of
projects. We conjectured that core system librairies,
development tools, language extensions, and tests, were
the main users of dynamic features. If these categories
use on average much more dynamic features than reg-
ular applications (the 17% of projects make 53.17% of
unsafe usages), the latter still makes up nearly half of
all the unsafe usages. Assumption 2 is invalidated.

3. Some usages of dynamic features are statically
tractable. We found that 3 features (instance cre-
ation, object field updates, and method compilation)
have a majority of safe uses. Two others (class creation
and method removal) have a strong minority (more
than 30%) of safe uses. Assumption 3 is validated.

4. The most used dynamic features are supported
by more static languages. The two most used fea-
tures, reflective message sending and instance creation,
are supported by the Java reflection API, validating
assumption 4.

Even if dynamic features are used in a minority of meth-
ods (1.28%, validating assumption 1), they cannot be safely
ignored: a large number of projects make use of some of
the features in a potentially unsafe manner. We review each
feature on a case-by-case basis, and in order of importance.

• Message sending is the most used feature overall,
with 60% of projects using it and a majority of unsafe
uses. Supporting it is both challenging and critical.

• Instance creation is used by 40% of the projects, but
can be considered mostly safe if a notion of self types
is introduced, as in Strongtalk [3].

• Method compilation is used in an unsafe manner
by a little over 20% of the projects, and as such also
needs improved support.

• Object field updates is the last of the feature that
has a somewhat widespread usage. A majority of us-
ages are safe however.

• Object reference updates are somewhat problem-
atic, as nearly 45% of the usages are in applications.
Supporting such a dynamic feature is also a challenge.

• Class creation and removal are heavily used in
tests, but class creation is used in applications as well.

• Method removal has a large number of safe uses,
and is primarily used outside applications.

• Superclass updates is a somewhat exotic features
whose usages are few and far between.

As a rule of thumb, we conclude that message sending,
method compilation, instance creation, object reference and
field updates, and to a lesser degree also class creation, are
particularly important dynamic features that static analysis
tools, type systems, and compiler optimizations should sup-
port well. Of less importance are class and method removals
and superclass update since they are rarely used in an un-
safe manner in application projects, nonetheless language
designers cannot afford to completely ignore them.

7. THREATS TO VALIDITY
Construct Validity. We classified the projects in cate-
gories in order to investigate whether certain categories use
dynamic features more often. We may have misclassified
some of the projects. However, three of the authors indi-
vidually classified all projects and discussed classification
differences before coming to an agreement for each project.

Our list of methods triggering dynamic features is not
exhaustive. Our criteria for inclusion of a given method
was whether it was “standard”, i.e. part of the Smalltalk-80
standard API. Non-standard methods triggering dynamic
features were left out, however their usage is limited (for
instance, there are 64 usages of the ClassBuilder class instead
of the subclass: selector, and only 7 in regular applications).

We only use static analysis as it would be impractical to
perform dynamic analysis on 1,000 projects. However, we
cannot be sure whether the code triggering dynamic features
is actually executed; some dynamic feature usage could on
the other hand be and executed very often. In addition,
Smalltalk features a system dictionary—a dictionary bind-
ings names to classes—that we did not include in the study,
as it would require dynamic analysis to differentiate this spe-
cific dictionary from the other dictionaries used in the code.

External Validity. Our study features only open-source
projects for obvious accessibility reasons, hence we cannot
generalize the results to industrial projects.

We only consider projects that are found in the Squeak-
source repository. Squeaksource is the de facto standard
source code repository for Squeak and Pharo developers,
however, we cannot be sure of how much the results gen-
eralize to Smalltalk code outside of Squeaksource, such as
Smalltalk code produced by VisualWorks users.

Our corpus of analyzed projects only contains Smalltalk
source code. Our hypothesis is that Smalltalk code, with
the ease of use of its reflective features, constitute an upper
bound on the usage of dynamic features. This assumption
needs to be checked empirically by replicating this study on
large ecosystems in other programming languages.

We selected the top 1,000 projects based on their size to fil-
ter out projects that might be toy or experimental projects.
We believe such filtering increases the representativeness of
our results, however, this might also impose a threat.

Internal Validity. To distinguish pure application projects
from other type of projects, we categorized projects in cate-
gories. Results show that application projects use dynamic
features less often than most other project categories. How-
ever, code categorized in the cross-cutting category Tests
for instance might use more or less dynamic features de-
pending on the project the test code belongs to rather than
on the fact that it is test code. There might be other rea-
sons why projects categorized as applications use dynamic
features less often than explained by the categorization in
application and non-application code.

8. CONCLUSIONS
We performed an empirical study of the usage of dy-

namic features in the 1,000 largest Smalltalk projects in the
Squeaksource source code repository, accounting for more
than 4 million lines of code.

We assessed the veracity of four high-level assumptions
on the usage of dynamic features, invalidating one. We also
analyzed in details the usage of each of feature, producing a
list of features ordered by the importance of their support for
applications. Some are critical (message sending, instance
creation, method compilation); others less so.

To increase confidence in our results, we plan to (1) per-
form dynamic analysis on a subset of the projects, in order
to study whether and how often the dynamic features are
used in running programs, and (2) to replicate the study in
other programming languages such as Java.

9. REFERENCES
[1] Bodden, E., Sewe, A., Sinschek, J., Mezini, M.,

Oueslati, H.: Taming reflection (extended version):
Static analysis in the presence of reflection and custom
class loaders. Tech. rep., TU Darmstadt (2010)

[2] Bodden, E., Sewe, A., Sinschek, J., Mezini, M.,
Oueslati, H.: Taming reflection: Aiding static analysis
in the presence of reflection and custom class loaders.
In: ICSE ’11: Proceedings of the 33rd ACM/IEEE
International Conference on Software Engineering
(2011), to appear.

[3] Bracha, G., Griswold, D.: Strongtalk: Typechecking
Smalltalk in a production environment. In: OOPSLA
’93: Proceedings of the 8th International Conference
on Object-Oriented Programming Systems, Languages
and Applications. pp. 215–230 (1993)

[4] Goldberg, A., Robson, D.: Smalltalk-80: The
Language and its Implementation. Addison-Wesley
(1983)

[5] Grechanik, M., McMillan, C., DeFerrari, L., Comi, M.,
Crespi, S., Poshyvanyk, D., Fu, C., Xie, Q., Ghezzi,
C.: An empirical investigation into a large-scale java
open source code repository. In: ESEM ’10:
Proceedings of the 4th International Symposium on
Empirical Software Engineering and Measurement. pp.
11:1–11:10 (2010)

[6] Holkner, A., Harland, J.: Evaluating the dynamic
behaviour of python applications. In: ACSC ’09:
Proceedings of the 32nd Australasian Computer
Science Conference. pp. 17–25 (2009)

[7] Knuth, D.E.: An empirical study of fortran programs.
Software: Practice and Experience 1(2), 105–133
(1971)

[8] Lungu, M., Robbes, R., Lanza, M.: Recovering
inter-project dependencies in software ecosystems. In:
ASE’10: Proceedings of the 25th IEEE/ACM
international conference on Automated Software
Engineering. pp. 309–312. ASE ’10 (2010)

[9] Malayeri, D., Aldrich, J.: Is structural subtyping
useful? an empirical study. In: ESOP ’09: Proceedings
of the 18th European Symposium on Programming
Languages and Systems. pp. 95–111 (2009)

[10] Melton, H., Tempero, E.D.: An empirical study of
cycles among classes in java. Empirical Software
Engineering 12(4), 389–415 (2007)

[11] Muschevici, R., Potanin, A., Tempero, E.D., Noble, J.:
Multiple dispatch in practice. In: OOPSLA ’08:
Proceedings of the 23rd ACM International
Conference on Object-Oriented Programming,
Systems, Languages, and Applications. pp. 563–582
(2008)

[12] Richards, G., Lebresne, S., Burg, B., Vitek, J.: An
analysis of the dynamic behavior of javascript
programs. In: PLDI ’10: Proceedings of the 31st ACM
conference on Programming Language Design and
Implementation. pp. 1–12 (2010)

[13] Richards, G., Lebresne, S., Burg, B., Vitek, J.: The
eval that men do: A large-scale study of the use of
eval in javascript applications. Tech. rep., Purdue
University (2010)

[14] Rysselberghe, F.V., Demeyer, S.: Studying versioning
information to understand inheritance hierarchy
changes. In: MSR ’07: Proceedings of the 4th
International Workshop on Mining Software
Repositories. p. 16 (2007)

[15] Siek, J., Taha, W.: Gradual typing for objects. In:
ECOOP ’07: Proceedings of the 21st European
Conference on Object Oriented Programming. pp.
2–27 (2007)

[16] Tempero, E.D.: How fields are used in java: An
empirical study. In: ASWEC ’09: Proceedings of the
20th Australian Software Engineering Conference. pp.
91–100 (2009)

[17] Tempero, E.D., Noble, J., Melton, H.: How do java
programs use inheritance? an empirical study of
inheritance in java software. In: ECOOP ’08:
Proceedings of the 22nd European Conference on
Object-Oriented Programming. pp. 667–691 (2008)

