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Cell therapies have gained increasing interest and developed in several approaches related to the treatment of damaged myo-
cardium. The results of multiple clinical trials have already been reported, almost exclusively involving the direct injection of stem
cells. It has, however, been postulated that the efficiency of injected cells could possibly be hindered by the mechanical trauma
due to the injection and their low survival in the hostile environment. It has indeed been demonstrated that cell mortality due
to the injection approaches 90%. Major issues still need to be resolved and bed-to-bench followup is paramount to foster clinical
implementations. The tissue engineering approach thus constitutes an attractive alternative since it provides the opportunity to
deliver a large number of cells that are already organized in an extracellular matrix. Recent laboratory reports confirmed the inter-
est of this approach and already encouraged a few groups to investigate it in clinical studies. We discuss current knowledge regard-
ing engineered tissue for myocardial repair or replacement and in particular the recent implementation of nanotechnological
approaches.

1. Introduction

It was long believed that the adult heart does not regenerate.
The recent discovery of cardiac stem cells (CSCs), however,
challenged this dogma [1]. Since then, several populations
of CSCs have been identified and distinguished by means
of their surface markers. In addition, using a fascinating ap-
proach based on the comparison of C14 incorporation before
and after the explosion of the atomic bomb, Bergmann et al.
recently demonstrated that human cardio-myocytes in fact
regenerate at a rate of approximately one percent per year at
the age of 25 and 0.45% at the age of 75 [2].

Beside their possible implication in this regenerative pro-
cess, the exact physiological function of CSCs has not yet
been fully clarified. Their role in pathological situations is
also unclear since, in case of myocardial injury such as after
a myocardial infarction, their potential regenerative capacity
is clearly overwhelmed. Nevertheless, the rapid progress
in understanding myocardial regenerative mechanisms

continues to encourage the scientific and clinical communi-
ties to multiply the laboratory investigations and consider the
value of stem cell therapy in clinical protocols. Depending on
the clinical need and the rationale, transplantation of isolated
cells or implantation of an engineered muscle graft is under
consideration as presented in Figure 1. As illustrated, the
concept for cell-based therapy is thus quite straightforward;
however, its implementation faces numerous challenges.

In this paper we present the important questions that
remain to be investigated to ascertain a successful translation
of current experimental knowledge regarding cell therapy
for myocardial repair/replacement. In particular, we empha-
size the critical importance of favoring a multidisciplinary
approach including biotechnologies, material science, and
nanotechnologies to engineer myocardial tissue.

2. Clinical Trials

Compelling evidence of the beneficial effect of isolated cell
transplantation to the heart including improvement in cardiacs
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Figure 1: Cell therapy approaches for myocardial infarction: cells are isolated from biopsies, expanded, and eventually differentiated in vitro
following specific culture conditions. Conditioned medium containing secreted or lyophilized factors (A) or isolated cells (B) are injected
directly within the myocardium or within the coronaries. Further in vitro process from cultured cells enables the development of structured
engineered muscle tissue with or without contracting properties that can be directly sutured or glued at the surface of the infarct (C).
Functionalized matrix combining biologically active factors and engrafted cells (D) represents a more sophisticated alternative.

contractile function, decrease in left ventricular remodeling,
reduction of the infarct size, and increase in vascular density
was provided by early experimental studies [3]. Conse-
quently, rapid clinical trials testing the safety and efficiency
of cell therapy have been undertaken and are ongoing [4–
6]. However, in a general manner, beneficial effects on
heart function and regeneration observed after cell therapy
in animal models were not always followed by convincing
clinical outcomes [7, 8]. The modest or absent improvement
of heart function has been confirmed in the Cochrane report,
presenting a recent meta-analysis focusing on bone marrow
stem cells transplantation [9]. It has been hypothesized that
the modest or indeed lack of functional improvement may
be the result of poor cell specificity and quality as well
as technical pitfalls during injection. The report concluded
with the following major issue to be investigated: define
the optimal type and the dose of stem cells, the route and
timing of delivery after myocardial infarction, and long-term
outcomes. In addition, mechanisms of action and in parti-
cular the role of injected stem cells in the management of
acute myocardial infarction are of particular relevance to im-
prove treatment efficiency. Furthermore, the possibility that
the injured microenvironment has low ability to permit
cell survival and differentiation has been raised. Indeed,
the rather hostile, hypoxic, stressed and remodeled cardiac
environment as well as the immunologic and inflammatory
milieu related to the patient’s disease is certainly unfavorable
conditions for cell growth and differentiation.

The search for new strategies to overcome drawbacks
from direct cell implantation has resulted in an increased

interest for myocardial tissue engineering. Recent stud-
ies provide convincing experimental short-term outcomes
showing recovery of heart function; our group contributed to
this proof of concept with several types of engineered tissues
investigated for functional recovery including long-term fol-
lowup [10–12]. To date, the first two clinical trials have
been initiated [13, 14]. The first twenty patients with post-
infarction myocardial scar received autologous bone marrow
stem cells either directly injected in and around the infarct
or seeded on a collagen matrix, which was then placed and
sutured on the infarcted area. This pioneer study not only
confirmed the feasibility and safety of the procedure but also
already suggested a benefit in favor of the combination of
cells and matrix. Results of the recently launched second clin-
ical trial, describing the implantation of an engineered con-
struct composed of stacks of myoblast sheets, are pending
[14].

3. Major Challenges: What Research Is Needed
to Make Cell-Based Treatments a Reality?

3.1. In Vivo Investigations. The importance of experimental
settings and in particular large animal models to provide
predictor features for cell therapy applied in human clinical
trials has been emphasized by van der Spoel et al. [15].
The authors performed a meta-analysis for cell therapy on
large animal models of acute and chronic cardiac ischemia.
They determined a short-term 7.5% global ejection function
improvement due to an increased end systolic volume. They
reported a prevalence of mesenchymal stem cells (MSCs),
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a high number of cells, and better outcomes for chronic
ischemia. However, no effect of distinct delivery routes was
examined.

Experimental and preclinical investigations have mostly
been performed in small (rodent) or large (pig) animal mod-
els of heart failure following a myocardial infarction induced
by ligation of the left anterior descending coronary artery
(LAD ligation). Various treatments have been tested and
compared (Figure 1): cells were applied in acute or chronic
phases, cells were injected into the scar or at its periphery,
and tissue constructs were glued or sutured at the surface
of the infarcted area. Typically, morphological and function-
al changes of the treated hearts were followed by repeated
echocardiography or MRI and generally over a 4-week
follow-up period [10, 16, 17]. At the end of this observation
period and before sacrifice, additional invasive investigations
were performed using, for example, a pressure or a con-
ductance microtip catheter to record and analyze comple-
mentary contractile parameters.

These studies allowed assessment of functional out-
comes. Furthermore, increased interest in cell tracking, cell
integration, and survival permitted the development and
optimization of state-of-the-art technologies as described by
Terrovitis et al. [18]. In addition, extensive efforts focusing
on proteomics and high-throughput screening will enable
the discovery of major mechanisms of action and important
factors for myocardial recovery and repair [19].

3.2. Mechanisms of Action. Experimental cell therapy inves-
tigations showed beneficial outcomes including significant
improvement in ventricular function, increased wall thick-
ness, and decreased end diastolic and systolic volumes as
well as neovascularisation of the scar area. However, decrease
of the infarct size suggesting myogenesis is still a matter of
debate and seems to be dependent on the type of cells that
were implanted [20–22].

Several potential hypotheses have been raised to explain
the effects and remain to be further investigated. First, a
girding effect attenuating the adverse remodeling has been
proposed, suggesting prevention of dilatation, modification
of the scar elasticity, and an increase in wall thickness due to a
cluster of cells or implanted tissues. This effect may have a
minor impact as the large number of cells washed out after
injection results in very small clusters of cells that may not
be sufficient to produce the adequate mechanical strength to
prevent remodeling. Furthermore, implantation of an acel-
lular scaffold has little or no effect on cardiac function com-
pared to the implantation of engineered tissues [12]. Second,
the replacement of lost cardiomyocytes by transplanted cells
is a major issue for tissue repair. Only investigations using
neonatal cardiomyocytes and embryonic stem cells could
report the presence of new cardiomyocytes in the periphery
of implanted cells [23]. Although the delivery of embryonic
stem cells or cardiac progenitor cells as committed cells to
cardiac lineage could reinforce muscle contractility after dif-
ferentiation and may contribute to systolic force, myogenesis
is unlikely to explain the positive outcomes observed after cell
therapy using other cell types.

Growing numbers of studies provide evidence that the
beneficial effect of delivered cells is mediated via a paracrine
effect. Cell secretions of cardioprotective, angiogenic, or
stem-cell-recruiting factors are expected to trigger heart re-
generation. A large panel of secreted cytokines and chemoat-
tractants [1] are believed to bring their beneficial effect to
the failing heart and suggest a multifactorial effect on angio-
genesis [24], inhibition of cardiomyocyte apoptosis [25],
antifibrotic effects [26], and mobilization of endogenous
stem cells [1] as well modulation of the inflammatory pro-
cesses [27].

3.3. Cell

3.3.1. Source and Cell Type. Cell types and their potential
for new medical treatment are presented in Tables 1 and 2.
Stem cells represent a promising cell source due to their high
potential for differentiation and expansion capacity.

3.3.2. How Many Cells Are Required? Cell survival and
engraftment in a hostile environment with inflammation,
fibrosis, and hypoxia are a major concern. It has been de-
monstrated that more than 90% of injected cells are lost
within the first minutes following injection. Optimization of
cell retention after injection, engraftment, and survival are of
paramount importance to further define the optimal quanti-
ty of cells to be implanted. So far, to overcome this effect,
large numbers of cells have been injected. Dose effect has
largely been reported [15]. Therefore, the injection of a high
number of cells will require a high expansion capacity of
autologous cells and a massive capacity of expansion if hete-
rologous cells are used. Alternatively, strategies to improve
cell engraftment and survival have been developed and
include preconditioning of the cells prior to transplantation
(heat shock, hypoxia), increased expression of survival
factors, exposition to prosurvival factors, and the implant-
ation of engineered tissue.

3.3.3. Further Aspects to Be Considered. Some cell-specific
drawbacks are listed in Table 2. Clinical availability is one
important feature to take into account in the choice of the cell
source and may limit their relevance in a translational per-
spective. Neonatal cardiomyocytes, for example, have been
widely used in preclinical studies; however, they were not ex-
ploitable for clinical studies due to low accessibility and
ethical concerns. The same concerns applied for embryonic
stem cells and increased research investigations to assess
their teratogenicity must be undertaken before safe clinical
use. Induced pluripotent stem cells (iPSCs) overcome some
major shortcomings such as accessibility, expansion, and
capacity; however, significant improvements to generate
clinical-grade iPSCs are required for clinical translation.

Purification is also an important feature. The selection of
population clones or heterogenous population of adult stem
cells has been investigated; however, it is not yet clear what
type of cell population has the best regenerative capacity.
Furthermore, immunogenicity of the heterologous cell may
limit cell survival. Several lines of research must be carried
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Table 1: Potential cell source.

Source
Definition

Drawbacks
Donor/recipient

Autologous Same individual Not always available (genetic diseases, age)

Allogenic Same species Immunological issues

Xenogenic Different species Ethical issues and rejection

Syngenic or isogenic Genetically identical individuals (clones, inbred) Most appropriate for research with animal model

Origin/differentiation

Primary Tissue or organ/specialized Large expansion needed

Secondary Cell bank Cryopreservation/immunological issues

Embryonic stem cells (iPSCs) Undifferentiated Ethical issues/purification/teratoma

Adult stem cells Commited Selection of type/source

Table 2: Potential cells for new therapeutic treatment.

Candidates Concerns Side effects Mechanism of action Clinical trials
Change in cardiac function

(% EF versus ctrl.)∗

Human embryonic stem cells Ethics purification Teratoma Differentiation/myogenesis FDA approval

Fetal/neonatal cardiac muscle
cells

Ethics accessibility Differentiation/myogenesis ×
Induced pluripotent stem cells Teratoma Differentiation/myogenesis ×
Cardiac stem cells Differentiation/myogenesis � (2009) −0.2; +6.0

Skeletal muscle myoblasts Poor electrocoupling Arrhythmia Paracrine effect � +3; +14

Bone marrow stem cells
Purification/loss of
function with age

Arrhythmia? Paracrine effect � −3.0; +12

Progenitors
Survival and
controlled
differentiation

Paracrine effect � +2.8, +6.3

∗EF: ejection fraction of the treated heart compared to control groups (adapted from Segers and Lee, 2008 [28]).

out to identify the most efficient therapeutic candidate for
patients with cardiovascular diseases.

3.4. When? The development of cardiac infarct following
ischemic injury is rapidly and sequentially associated with
cell death, release of paracrine factors, inflammation with
leucocytes infiltration, the formation of granulation tissue
composed of myofibroblast, macrophage, and collagen,
spreading of the initial injury to adjacent tissue, and finally
fibrosis. The reorganization of the extracellular matrix allows
for compensation of the loss of cardiomyocytes. This remod-
eling will progressively lead to a reduction of cardiac wall
thickness, ventricle dilatation, and more severe heart failure.
The therapeutic target will define the cell therapy strategy.
Therapeutic angiogenesis and/or myogenesis using cell or
tissue transplantation might be promising therapeutic strate-
gies in patients with severe ischemic heart disease or patients
with end-stage heart failure. Alternatively, stimulation of the
regenerative process may preferentially be beneficial for acute
ischemia. Using a rat myocardial infarction model, Hu et al.
[29] provided evidence of better outcomes when MSC were
implanted 1 week after infarction. The authors suggested that
reduced inflammation as well as early time point in tissue
remodeling towards scar formation favors cell engraftment
and angiogenesis.

3.5. Where? Feasibility, safety, and cell retention are the com-
mon features that may drive the choice of the cell delivery.
Different ways to inject the cells have been investigated
in clinical trials, such as intracoronary (IC), intramyocar-
dial (IM), transendocardial, interstitial retrograde coronary
venous (IVR), epicardial, or systemic injection. Hou et al.
[30] quantified the retention rates of peripheral blood mono-
nuclear cells within the swine ischemic heart: IM resulted in
a most efficient delivery mode with 11% of cell retention 1
hour after cell delivery but with a large variability compared
to other techniques. The retention efficiency was confirmed
in a rodent model after injection of cardiosphere-derived
cells [31]. However, the authors also reported that IM injec-
tion can result in cell loss through the needle track and coro-
nary venous vessels. In addition, IM is also known to induce
myocardium injuries at the site of needle insertion. To date,
the optimal delivery route has not been identified. Their
respective advantages and disadvantages are reviewed by Dib
et al. [32].

4. Cell Delivery through Engineered Tissue

The controllable scaffolds and culture conditions made
possible by tissue engineering approaches allow the design of
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an adequate microenvironment that not only permits pre-
conditioning the cells in vitro and provides a differentiation
direction of the tissue before it is implanted for the prepa-
ration of cells prior to their implantation but also would
overcome major drawbacks of isolated cells’ transplantation
related to their survival in inadequate ischemic tissue. In
fact, the matrix of the engineered tissue can be compared
to the ECM in a corresponding natural tissue. Its function
during the tissue engineering process must, however, be
distinguished between the in vitro period (preimplantation
or maturation period), the surgery period (implantation
period), and the in vivo period (postimplantation period).
Regarding the in vitro period, the matrix could be assimilated
to a biocompatible and nontoxic support material for the
cells that are planned to be transplanted. The ideal matri-
ces should thus consist of a two- or a three-dimensional
structure that should favor not only cells’ attachment and
growth but also their further organization and possibly dif-
ferentiation toward a highly ordered formation including in-
tercellular contacts.

Considering the implantation phase, the matrix offers a
significant practical advantage over the direct injection of
cells. For instance, engineered myocardial biografts may be
considered as a bandage that can be easily and rapidly ap-
plied at the surface of the infarcted zone. Conversely, the
traditional application of cell therapy requires multiple injec-
tions to cover a similar zone. The role of the matrix during
the in vivo phase is variable. On one hand, it may represent a
structurally resistant element that can withstand the high and
permanent mechanical stresses observed during the cardiac
contraction/relaxation cycles. A second major role during
this period is its integration within the host tissue and
eventual replacement by a host ECM. For example, recent
data have shown increasing evidence that the matrices may
provide specific signals that will trigger the behavior of the
seeded as well as the host cells.

Various approaches have already demonstrated the possi-
bility of designing myocardial-like structures and are detail-
ed in recent reviews [33–36]. Briefly, one typical method
consists of engineering a construct in vitro by combining a
polymeric or a biological scaffold organized in a 3-dimen-
sional matrix onto which cells will be seeded [20, 37, 38].
An updated list of biomaterials used for the treatment of
myocardial infarction was recently assembled by Rane and
Christman [39]. A second alternative takes advantage of the
self-aggregation of cells when cultured in high density to-
gether with collagen, fibrin, laminin, or fibronectin [40]. In
another recently described technique, the controlled recellu-
larization of a previously decellularized natural matrix was
proposed and showed spectacular results using an entire
rat heart [41]. Bioprinting is also an interesting technology
which essentially uses the inkjet printing principle to pre-
cisely distribute biological material within a culture’s semi-
solid substrate [42]. Finally, an interesting approach that
takes advantage of the temperature-dependent hydrophobic/
hydrophilic properties of the culture dishes consists of creat-
ing monolayered cell sheets to be implanted directly at the
surface of the heart [43]. Amazingly, this can be repeated so
that several sheets may be stacked on top of each other in

order to create a vascularized tissue of up to 1 mm thickness
[44]. As opposed to the first approaches described here, the
cell sheet approach does not involve the transplantation of
an artificial extracellular matrix. Nevertheless, the potential
of matrices may be extended since these structures can be
“functionalized” through the addition of chemical com-
pounds or proteins, which may provide specific signals that
will trigger the behavior of the seeded as well as the host cells.

5. How Nanotechnology Will Help?

In the future, the potential of engineered tissue and in part-
icular the scaffold type as well as better understanding of
biomaterial-cell interactions are of paramount importance
toward successful cardiac regeneration. Initiated with only
a few mandatory factors such as being biocompatible, non-
cytotoxic, and providing a three-dimensional framework for
cells to attach and develop, scaffolds for tissue engineering
have evolved into more and more highly sophisticated and
custom tailored constructs. Incorporating peptides, proteins,
or growth factors renders an inert synthetic scaffold biologi-
cally active [45, 46] and facilitates regulation of cell expres-
sion via material properties and at the site of interest. Sur-
face immobilized growth factors bypass the problems of
rapid diffusion, short blood plasma half-life, and potential
health risk as seen for soluble factors injected into the blood
stream [47, 48]. Focusing on functionalization of cardiac
constructs, four main approaches have been investigated so
far: (I) smart materials, (II) surface modified materials via
adsorption, (III) surface modified materials via covalent im-
mobilization, and (IV) blended materials. Concepts of sub-
strate functionalization are presented in Figure 2.

5.1. Smart Materials. Smart materials are materials that alter
their shape, color, or size in response to an external stimulus.
Such an external stimulus can be a change in temperature,
pH, electrical or magnetic field, light, or naturally occurring
enzymes. In the field of tissue engineering, materials showing
smart behavior are mainly, if not exclusively, restricted to
hydrogels showing thermo- or enzyme-responsive behavior.
As early as the sixties, Wichterle and Lim [49] characterized
a hydrophilic gel for biological use. Although consisting up
to 99% of water, hydrogels sustained their position over the
years and gained increasing interest in tissue engineering and
numerous reviews summarize the concept of bioresponsive
hydrogels for tissue engineering or drug delivery [50–55].
The concepts of stimuli-dependent conformational changes
of polymers have only recently bridged from chemical labo-
ratories and theoretical application to in vitro and in vivo
studies.

5.1.1. Thermosensitive Hydrogels. Thermosensitive hydrogels
are mostly based on poly(N-isopropylacrylamide) (pNI-
PAAm). Upon cooling from 37◦C to 32◦C, the polymer
switches from a hydrophobic to a hydrophilic state. The pre-
vious state allows for cell attachment, whereas the latter one
causes cell sheet release from the substrate. For a detailed des-
cription of the mechanism, see Graziano as well as Baysal
and Karasz [56, 57]. Shimizu et al. [58] cultured neonatal rat
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Figure 2: Schematic illustration of different functionalization prin-
ciples. (I) Smart materials, changing conformation, and exposing
different chemical groups upon temperature change or a change
in enzyme concentration. (II) Surface functionalized materials. A
synthetic scaffold is immersed in a ECM protein solution, allowing
for protein adsortion on the surface. (III) Covalently functionaliz-
ed scaffolds. Functional proteins are coupled to the surface via
EDC/NHS chemistry. (IV) Blend materials, (a) hybrid scaffolds of
various polymers or (b) hybrid scaffolds of polymers and drugs for
controlled release.

cardiomyocytes on temperature-sensitive pNI-PAAm-coated
dishes. Cell sheets were detached and overlaid to construct a
four-layered cardiac graft. Studies of subcutaneous implan-
tation in rats showed constant beating and vascularization
of the construct. Following the same principle, Kubo et al.
[59] cultured neonatal rat cardiomyocytes on pNI-PPAm to
design myocardial tubes of wrapped cell sheets. In a com-
bined study of thermo-sensitive and micropatterned pNI-
PAAm-ECM films, the creation of multilayered oriented con-
structs of cardiomyocytes and C2C12 myoblasts was shown
[60]. These studies demonstrated promising results for the
in vitro preconditioning of cell cultures and, subsequently,
scaffold-free implantation. This concept is one of the first to
reach clinical trials.

5.1.2. Enzyme-Sensitive Hydrogels. Enzyme or more specifi-
cally, matrix metalloproteinase- (MMP-) sensitive hydrogels
always consist of two parts: a MMP-sensitive component

(generally an ECM protein) and a component that controls
changes in (non)covalent interactions (a synthetic poly-
mer) that then cause macroscopic transitions. Excellent
articles by Lutolf et al. [55] and Ulijn [50] describe the under-
lying principles and mechanisms. Most MMP-sensitive hy-
drogels provide sites for disease-specific enzymes that de-
grade the hydrogel, allowing either cell invasion or drug
release and represent the most prominent candidates for ap-
plication in tissue engineering. Indicating the importance of
degradable hydrogels, Shapira et al. [61] conducted a study
of neonatal rat cardiomyocytes on a MMP-sensitive PEGy-
lated fibrinogen hydrogel. A different cell morphology was
induced in MMP-2- and MMP-9-deficient cell cultures com-
pared to control cultures with MMP. Other experimental
studies focused on the functionalization of hydrogels with
cell adhesion rather than MMP-sensitive motives. Yu and co-
workers[62] designed an RGD-modified alginate hydrogel
and could show increased proliferation of human umbilical
vein cord endothelial cells (HUVECs) and increased angio-
genesis in a rat infarct model. Combining cell adhesion mo-
tives, enzyme-sensitive scaffolds and drug release in one con-
struct, Phelps et al. [63] engineered PEG-based bioartifi-
cial hydrogel matrices presenting MMP-degradable sites as
growth factor release system, RGD peptide as cell adhesion
motifs, and VEGF to induce the growth of vasculature in
vivo. They reported that implantation of their construct in-
duced the growth of new vessels into the matrix in vivo and
resulted in significantly increased rate of reperfusion in a rat
limb ischemic model.

5.2. Surface-Modified Materials via Protein Adsorbance.
Surface-modified materials are among the most frequently
functionalized materials. Synthetic, biologically inert poly-
mer scaffolds are rendered bioactive by a coating of naturally
occurring ECM proteins. The manifold techniques and ap-
proaches of hybrid scaffolds of naturally occurring and syn-
thetic polymers are summarized in reviews by Furth et al.
and Rosso et al. and particularly focused on cardiac tissue
engineering, in Chan et al. [64–66]. Interestingly, in a com-
parative study of fibronectin-, collagen-, or laminin-
coated elastomer poly(1,8-octanediol-co-citric acid) (POC),
Hidalgo-Bastida et al. [67] could demonstrate most pro-
moted cell adhesion of HL-1 mouse cardiac muscle cells on
fibronectin-coated substrates. In a completely different study,
C2C12 mouse myoblasts were shown to align and differen-
tiate into myotubes on collagen-coated electrospun scaffolds
of DegraPol [68]. Following the concept of contact guidance,
McDevitt et al. [69] constructed micropatterned laminin
lanes on poly(dimethylsiloxane) (PDMS) substrates to pro-
mote cell alignment of cardiomyocytes. Several years later,
Cimetta et al. [70] produced contractile cardiac myografts on
laminin-coated (microprinted) poly(acrylamide) hydrogels.
Easy setup and high reproducibility made the setup a poten-
tial candidate for application in high-throughput biological
and physiological studies. The straightforward method of
protein adsorbance, however, carries several drawbacks
such as uncontrolled release and unknown conformation of
the protein on the surface. Furthermore, adsorbed protein
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concentration can only be inaccurately controlled. Alterna-
tively, the concept of covalently linked proteins arose.

5.3. Surface-Modified Materials via Covalent Immobilization.
Growth factors play an essential role in tissue engineering,
and ideally, they would not be supplied in a soluble, quickly
degradable form but be active at the site of interest, that is,
at the scaffold surface and in the targeted host tissue. New-
ly developed materials influence the neovascularization pro-
cesses in ischemic tissue since they allow the delivery of vas-
cular endothelial growth factor (VEGF) and basic fibroblast
growth factor (FGF), two main factors that control neo-
angiogenesis. Immobilized VEGF has been confirmed [47,
48, 71] to induce extended signaling and enhanced biologi-
cal activity compared to soluble VEGF, as shown by in-
creased proliferation of endothelial cells (ECs). Shen et al.
[72] furthermore demonstrated increased cell infiltration of
endothelial cells into a VEGF-functionalized scaffold, com-
pared to cell cultures where VEGF is supplied in soluble
form in the medium. In an advanced study, Chiu et al. [73]
covalently immobilized VEGF and angiopoietin-1 (Ang-1)
on a porous collagen scaffold, resulting in enhanced vascu-
larization in a CAM assay and improved tube formation by
endothelial cells. Furthermore, gelatin has been grafted to
air plasma-activated PCL scaffolds via coupling agents such
as 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide and N-
Hydroxysuccinimid (EDC/NHS coupling chemistry). The
modified substrate enhanced spreading and proliferation of
endothelial cells. Additionally, endothelial cells followed the
fibre orientation of gelatin-coated scaffolds as compared to
pure PCL scaffolds where a random cell orientation was
found [74]. Although used in many approaches, immobiliz-
ing proteins or growth factors, via EDC/NHS chemistry,
promote several issues. EDC/NHS coupling generates highly
heterogeneous structures, regarding function and orienta-
tion of the immobilized proteins. Backer et al. [47] develop-
ed a new, site-specific covalent immobilization approach.
A genetically induced N-terminal Cys-tag of VEGF cou-
pled the growth factor to fibronectin. Controlled orienta-
tion was achieved. VEGF receptors were stimulated by im-
mobilized VEGF and are fully capable of signal transduction
pathways. Rather simple chemistry confirmed biological
activity, increased endothelial cell proliferation, and re-
ported that vascularization in a CAM model render VEGF-
functionalized scaffolds a promising substrate for in vivo
vascularization of ischemic myocardium. However, in vivo
studies of functionalized substrates are still in their infancy.
Experimental studies by Banfi and coworkers [75–77] em-
phasized the critical role of microenvironmental VEGF con-
centration. Timing of the expression, concentration gradient,
and interactions with cells are all critical issues that need
to be taken into account when designing VEGF scaffolds.
A critical threshold defines both normal and aberrant angi-
ogenesis. In summary, the spatiotemporal distribution of
VEGF to stimulate the formation of stable new vessels in
a scaffold must be addressed and investigated. Studies on
VEGF release from alginate/chitosan hydrogel were perform-
ed by De laRi Va et al. [78], indicating a first burst effect, fol-
lowed by constant release over 5 weeks. For cardiac implants,

we, however, aim for immobilized factors, stimulating the
regeneration of ischemic tissue over a longer period of time.

In 2003, a clinical study on the safety and efficacy of
intracoronary and intravenous infusion of rhVEGF was con-
ducted [79]. In the so-called VIVA trial (vascular endothelial
growth factor in ischemia for vascular angiogenesis), 178
patients with stable exertional angina were randomized to
receive placebo, low-dose (17 ng kg−1 min−1), and high-dose
(50 ng) rhVEGF by intracoronary infusion, followed by in-
travenous infusion on days 3, 6, and 9. VEGF was safe and
well tolerated; high-dose VEGF resulted in significant im-
provement in angina after 120 days. Despite promising re-
sults, this was only a small trial with a short-term followup.

5.4. Blend Materials and Drug Release. A straightforward
technique that potentially involves all aforementioned con-
cepts of functionalization constitutes the production of
material blends. Following the same rationale of optimizing
the bioactivity of scaffolds, synthetic materials can be blend-
ed with naturally occurring extracellular matrix (ECM) pro-
teins, growth factors, or simply other synthetic materials to
alter mechanical properties. In a straightforward setup, Choi
et al. [80] produced an electrospun substrate of aligned poly-
caprolactone/collagen fibres and could induce skeletal mus-
cle differentiation and myotube formation thereon. Using
a similar scaffold, Tillman et al. [81] confirmed the poten-
tial of polycaprolactone/collagen scaffold for in vitro cell cul-
ture of endothelial progenitor cells; furthermore, the con-
struct was shown to retain its structural integrity over one
month in a rabbit aortoiliac bypass model. The endothe-
lialized substrates resisted blood platelet adherence in the
animal model.

Synthetic or natural polymers can, however, not only be
blended among each other but also drugs serve as essen-
tial supplements in material design for biomedical engineer-
ing. Kraehenbuehl et al. [82] developed a matrix metallo-
proteinase- (MMP-) degradable polyethylene glycol (PEG)
construct with incorporated thymosin β4. Entrapped Tβ4
promoted enhanced endothelial cell survival, cadherine,
and angiopoietin-2 expression and increased MMP-2 and
MMP-9 production. Metalloproteinase production directly
stimulated the hydrogel degradation and Tβ4 release, pro-
viding a controlled drug release system.

Interestingly, Thakur et al. [83] combined two different
drugs in a poly(L-lactic acid) (PLLA) electrospun scaffold.
lidocaine and mupirocin showed different release kinetics
when incorporated into the fibrous mesh. The hybrid scaf-
fold can be employed for wound dressing, where a fast release
of Lidocaine promotes immediate pain relief, whereas a
sustained release of Mupirocin provides a constant antibiotic
function until wound healing. The dual-release profile con-
cept can find wide application in tissue engineering, enabling
scientists to develop spatiotemporal controlled drug release.

5.5. Nanoparticles and Drug Release. Furthermore, nan-
otechnologies offer the possibility to design nanoparticles for
drug delivery with large possibilities for customization of the
particles. In particular, functionalized surfaces allow target-
ing of the particle, and tailored solubility, size, and shape
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present advantages for drug encapsulation and optimized
biodistribution [84]. The nanosized particles are especially
designed for the delivery of drugs with intracellular targets.
For instance, Dvir et al. recently targeted cardiac cells within
the infarcted heart [85]. The authors designed nanoscaled
liposomes, functionalised with an angiotensin II type I (AT1)
receptor-specific peptide sequence. Twenty-four hours after
injection, the particles were found mainly accumulated in the
left ventricle of infarcted mice hearts.

A controlled drug release at the site of interest may be
controlled by enzyme-, pH or temperature-sensitive hydrogel
systems. Wang et al. [86] performed an intramyocardial
administration of bFGF-loaded temperature-sensitive chi-
tosan hydrogel and reported on an attenuated remodeling,
reduced infarct size, and increased arteriole numbers.

Finally, using a multiapproached experimental design,
Ye et al. [87] injected skeletal myoblasts, transfected with a
hypoxia-regulated VEGF plasmid that was encapsulated in
polyethylenimine nanoparticles, into normal and infarcted
hearts. The transfected myoblasts showed an improved cell
survival and induced improved global LV function in a rabbit
model of myocardial infarction.

6. Conclusion

Various strategies for cardiac diseases, including tissue engi-
neering and stem-cell-based therapy, have been investigated
in the past decade. Solving challenges that have arisen is a
pressing objective for cardiac reparative medicine. Neverthe-
less, we can realistically predict that future treatments will
include cell-based therapies. However, so far only short-to
mid-term results have been provided. The long-term evalu-
ation of possible heart recoveries remains to be confirmed,
in particular for engineered tissue using rapidly degradable
scaffolds. Controls of cell matrix interaction, dose, and time
delivery will represent major breakthroughs for refining
treatment and will govern successful clinical applications.
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