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ABSTRACT

Instrumental daily series of temperature are often affected by inhomogeneities. Several methods are

available for their correction at monthly and annual scales, whereas few exist for daily data. Here, an im-

proved version of the higher-order moments (HOM) method, the higher-order moments for autocorrelated

data (HOMAD), is proposed. HOMAD addresses the main weaknesses of HOM, namely, data autocorre-

lation and the subjective choice of regression parameters. Simulated series are used for the comparison of

both methodologies. The results highlight and reveal that HOMAD outperforms HOM for small samples.

Additionally, three daily temperature time series from stations in the easternMediterranean are used to show

the impact of homogenization procedures on trend estimation and the assessment of extremes. HOMAD

provides an improved correction of daily temperature time series and further supports the use of corrected

daily temperature time series prior to climate change assessment.

1. Introduction

The study of extreme events’ nature and statistical

properties in a future climate is of major importance for

impact, adaptation, and mitigation studies. The assess-

ment of extremes, such as heat waves, is a complex task

involving analysis of index time series (e.g., Moberg et al.

2006) and application of tools from extreme value theory

(Coles 2001). The accuracy of this assessment depends on

the use of high-quality daily time series that are not affected

by inhomogeneities (e.g., sudden changes of the mean

and variance) caused by nonclimatic factors (e.g., caused
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by station relocation, instrumentation, or land-use

changes; see alsoAguilar et al. 2003). These break points

can be identified through metadata and/or statistical

methods (e.g.,Alexandersson andMoberg 1997;Caussinus

and Mestre 2004). However, metadata are often in-

complete and/or not available. The correction of the de-

tected break points is generally performed by employing

reference series that are highly correlated with the series

to be homogenized. The correction of daily climate time

series is still at an early stage of research and few ap-

proaches have considered daily temperature data (e.g.,

Vincent et al. 2002; Della-Marta and Wanner 2006, here-

after DW06). DW06 developed a method for adjusting

the mean and higher-order moments (HOM) of daily

time series, which was used to homogenize daily western

European andwesternMediterranean temperature time

series (e.g., Della-Marta et al. 2007; Aguilar et al. 2008).

HOMhas notable advantages compared to other methods

(e.g., Vincent et al. 2002), particularly when highly cor-

related reference temperature series are available. How-

ever, HOM depends on the choice of regression function

parameters and it is affected by data autocorrelation.

The correction of inhomogeneities affecting daily series

is a delicate process. Therefore, it is essential to address

potential sources of uncertainty in the adjustment esti-

mations. On these grounds, we propose an improved

version of HOM, the higher-order moments for auto-

correlated data (HOMAD). In the following sections,

HOMAD is described and evaluated relative to HOM

using simulated series and three selected case studies

(third section). We conclude by presenting the advan-

tages of HOMAD with respect to HOM and providing

applications of the proposed methodology.

2. Method description

Let fYtg with t 5 1, . . . , N be the candidate (i.e., the

series to be adjusted) affected byK break points, located

atftl1 , . . . , tlKg. Focusing on the most recent detected in-

homogeneity, two homogeneous subperiods (HSPs) can

be identified: HSP1 (from tN to t
lK
) and HSP2 (from

t
lK
to t

lK�1
). Let fXtg be a series highly correlated toY (i.e.,

a reference) with a homogeneous period overlapping both

HSP1 and HSP2. HOM is based on a regression model

betweenY andX and the cumulative distribution function

(CDF) estimation in the two HSPs. The former is per-

formed with a LOESS model (Cleveland and Devlin

1988). As explained in DW06, the regression function is

controlled by the smoothing parameter l and the degree

of the local fitted polynomial a. The parameter values

are chosen subjectively, although DW06 provide sug-

gestions for their selection. As for the distribution esti-

mation, the CDFs are fitted applying the theory of L

moments (Hosking 1990), without consideration of data

autocorrelation, and six a priori chosen distributions are

tested. However, daily records present a significant auto-

correlation that influences theCDFestimation.Moreover,

the identification of an appropriate distribution is not

trivial; DW06 apply a Kolmogorov–Smirnov test (Shao

2003) for this task, but they report a similar behavior of

the different distributions.

The residual dependence in the regressionmodel,Y5
g(X) 1 e or Y ; N[g(X), se

2R] (where R and se
2 are

unknown), affects the standard methods for the smooth-

ing parameter choice (Opsomer et al. 2001). Therefore,

a penalized spline smoothing (e.g., Currie and Durban

2002; Durban and Currie 2003) with a restricted maxi-

mum likelihood (REML) smoothing parameter estimate

(Patterson and Thompson 1971; Harville 1977) that

considers data autocorrelation is chosen to replace the

LOESS method. Following Krivobokova and Kauermann

(2007), g(X)5 xb1 Zu, where x and Z have rows Xi 5
(1, xi) andZi5 [(xi2 t1)1, . . . , (xi2 tK)1], respectively.

In the Zi definition, ti are fixed knots and (x)1 5
max(x, 0). The number of knots is not a crucial param-

eter and is calculated by using min(N/4, 40) (Ruppert

2002). The coefficients b and u are estimated with the

penalized likelihood lp(b, u; se
2,R, l) and the smoothing

parameter l is given by minimizing a negative restricted

maximum likelihood function (REML; see the appen-

dix). Since the correlation matrix is usually unknown,

the estimation is performed using a matrix R̂ that is as-

sumed to approximate R. We found satisfactory results

with an autoregressive model of the first order (AR1);

however, the user can modify this setting if a stronger

correlation is evident. It is important to point out that

Krivobokova and Kauermann (2007) proved the robust-

ness of the REML approach against an incorrect specifi-

cation of the matrix. Finally, in order to achieve numerical

stability we have followed the suggestions of Krivobokova

et al. (2008) by implementing the penalized spline.

With regard to the CDF estimation, we address the de-

pendence of data and avoid the constraint of fixed a priori

distributions by applying the nonparametric Parzen–

Rosenblatt estimator with a Gaussian kernel. Assuming

that observations are a realization of identically distrib-

uted random variablesX5 (X1, . . . ,Xn), with a common

distribution function F and probability density function

f, an estimator of the latter is the Parzen–Rosenblatt

kernel density estimator:

f
h
(x)5 n�1�

n

i51
K

h
(X

i
� x),

where Kh(�) 5 h21K(�/h) is the kernel function, that is,

a symmetric density function (e.g., Gaussian) scaled by
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a positive real parameter h called the bandwidth. More-

over, the distribution function is given by

F
h
(x)5

1

n
�
n

i51
H

x�X
i

h

� �
,

where H(x) is defined by
Ð x
�‘K(t) dt. Therefore, the pth

quantile jp is given byF
21(p)5 inffx2<:F(x)$ pg. The

asymptotic behavior of this method was tested under

various assumptions of data dependence. For instance,

Estévez and Vieu (2003) and Wang (2007) studied the

case of long memory processes, while the weakly de-

pendent processes were considered by Bosq (1998). The

outcome of these studies demonstrates that the more

interesting properties of the kernel estimator still hold. In

instances of independence, bandwidth selection is often

made by applying the least squares cross validation

(LSCV). Following the notation of Sköld (2001) and us-

ing the so-called integrated mean square error, the LSCV

bandwidth is defined by hLSCV 5 argminh LSCV(h),

where

LSCV(h)5

ð
f 2h(x) dx� 2n�1�

n

i51
f
(i)
h (Xi

).

In the above equation, f h
(i) is the leave-one-out kernel

density estimator, which is robust against moderate de-

pendence of data (Hart and Vieu 1990). However, as

suggested by Hart and Vieu (1990), in case of depen-

dence some improvements can be achieved by replacing

f h
(i) with the leave-(2p 1 1)-out estimator:

f
(i,p)
h (�)5 n�1

i �
k;jk�ij.p

K
h
[(�) � X

k
],

where ni is the cardinality of the set fk; jk 2 ij . pg.
There is not a rule available for the choice of the p pa-

rameter. Therefore, autoregressive models [AR(p)] are

fitted to the series and compared by using the corrected

Akaike Information Criterion (AIC; Hurvich and Tsai

1989).

Supplementing the estimation steps of the procedure,

HOMAD introduces an additional control on the series.

As highlighted by DW06, the correlation between the

candidate and the reference series is of major impor-

tance and ensures reliable correction. Furthermore,HOM

and HOMAD rely on the stability of the regression func-

tion betweenY andX; in instances where this condition

is not met the entire procedure could be compromised.

In the case of two HSPs (one break point), the fol-

lowing relationships hold: YHSP1 5 f(XHSP1) 1 e and

YHSP2
hom 5 g(XHSP2)1g, where YHSP2

hom is the homoge-

neous series (i.e., not altered by the inhomogeneity) in

the second subperiod. The stability of the regression

function implies that f is equal to g. Since the inhomo-

geneity is unknown, any strong departure from stationarity

of f (Xt)� ~g(Xt) (where ~g is the regression function es-

timated byYHSP2 andX) in the HSPs implies a probable

violation of the stability assumption. Therefore, HOMAD

estimates this difference and tests the presence of a trend,

enabling the user to decide whether a correction of the

candidate series is appropriate or not.

3. Simulation and case studies

To evaluate HOMAD relative to HOM, two sets of

simulations are carried out with an inhomogeneity (i.e.,

a Gaussian random variable with mean equal to 1.3s,

where s refers to the candidate) and standard deviation

equal to one. In the first set, we use simulated series of

DW06, which give (for construction) independent re-

siduals in the regression model (see previous section).

We perform 1000 runs taking 10-yr candidate and ref-

erence daily series and twoHSPs of the same length (i.e.,

a break point at the middle of the candidate series). This

is followed by another 1000 runs using 40-yr daily series.

In the second set of simulations, candidate and reference

series are created following the approach ofWilks (1999),

with a trend term and an autoregressive component. In

this case, the regression model does not have indepen-

dent residuals. As in the first set, 1000 runs are done with

10-yr series and another 1000 are done with 40-yr series.

The results of both simulation sets are presented in

Table 1. The performance of HOM and HOMAD is

similar for the 40-yr runs, whereasHOMADoutperforms

HOM for the 10-yr series. As expected, the two methods

have the same behavior when applied on large samples.

In addition to these simulations, three daily maximum

temperature series—Bozkurt (Turkey), Goztepe/Istanbul

(Turkey), and Corfu (Greece)—are chosen to evaluate

the behavior of HOMAD relative toHOM. These series

are selected according to quality, completeness, and

TABLE 1. Simulation results with DW06 series and the new

simulated series. True denotes the magnitude of the known in-

homogeneity (8C).

DW06 simulated series

10 years; true 5 2.13 40 years; true 5 2.11

HOM HOMAD HOM HOMAD

2.21 6 0.094 2.17 6 0.085 2.10 6 0.046 2.10 6 0.04

New simulated series

10 years; true 5 1.34 40 years; true 5 2.29

HOM HOMAD HOM HOMAD

1.17 6 0.109 1.34 6 0.085 2.30 6 0.042 2.28 6 0.046
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abundance of highly correlated neighboring series for

correction. The inhomogeneities are detected by com-

paring the series with a set of highly correlated time

series and validated by applying to the annual series the

penalized maximal t (PMT) tests (Wang 2008; Wang

et al. 2007) and the test of Caussinus and Mestre (2004)

[for details, see also Kuglitsch et al. (2009)]. For Bozkurt

(daily temperature time series from 1960 to 2006), two

break points are detected in 1976 and 1981, resulting in

three homogeneous subperiods. The series of Goztepe/

Istanbul (daily data from 1930 to 2006) is affected by

two break points in 1984 and 1988. The series of Corfu

is affected by one inhomogeneity in 1989 during the

period 1960–2006. Decile adjustments and smoothed

adjustments for the series are shown in Figs. 1–3 for

each series. Although the adjustments appear similar

(as expected, since HOMAD is based on HOM), they

highlight the different corrections estimated by the two

methods. To determine the potential impact of the dif-

ferent corrections, the mean annual summer (June–

August) series are calculated for all the series (raw and

corrected) and a trend analysis is performed. The re-

sults (Table 2) point out the important effects of the

homogenization procedure on trend estimation. The raw

series of Istanbul has no trend, whereas the HOMAD/

HOM corrected series have a significant positive trend,

with a slope equal to 0.13 6 0.058C decade21 and 0.1 6
0.058Cdecade21, respectively. For the raw series ofBozkurt

and Corfu, the trends have erroneous slope. In Bozkurt

the slope is underestimated whereas in Corfu the slope

is overestimated. An extremes analysis is also performed

on summer daily temperature and a declustered peak

over threshold (dePOT) model (Davison and Smith

1990) is applied to the raw and the HOMAD/HOM

corrected series. The results (Table 3) show that in all

three cases the correction influences the extreme distri-

bution parameters (i.e., shape and scale of the generalized

Pareto distribution) and, therefore, the characterization

of extremes. HOM corrected series consistently have

higher 5-yr and 25-yr return values. However, as shown

in Table 3, the differences between the raw and the

HOMAD/HOM corrected series are minimal, mainly be-

cause of the presence of a finite right end point (the shape

parameters are always negative). It is important to note that

more complex extreme models (e.g., with time-dependent

parameters) could be influenced by homogenization in

FIG. 1. (left) HOMAD and (right) HOM decile adjustments and smoothed adjustments (black solid line) for the

series of Bozkurt (September). The upper plots refer to the inhomogeneity of 1976. The lower plots refer to 1981.
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a higher degree, because (as seen for mean summer

temperature series) the correction influences the trend

estimation. The comparison of raw and corrected time

series, as shown by the case studies, reveals the neces-

sity for homogenization prior to climate change anal-

ysis. The different results from HOMAD and HOM

highlight the importance of using reliable methods to

detect and correct inhomogeneities. The evaluation of

HOMAD relative to HOM reveals the importance of

the potential uncertainties during the homogenization

procedure that are related with data autocorrelation

and the subjective choice of regression parameters (and

of the distributions to be tested).

4. Conclusions

The homogenization procedure is an essential step for

climate change analyses based on observations (e.g., ex-

treme value analysis). We propose a new methodology

(HOMAD), which builds on the method of DW06 by

addressing data autocorrelation and providing an objec-

tive choice of regression parameters. Since the complex-

ity of a real inhomogeneity is not easily reproducible,

the evaluation of correction methods can be performed

in simple situations (e.g., Gaussian random term added

to the series after a certain point). Our simulations show

that HOMAD outperforms HOM when applied to small

samples, whereas the two methods provide similar results

for larger ones. We acknowledge that further investiga-

tion is necessary to address other sources of uncertainty;

however, our results provide valuable information on

HOMAD/HOM behavior and the relevance of auto-

correlation and an objective selection of regression

parameters. Three daily temperature series from the

Mediterranean have been used to compare the perfor-

mance of HOMAD and HOM. Differences between

the adjustments suggested by the twomethods have been

found in all three cases. These differences influence the

outcome of analyses performed on the homogenized series

FIG. 2. (left) HOMAD and (right) HOM decile adjustments and smoothed adjustments (black solid line) for the

series of Gozpete/Istanbul (June). The figure refers to the inhomogeneity of 1984.

FIG. 3. (left) HOMAD and (right) HOM decile adjustments and smoothed adjustments (black solid line) for the

series of Corfu (December).
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(e.g., trend assessment or return levels estimation). Based

on the theoretical improvements and the promising re-

sults of HOMAD, we suggest the application of this

method to future daily temperature homogenization ex-

ercises. Moreover, we encourage the use of HOMAD in

the evaluation efforts of the homogenization methodol-

ogies (e.g., COST Action ES0601 ‘‘Advances in homog-

enization methods of climate series: An integrated

approach—HOME’’, and other national or international

programs). An R-FORTRAN software package is avail-

able for scientific use through the first author.
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APPENDIX

Penalized and Restricted Likelihood Functions

The penalized likelihood function is given by

l
p
(b,u;s2

e,R,l)5�2�1fN log(s2
e)1 logjRj

1 (Y� Cu)TR�1(Y� Cu)s�2
e g

� l2�1s�2
e uTDu, (A1)

whereC5 (X, Z), u5 (bT, uT)T, andD is usually chosen

equal to the IK. The smoothing parameter is obtained

minimizing the negative REML:

�2REML(R, l)5 (N � p) log(ŝ2
e,MM)1 logjV

R,l
j

1 logjXTV�1
R,lXj, (A2)

where p is equal to the dimension of b, ŝ2
e,MM 5

(Y� Xb̂)TV�1
R,l(Y� Xb̂)/(N � p). Moreover, VR,l 5 R1

ZD2ZTl21, and D2 is the generalized inverse of D. For a

complete description the reader is referred to Eilers and

Marx (1996), Currie andDurban (2002), and Krivobokova

and Kauermann (2007).
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——,M.Brunet, J. Sigró, F. S.Rodrigo,Y.L.Rico, andD.R.Alvarez,

2008: Homogenization of Spanish temperature series on a daily

resolution: A step forward towards an analysis of extremes in the

Iberian Peninsula. Proc. Seventh European Conf. on Applied

Climatology, Amsterdam, the Netherlands, European Me-

teor. Soc., A-00-697. [Available online at http://www.emetso-

c.org/annual_meetings/documents/Aguilar_ECAC_2008.pdf.]

Alexandersson, H., and A. Moberg, 1997: Homogenization of

Swedish temperature data. Part I: Homogeneity test for

linear trends. Int. J. Climatol., 17, 25–34.
Bosq, D., 1998: Nonparametric Statistics for Stochastic Processes:

Estimation and Prediction. Springer-Verlag, 232 pp.

Caussinus, H., and O. Mestre, 2004: Detection and correction of

artificial shifts in climate series. Appl. Stat., 53, 405–425.
Cleveland,W. S., and S. J.Devlin, 1988: Locallyweighted regression:

An approach to regression analysis by local fitting. J.Amer. Stat.

Assoc., 83, 596–610.

Coles, S., 2001: An Introduction to Statistical Modeling of Extreme

Values. Springer-Verlag, 224 pp.

Currie, I., andM. Durban, 2002: Flexible smoothing with P-splines:

A unified approach. Stat. Model., 2, 333–349.
Davison, A., and R. Smith, 1990: Model for exceedances over high

thresholds. J. Roy. Stat. Soc., 52B, 393–442.

TABLE 2. Trend estimations for the three case studies. Only the

significant values (8C decade21) are reported.

Time series Raw HOMAD HOM

Corfu 0.20 6 0.08 0.16 6 0.07 0.16 6 0.08

Istanbul — 0.13 6 0.05 0.10 6 0.05

Bozkurt 0.22 6 0.10 0.27 6 0.09 0.26 6 0.10

TABLE 3. Results of the extreme analysis: GPD parameters and

5(25)-yr return levels (values in 8C).

Time series Raw HOMAD HOM

Corfu

Shape 20.11 6 0.079 20.20 6 0.065 20.20 6 0.078

Scale 1.98 6 0.239 2.34 6 0.250 2.47 6 0.301

r5 38.7 6 0.72 38.8 6 0.70 39.1 6 0.70

r25 40.9 6 1.34 40.6 6 1.11 41.1 6 1.12

Istanbul

Shape 20.12 6 0.058 20.15 6 0.058 20.06 6 0.07

Scale 2.25 6 0.207 2.41 6 0.224 2.03 6 0.219

r5 37.1 6 0.72 37.1 6 0.73 37.5 6 0.78

r25 39.4 6 1.28 39.3 6 1.24 40.1 6 1.60

Bozkurt

Shape 20.13 6 0.056 20.10 6 0.062 20.04 6 0.078

Scale 2.99 6 0.267 2.76 6 0.266 2.46 6 0.286

r5 36.8 6 0.90 36.2 6 0.98 36.5 6 1

r25 39.6 6 1.58 39.2 6 1.82 40.0 6 2.15

5330 JOURNAL OF CL IMATE VOLUME 23



Della-Marta, P. M., and H. Wanner, 2006: A method of homoge-

nizing the extremes and mean of daily temperature measure-

ments. J. Climate, 19, 4179–4197.

——, M. R. Haylock, J. Luterbacher, and H. Wanner, 2007: Dou-

bled length of western European summer heat waves since

1880. J.Geophys. Res., 112,D15103, doi:10.1029/2007JD008510.

Durban, M., and I. Currie, 2003: A note on P-spline additive models

with correlated errors. Comput. Stat., 18, 251–262.
Eilers, P. H. C., and B. D. Marx, 1996: Flexible smoothing with

B-splines and penalties. Stat. Sci., 11, 89–121.
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