
DoodleDebug, Objects Should Sketch Themselves For
Code Understanding

Niko Schwarz
University of Bern

ABSTRACT
Developers override toString() and printOn: methods to
allow objects to display themselves. This is done to track
object state while debugging. Although very popular, the
technique breaks down when displaying complex, multi-di-
mensional objects. We propose an approach in which objects
have two-dimensional visualizations at various levels of gran-
ularity. This makes it easier to compose visualizations from
object parts, and enables “semantic zooming” of object visu-
alizations while debugging. We have carried out an empiri-
cal study to understand how printOn: methods are used in
practice, and we are developing DoodleDebug, a framework
to support visualizable objects.

1. INTRODUCTION
In a survey on software visualization among 111 researchers

in software maintenance, reengineering and reverse engineer-
ing, 40 % of the researchers found software visualization ab-
solutely necessary for their work [9]. However, when 31 de-
velopers were observed, each for 70 minutes while perform-
ing software maintenance tasks, not a single one of them
is reported to have used any kind of visualization whatso-
ever [7]. At the very least, current visualizations haven’t be-
come an integral part of the professional developer’s toolkit,
as Reiss [12] laments. On the other hand, the use of textually
visualizing objects via the toString (in Java) or printOn:

(in Smalltalk) method and equivalent facilities in other lan-
guages, is widespread.

We attempt to explain the popularity of the printOn:

method in Smalltalk. We present the results from looking
at 2145 open source projects, of which 590 overwrote the
printOn: method.

A downside of the printOn: method is that it makes it
hard to compose visualizations of objects. We outline our
idea of DoodleDebug, our vision of a library that improves
on the printOn: method by making it easy for developers
to specify how their objects can be shown as 2-dimensional
drawings. To delve deeper into an object’s representation,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

we suggest using semantic zooming [14].
In section 2, we present the results of looking at 590 soft-

ware repositories that use the printOn: method for object
visualization. In section 3, we attempt to explain the success
of this way of visualizing objects, and collect requirements
that any improvement would have to meet. In section 4, we
outline our proposed improvement over merely textually vi-
sualizing objects. In section 5, we list the related work and
in section 6, we conclude.

2. CURRENT TEXTUAL VISUALIZATION
The textual visualization provided by the printOn: method

is used in two sets of circumstances—in print statements to
the transcript, or as a shortcut when viewing objects in a de-
bugger, reducing the need to delve too deep into the object
graph.

To get a feeling for how this feature is used, we down-
loaded all 2711 projects from the Squeaksource open source
software repository1. Of these, we were able to extract the
latest sources of 2145 of these repositories. The remaining
repositories were either empty, or unreadable (some of the
zip files holding the sources appear to be damaged).

Of the 2145 repositories that we analyzed, 590 overwrite
the printOn: method, amounting to 28 % of all projects.
In total, we found 2688 overwritten printOn: methods. We
then extracted some basic properties from those 2688 over-
written printOn: methods, to get a feeling for what they
were used for. We used a mix of scripts and manual inspec-
tion.

The average method length we observed was 7.1 lines,
although a number of these methods seemed to call private
methods in the same class to help with textually visualizing
the class’s objects.

Of the 590 printOn: methods,

• 44 already print a two-dimensional structure of them-
selves as ASCII graphics, separating the output into
several lines which contain key-value pairs, or even tab-
ular information2. Examples include classes that model
matrices and addresses.

• 137 used parentheses to mark their contained instance
variables. However, not all instance had to be printed.
Also, we saw extra measures to ensure the brevity of
every string’s length.

1http://squeaksource.com
2We obtained this number by automatically selecting meth-
ods that print newlines, and then manually inspecting those.
Other results were obtained similarly.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Bern Open Repository and Information System (BORIS)

https://core.ac.uk/display/33038477?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

• 219 called the implementation of printOn: in their su-
per class, which usually just prints the class name.

• 233 directly print their own class names.

• 452, or 77 % of all printOn: methods, included their
class name. This suggests that the dominant and most
important kind of information of interest about an ob-
ject is its class, present in most instances.

From the study on the usage of printOn:, we learned that
developers value concise textual descriptions (because of the
care to only have short textual descriptions). And they value
cheap to produce textual descriptions (since the lines of code
were comparatively short).

3. ADVANTAGES OF SUMMARIZING OB-
JECTS IN TEXT

Especially in a programming environment like Smalltalk,
which usually features a perfectly workable inspector, it is
interesting to ask why textual visualization is still so popu-
lar. While visualizing an object as a short string of text does
not use much of what is available to software visualization,
it still reaps a number of benefits commonly attributed to
more advanced software visualizations: it makes use of the
pattern recognition abilities of the human brain, and can
summarize a wide array of information in a concise format.

To help us shape DoobleDebug, we try to find the informa-
tion needs that cause developers to overwrite the printOn:

method. Ko et al. [5] observed 17 developers over the course
of two months for a total of 25 work hours, noting the infor-
mation needs that arose. He lists a total of 21 information
needs, of which the following three can be attended to by
overwriting the printOn: method:

1. What code caused this program state?

2. What does the failure look like?

3. In what situations does this failure occur?

“Program state” is explicit in the first question, and implicit
in the other two. This leads us, combined with our experi-
ence, to the following hypothesis:
The strengths of overwriting the printOn: method as a tex-
tual visualization technique are the following:

1. Great numbers of snapshots of an object can be printed,
so that the repeated printing of the same object vi-
sualizes the course of a program. The changes from
one printout to the next can show the developer which
stages occurred during computation. If the developer is
not sure at which point in time an object may be inter-
esting to inspect, he can print the object at all possible
times, and then quickly scan over the transcript to find
the stage that he is interested in.

2. Textual visualization integrates well into current IDEs.
Default debuggers and inspectors are aware of the printOn:
method and use it to visualize objects. To share a visu-
alization, the developer only has to share code, which
is part of his usual process. The overall effort for cre-
ating and sharing a visualization is therefore small.

3. Textual printouts can be easily exchanged, save for en-
coding problems. They are easy to compare, and can be
used in bug reports, questions on community boards,
or even in unit tests to assert correct behavior.

To understand these upsides, consider not overwriting the
printOn: method and solely relying on a debugger that can
only show basic data types. Since debugging race conditions
without the help of print statements seems nearly unthink-
able, print statements for debugging race conditions might
have to become considerably longer, because they have to
print all basic data types at every point of interest. If a de-
veloper is unsure at which point in time a certain line of code
is interesting, setting a breakpoint would require him to pro-
ceed manually until the relevant moment is found. Once it
is found, he has nothing to compare it to, since all previ-
ous moments have already passed without being displayed
in the debugger. Unable to show the history of an object,
current debuggers are unable to explain how these states
came about. This is even though some research projects aim
at making the past more accessible to the developer. [10, 6,
11]. However, none of these approaches provides what de-
velopers now get from printing to the transcript: a quick
overview over a possibly large number of machine states,
together with an easy way to compare those side-by-side.

4. DOODLEDEBUG
In this section, we propose an approach to satisfying the

information needs attended to by the printOn: method, at a
similarly low cost to the user, but with improved usefulness.
Our approach is informed by the success of the printOn:

feature and tries to add to it, without losing its upsides. We
discuss directions in which this research could continue.

We intend to allow every object to overwrite the drawOn:,
and drawSmallOn: methods, specifying its own 2D drawing,
in a simple DSL. A default implementation is provided which
simply inserts the current string representation.

When overwriting the drawOn: method, the user can therein
choose from a set of simple data layouts, or draw directly
on the canvas. However, the canvas must be quite unlike
current graphical canvases, which are pixel-accurate. As we
have found above, developers value visualizations that are
cheap to produce. It is therefore imperative to allow the
user to express his visualization wish in the simplest, most
abstract terms, while still generating useful visualizations.
The vocabulary of the canvas must thus be very coarse, as
in: “draw i as an external resource”, where i is an instance
variable. It is then up to the canvas to choose a location and
visual indication for external resources.

Since objects may be composed of other objects, they may
need to draw these when drawing themselves. To summarize
objects to what is needed from an abstract level, we provide
the drawSmallOn: method, which can draw a shorter sum-
mary, which can then be zoomed in on by clicking it. This
kind of zooming is called semantic zooming [14].

4.1 Example
Let us suppose that the developer is constructing a num-

ber of affine transformations, which are then concatenated.
Since the concatenated affine transformations are not as the
developer expects, he wishes to see all of them, at various
stages of the course of the program. In the Pharo Smalltalk
IDE, he could now choose to open an inspector for the array
of affine transformations in an appropriate line of code in his
program. This would open a plethora of inspector windows
with no clear ordering, making it impossible to use them for
tracing the program state. As an alternative, he could set a
break point in the same line, looking at the array of affine

transformations on each step. Or, he could write the array
to the transcript on every iteration. Since an affine transfor-
mation is best described as a 2×3 matrix, and since it seems
the least awkward option to use the transcript, he may there
find output as seen in Figure 1.

an Array()

an Array(

MatrixTransform2x3(

2.0 0.0 0.0

0.0 2.0 0.0

))

an Array(

MatrixTransform2x3(

2.0 0.0 0.0

0.0 2.0 0.0

) MatrixTransform2x3(

0.707107 -0.707107 0.0

0.707107 0.707107 0.0

))

Figure 1: Textual visualization of an array of affine
transformations. They can only be listed vertically.
The affine transformations represent a scale by 2,
followed by a rotation by π/4

The default visualization of arrays and affine transformation
in Pharo Smalltalk shows matrices in their 2-dimensional
structure. However, it cannot show the two matrices next
to each other, since when nesting strings that contain new-
line characters, 2-dimensional structures cannot always be
nested. Instead, they are shown vertically aligned. Thus,
when we print the course of our program by printing three
stages of the construction of the array, as seen in Figure 1,
there is almost no visual clue as to where one step of the pro-
gram ends and the next one starts. Even worse: comparing
states of the program is not easy, because the visualization
does not help us map the individual matrices from state to
state of the program.

In contrast, if we allow matrix objects to visualize them-
selves non-textually, several matrices can be fit on one line.
Our developer could, for similar effort, see the visualization
in Figure 2. In this new visualization, with every program
state being exactly one line, it is visually clear where each
print begins and ends. Since the scaling matrices appear
vertically aligned, we can easily see that from the second to
the third state, the scaling matrix was not changed, but a
rotation matrix was added.

To achieve this result, all we need is the composition of
two simple data layouts. One horizontal layout, so that the
array can print its contents truly horizontally, even if it con-
tains 2-dimensional entries. And a table layout, which dis-
plays nested arrays as tables. We are hopeful that similar
improvements will be cheap for developers in a wide range
of situations.

4.2 Future directions
Having objects that specify their visual layout opens the

path for new research possibilities. Once objects know how

Out[18]= 8<

Out[19]= :
2. 0. 0.
0. 2. 0.
0. 0. 2.

>

Out[20]= :
2. 0. 0.
0. 2. 0.
0. 0. 2.

,
0.707107 -0.707107 0.
0.707107 0.707107 0.

0. 0. 1.
>

Figure 2: If objects defining their own visualiza-
tion are not restricted to text, nesting 2-dimensional
structures becomes possible.

to sketch themselves, we can use the instructions that define
the drawing to determine a raw outline of what matters for
the developer. Using it, we can construct a simplified data
model of an object, which may be helpful for comparing
different versions of that object, so helping understand the
history of a program’s state.

The next step is to make the visualizations more interac-
tive. For example, right-clicking on an object should open its
class, so we can navigate from visualization to code. Drag-
ging an object into a visualization should assign it to the
slot represented by the location where it was dropped.

We have learned in Section 3 that one key advantage of
using printOn: is the easy shareability of the textual out-
put of objects. We intend to use the drawing instructions to
create textual descriptions of the object to be visualized to
improve shareability.

If properly exploited, we believe that the zooming meta-
phor has the potential to get rid of the need for a separate
inspector altogether. If, for example, every doodle is accom-
panied by a list of instance variables at the current zoom
level, then zooming in is just like diving into the object graph
using an inspector, making the ladder superfluous. Some ex-
perimentation will be needed to answer whether doodles can
entirely take over object inspection.

5. RELATED WORK
GNU DDD, the Data Display Debugger [15] uses visual

metaphors to give insight into the state of a program. To
that, LIVE [1] adds metaphors with animations, although
empirical results as to the helpfulness of animation in under-
standing algorithm is mixed [4]. JGRASP [3] and Travis [8]
provide automatic mappings between data and its visualiza-
tion.

Cheng et al. provide the xDIVA tool [2], which provides
a number of mappings from data types to “visualization
metaphors” which render the data. Since data types can
be nested, visualization metaphors can be composed. for
a number of reasons, however, the visualizations are diffi-
cult to specify. First, xDIVA is a separate tool, rather than
being integrated into the IDE, like printOn:. Second, the
visualizations are configured in a graphical interface, rather
than in the code of a class, and thus can not easily be ex-
changed with members of the same team. Third, the visu-
alizations are a great deal more complex than we think is
necessary. The visualization in xDIVA is 3D, allowing for
circling around objects of interests. This complexity likely
increases the complexity of creating new visualizations.

Mathematica [13] ships with some data layouts for ta-
bles, matrices, and curves. However, as Mathematica is not
object-oriented, objects cannot define their own behavior,
and using any but the predefined commands for viewing
data is uncommon. Further, Mathematica does not allow
data layouts to be composed.

6. CONCLUSION
Developers overwrite the printOn: method because they

need to understand what caused a certain program state,
what caused a failure, and what exactly a program failure
looks like. They use textual visualizations because they give
a quick overview over a possibly large number of machine
states, together with an easy way to compare those side-
by-side. Textual visualization of objects helps in using the
debugger and inspector. It simplifies printing program states
to the transcript, as is useful, among other things, for debug-
ging race conditions. Textual visualizations integrate well
into the development processes, are cheap to produce and
allow easy exchange with developers. We thus account for
their tremendous adoption among developers.

We outline DoodleDebug, a suggested research prototype
which allows the developer to better compare program states
than printOn: allows. DoodleDebug sacrifices some of the
easy sharing of program states that strings allowed, in ex-
change for a denser view of information, by allowing the
nesting of 2-dimensional structures. By allowing the user to
zoom into doodles, we hope to receive a new way of explor-
ing the data during the running of his program. We hope to
achieve the same degree of integration into the IDE and the
same cheap production cost as textual visualization tools.

Acknowledgements
We gratefully acknowledge the financial support of the Swiss
National Science Foundation for the project “Synchronizing
Models and Code” (SNF Project No. 200020-131827, Oct.
2010 - Sept. 2012). We also thank CHOOSE, the special in-
terest group for Object-Oriented Systems and Environments
of the Swiss Informatics Society, for its financial contribution
to the presentation of this paper. We thank Adrian Kuhn,
Cedric Reichenbach, Oscar Nierstrasz and Edouard Tavinor
for their input to this paper.

7. REFERENCES
[1] Alistair E. R. Campbell, Geoffrey L. Catto, and

Eric E. Hansen. Language-independent interactive
data visualization. SIGCSE Bull., 35:215–219, January
2003.

[2] Yung P. Cheng, Jih F. Chen, Ming C. Chiu, Nien W.
Lai, and Chien C. Tseng. xDIVA: a debugging
visualization system with composable visualization
metaphors. In Companion to the 23rd ACM SIGPLAN
conference on Object-oriented programming systems
languages and applications, OOPSLA Companion ’08,
pages 807–810, New York, NY, USA, 2008. ACM.

[3] James H. Cross and T. Dean Hendrix. jGRASP: an
integrated development environment with
visualizations for teaching java in CS1, CS2, and
beyond. J. Comput. Small Coll., 23:170–172,
December 2007.

[4] Christopher D. Hundhausen, Sarah A. Douglas, and
John T. Stasko. A Meta-Study of algorithm

visualization effectiveness.

[5] Andrew J. Ko. Information needs in collocated
software development teams. In in International
Conference on Software Engineering (ICSE 2007,
pages 344–353, 2007.

[6] Andrew J. Ko and Brad A. Myers. Debugging
reinvented: asking and answering why and why not
questions about program behavior. In Proceedings of
the 30th international conference on Software
engineering, ICSE ’08, pages 301–310, New York, NY,
USA, 2008. ACM.

[7] Andrew J. Ko, Brad A. Myers, Michael J. Coblenz,
and Htet H. Aung. An exploratory study of how
developers seek, relate, and collect relevant
information during software maintenance tasks. IEEE
Trans. Softw. Eng., 32(12):971–987, December 2006.

[8] J. L. Korn and A. W. Appel. Traversal-based
visualization of data structures. pages 11–18.

[9] Rainer Koschke. Software visualization in software
maintenance, reverse engineering, and re-engineering:
a research survey. J. Softw. Maint. Evol.: Res. Pract.,
15(2):87–109, 2003.

[10] A. Lienhard, S. Ducasse, and T. Girba. Taking an
object-centric view on dynamic information with
object flow analysis. Computer Languages, Systems &
Structures, 35(1):63–79, April 2009.

[11] Frédéric Pluquet, Stefan Langerman, and Roel Wuyts.
Executing code in the past: efficient in-memory object
graph versioning. SIGPLAN Not., 44:391–408,
October 2009.

[12] S. P. Reiss. The paradox of software visualization. In
3rd IEEE International Workshop on Visualizing
Software for Understanding and Analysis, pages 1–5.
IEEE, 2005.

[13] Stephen Wolfram. The Mathematica Book, Fifth
Edition. Wolfram Media, 5th edition, August 2003.

[14] Allison Woodruff, James Landay, and Michael
Stonebraker. Goal-directed zoom. In CHI 98
conference summary on Human factors in computing
systems, CHI ’98, pages 305–306, New York, NY,
USA, 1998. ACM.

[15] Andreas Zeller and Dorothea Lütkehaus. DDD—a free
graphical front-end for UNIX debuggers. SIGPLAN
Not., 31(1):22–27, January 1996.

