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SUMMARY

The objective of this study was to characterize empirically the association between vaccination

coverage and the size and occurrence of measles epidemics in Germany. In order to achieve this

we analysed data routinely collected by the Robert Koch Institute, which comprise the weekly

number of reported measles cases at all ages as well as estimates of vaccination coverage at the

average age of entry into the school system. Coverage levels within each federal state of Germany

are incorporated into a multivariate time-series model for infectious disease counts, which

captures occasional outbreaks by means of an autoregressive component. The observed incidence

pattern of measles for all ages is best described by using the log proportion of unvaccinated

school starters in the autoregressive component of the model.
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INTRODUCTION

Measles is a highly contagious disease and still an

important health concern [1]. Numerous efforts such

as routine childhood vaccination programmes or

the WHO measles elimination plan have significantly

reduced the incidence of measles in Europe. The epi-

demic pattern has changed from a roughly biennial

cycle to an irregular sequence of outbreaks [2].

However, disease has not been eradicated. The inci-

dence of measles varies widely, with large outbreaks

in Romania, Germany, UK, Switzerland and Italy

in 2006 and 2007, whereas in other countries such as

Finland, Slovakia and Hungary almost no cases were

reported [1]. Since most measles cases were un-

vaccinated or incompletely vaccinated, the differences

in incidence are likely to be due to differences in the

success of national vaccination programmes [1, 2].

For instance, there have been several outbreaks in

some of the 16 federal states of Germany in recent

years [3–6]. Detailed investigations of selected out-

breaks showed that most cases occurred in un-

vaccinated individuals [4].

National surveillance systems such as that at the

Robert Koch Institute (RKI), Germany, typically

provide weekly time-series of counts stratified by for

example, region, age or sex. Accordingly, statistical

methods for the analysis of multivariate time-series

of counts are needed. It is of public health interest

to investigate empirically the relationship between

vaccination coverage and the occurrence and size of

measles epidemics using such data.
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Cummings et al. [7] used a linear model to analyse

the sum of measles cases over 5 years in several pro-

vinces of Cameroon, including vaccination coverage

among other covariates. However, the time-series

aspect was not considered. Multivariate time-series

methods for counts of infectious diseases have only

recently been developed and applied to epidemiologi-

cal data. However, these models are not able to cope

with occasional large outbreaks. For instance, Frank

et al. [8] investigated the association between human

infection with Shiga toxin-producing Escherichia coli

(STEC) and cattle density based on German notifi-

cation data. A Bayesian Poisson regression model was

used to analyse the weekly number of cases in each

age group and district of Germany. The model ac-

counted for temporal and seasonal trends, spatial

variation and cattle density as explanatory factors.

No large STEC gastroenteritis outbreaks occurred in

the time period considered. Hens et al. [9] modelled

the yearly, age-stratified incidence of hepatitis B in

Bulgaria using a log-additive Poisson model, where

age and time were modelled as non-parametric func-

tions. The impact of vaccination was taken into

account by including indicators for various immuniz-

ation programmes as covariates. The log-additive

Poisson model chosen was justified since the data

contained no outbreaks.

If there are outbreaks in the data, a more realistic

formulation for (multivariate) time-series of infec-

tious disease counts has been suggested by Held et al.

[10]. The model decomposes the disease incidence into

two additive components. One component represents

an autoregression on past counts which allows for

temporal dependence beyond regular patterns, i.e.

epidemic behaviour. The other component accounts

for regular, endemic behaviour. However, this method

did not consider the inclusion of covariates.

The aim of this paper is to investigate the as-

sociation between vaccination coverage and the size

and occurrence of measles epidemics. We first de-

scribe the data about measles incidence [11] and

vaccination coverage [12] in Germany obtained from

the RKI. The approach of Held et al. [10] is extended

to allow for the inclusion of covariates and applied

to the measles data using vaccination coverage

as an explanatory variable. Different formulations

of the proposed model are compared based on

Akaike’s Information Criterion (AIC [13]). A simu-

lation study is performed in order to further investi-

gate the ability of AIC to identify the underlying true

model.

DATA

Measles incidence

In Germany, introduction of the measles vaccine had

reduced the incidence of measles to a historical low of

0.2 cases/100 000 inhabitants in 2004 [3], before the

disease re-emerged due to outbreaks in a few regions.

We used measles surveillance data from Germany for

the years 2005–2007, which contain weekly counts

of cases for all ages in all 16 federal states reported to

the RKI [11]. Figure 1 shows the notified measles

cases in the years 2005–2007 for six selected federal

states to illustrate the different incidence patterns.

Large outbreaks occurred in Hesse and Bavaria in

2005 [3], in North Rhine-Westphalia in 2006 [4] and

in North Rhine-Westphalia and Bavaria in 2007 [5].

The majority of cases (y80%) occurred in children

and adolescents. About 12% occurred in infants aged

<2 years. This pattern was very similar in all three

years considered. A brief summary of the number

of reported cases in each state is shown in Table 1

together with population numbers at 31 December

2006 obtained from the Federal Statistical Office of

Germany [14].

Measles-mumps-rubella (MMR) vaccination

Coverage levels of the combined MMR vaccine were

derived from vaccination cards presented at medical

examinations, which are conducted by local health

authorities at school entry [12]. Records include in-

formation about receipt of the first and second doses

of MMR, but no information about dates or age of

the child at vaccination. Age at school entry ranges

between states from 4 to 7 years [15], therefore the

information collected typically refers to vaccinations

received 3–5 years previously [16].

The estimated coverage data do not include any

information from children who did not present a

vaccination card on the day of the medical examin-

ation (5–13% of children attending the school entry

examination in different states). This is likely to

overestimate true coverage, because the vaccination

status of children with vaccination cards is generally

more complete than in those without a card [4, 17].

However, there are no national data about the degree

of overestimation. We made an assumption, which

was used in a previous German study [18], that

for each dose, the percentage of children without a

vaccination card, ‘non-card holders ’ was half that

of ‘card holders ’. We applied this adjustment to all
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analyses and conducted a sensitivity analysis to

examine the robustness of the assumption.

Coverage levels for both the first and the second

dose were higher in the new, re-established states in

East Germany (Brandenburg, Mecklenburg-Western

Pomerania, Saxony, Saxony-Anhalt, Thuringia) than

in West Germany (Table 1). This might reflect

continuing adherence to different childhood vacci-

nation policies before re-unification [15, 19]. Immuniz-

ation is voluntary in Germany now, but it was

mandatory in the former German Democratic Re-

public.

METHODS

To investigate a possible association between the oc-

currence of measles epidemics and MMR vaccination

coverage, we first examined the correlation between

the number of observed cases in a region and region-

specific vaccination coverage. One possibility is to

apply the variance-stabilizing transformation for

Poisson counts [20], i.e. taking the square root

of cases, before estimating the empirical correlation

coefficient which might improve the goodness of the

corresponding confidence intervals. An alternative

approach, based on a Poisson regression model

[21, 22], assumes that the sum of cases in region

i, aggregated over all three years, has mean

mi=exp(a+bxi), (1)

where xi denotes the coverage in state i. For example,

to adjust for regionally varying population numbers,

the right hand side of equation (1) can be multiplied

by an offset ni. Conclusions about the effect b of the

covariate xi in equation (1) remain the same when

considering the weekly number of cases instead of

the sum of cases, assuming that the weekly counts are

independent. However, a multivariate time-series

analysis of counts is able to incorporate autocorre-

lation and provides many more possibilities compared

to the analysis of temporally aggregated data.

In the following, yi,t denotes the number of cases

of a specific disease in a defined geographical region

i=1, …, I at time t=1, …, T. A fundamental as-

sumption of a Poisson regression model is that the

response variables yi,t are independent given the co-

variates. Thus the above model is not suited for the

analysis of the measles data as the weekly counts

are clearly dependent. Regular temporal dependence

can easily be accounted for by including covariates

for long-term or seasonal trends in the model. For

instance, seasonal variation can be modelled para-

metrically using a superposition of harmonic waves

[10, 23] or non-parametrically [9, 24]. However, such
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Fig. 1. Number of weekly measles cases in selected German federal states for the years 2005–2007. Note that the y-axis is not

the same for all states.
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a model may still not adequately capture occasional

outbreaks typical for infectious diseases.

A natural way to incorporate temporal dependence

beyond seasonal variation is to consider the number

of past cases as additional explanatory variables in the

model. Held et al. [10] suggest a Poisson regression

model with an identity link, where the (conditional)

mean mi,t of yi,t is additively decomposed into two

parts

mi, t=lyi, tx1+ni, t: (2)

The first part with conditional rate lyi,tx1 is called the

‘epidemic ’ component and the second part with rate

ni,t the ‘endemic ’ component. The former component

captures occasional (epidemic) outbreaks whereas the

latter describes regular (endemic) patterns.

To include region-specific covariate information,

we allow the autoregressive parameter l in equation

(2) to vary across regions, i.e. we switch notation from

l to li and model li as a function of these covariates.

Furthermore, covariates can also be considered in the

other component ni,t. Note that the conditional mean

mi,t needs to be non-negative. This can be ensured by

modelling both li and ni,t on a log-scale.

Our first model (type A) assumes that the cover-

age levels in all states, xi, enter into the epidemic

component and the model is given by

log(li)=b0+b1xi, (3)

log(vi, t)=a0+{c sin(2pt=f )+d cos(2pt=f )}+log(ni),

(4)

where b0 is an intercept and b1 quantifies the influence

of vaccination coverage. The parameter a0 denotes

the intercept of the endemic component and the offset

log(ni) represents population fractions, computed

from Table 1. The terms in curly brackets in equation

(4) are used to model seasonal variation. The number

of data points per season is denoted by f. For in-

stance, for a season of 1 year and weekly data f=52.

For ease of interpretation, the seasonal terms can be

written equivalently as a sine wave with amplitude A

describing the magnitude, and phase difference Q de-

scribing the onset of the seasonal pattern [23]. In the

second model, the term b1xi is omitted in equation (3)

and the coverage levels xi are included instead in the

endemic component with coefficient a1. Altogether,

the model (type B) is given by

log(li)=b0 , (5)

log(vi, t)=a0+a1xi+{c sin(2pt=f )+d cos(2pt=f )}

+log(ni): (6)

Table 1. Measles cases and estimated vaccination coverage in the 16 federal states of Germany

State Population

Measles cases Coverage (%)
Presented
cards (%)Max. Sum 1st dose 2nd dose

Baden-Württemberg (BW) 10 738 753 12 162 93.7 78.7 92.1
Bavaria (BY) 12 492 658 47 606 91.7 75.7 93.4
Bremen (HB) 663 979 1 4 94.6 76.9 86.9

Hamburg (HH) 1 754 182 3 29 93.9 84.0 91.7
Hesse (HE) 6 075 359 34 336 94.8 81.2 92.4
Lower Saxony (NI) 7 982 685 12 144 95.4 81.6 91.2
North Rhine-Westphalia (NW) 18 028 745 165 2036 95.2 81.6 88.5

Rhineland-Palatinate (RP) 4 052 860 9 85 94.9 80.8 91.4
Saarland (SL) 1 043 167 0 0 95.2 85.6 91.1
Schleswig-Holstein (SH) 2 834 254 8 89 94.7 83.6 89.8

Berlin (BE) 3 404 037 8 104 93.8 83.6 91.9
Brandenburg (BB) 2 547 772 2 18 97.1 89.8 93.5
Mecklenburg-Western Pomerania (MV) 1 693 754 1 4 97.5 91.6 92.1

Saxony (SN) 4 249 774 2 18 97.3 85.0 93.9
Saxony-Anhalt (ST) 2 441 787 2 12 97.7 89.8 92.6
Thuringia (TH) 2 311 140 3 8 97.4 88.3 94.6

Population estimated at 31 December 2006; maximum and total number of weekly measles cases from week 1, 2005 to week

52, 2007; coverage at school entry for the first and second dose of MMR vaccine in 2006 estimated from children presenting
vaccination cards at school entry examinations ; percentage of children with a vaccination card.
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To investigate the impact of the explanatory variable,

we also consider a model of type C, given by equa-

tions (4) and (5), where no covariate is included.

Additionally, a standard log-linear Poisson regression

model without the autoregressive component is fitted

(model D).

For the model of type A we use the log proportion

of unvaccinated school starters as explanatory variable

xi in equation (3) in accordance with the mass action

principle [25]. This principle assumes that the rate of

disease spread is proportional to the product of the

density of susceptibles (unvaccinated school starters)

multiplied by the density of infected individuals

(reported cases). Taking the logarithm of the pro-

portion of unvaccinated school starters produces the

multiplicative relation (model A0). Similarly, the log

proportion of all school starters who received at most

one dose of MMR vaccine is used as an explanatory

variable. We used the same covariates in the model of

type B.

Maximum likelihood (ML) estimates of parameters

and standard errors (S.E.) are obtained by numerically

maximizing the respective Poisson log-likelihood.

Standard software for linear Poisson regression can-

not be used because of the nonlinearity of the par-

ameters. Therefore, the quasi-Newton BFGS method

implemented in the R [26] function optim is used for

optimization. The fitting procedure and the measles

data are integrated in the R package surveillance

([27] ; http://surveillance.r-forge.r-project.org). Note

that models involving more than one covariate, time-

varying covariates or additional seasonal terms at

higher frequencies [28] can also be fitted with this

function in surveillance.

The models investigated in the Results section are

compared based on the model choice AIC criterion.

We were particularly interested in the ability of AIC

to distinguish between the model types A and B. In

order to investigate this we conducted a simulation

study (see Appendix).

RESULTS

The sum of cases over the years 2005–2007 in each

state is negatively correlated with coverage for both

the first and second dose of MMR vaccine (Table 2).

Absolute correlation increases slightly when taking

the square root of cases. However, the statistical evi-

dence for correlation is weak, since the upper 95%

confidence limits are always positive.

We describe here an analysis of the multivariate

time-series of counts to further investigate the measles

incidence patterns. The generation time [25] for

measles, i.e. the average time between the onset of

symptoms in one case and the onset of symptoms in

a second case directly infected by the first, is about

10 days [25, 29]. We therefore aggregate measles

cases in successive bi-weekly periods to better reflect

this characteristic time-scale [30, 31]. AIC is used as a

model choice criterion. The simulation study, dis-

cussed in detail in the Appendix, showed that this

criterion is suitable for the comparison of the different

model formulations.

The results of the analysis of the bi-weekly ag-

gregated measles data are summarized in Table 3. All

considered models contain an overall intercept a0,

a seasonal term and population fractions ni as offset.

The last two models in the table contain no cov-

ariates. When including only an intercept in the

epidemic component (model C), the fit improves

substantially compared to a model without auto-

regression (model D). The ML estimate of l=exp(b0)

is quite high, l̂l=0.85 (S.E.=0.02), which indicates a

strong dependence on the number of counts at the

previous time point after adjustment for seasonal ef-

fects. Consequently, the use of a Poisson regression

model (without autoregression) seems inappropriate

for these data. Indeed, the series of deviance residuals

obtained from model D showed considerable auto-

correlation compared with model C, which showed

almost no autocorrelation.

Table 2. Estimated Pearson’s correlation coefficient, r, with 95% confidence

intervals

Adjusted vaccination coverage

1st dose 2nd dose

r 95% CI r 95% CI

Sum of cases x0.34 x0.71 to 0.19 x0.34 x0.72 to 0.19
Square root of sum of cases x0.44 x0.77 to 0.07 x0.48 x0.79 to 0.02
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In the next step, we investigated the impact of the

inclusion of vaccination coverage in either the epi-

demic or endemic component compared to model C.

Inclusion of the log proportion of unvaccinated

school starters in the epidemic component (model A0)

leads to a considerably better fit.

The effect of the covariate b1 in model A0 is clearly

significant (P<0.0001). Note that the estimated

coefficients in the endemic component remain similar

as in model C while the autoregressive parameter now

varies across states. Inclusion of the covariate into the

endemic component (model B0) also improves the fit

compared to model C but is worse compared to model

A0 according to AIC.

The above conclusions also hold when including

the log proportion of school starters with at most one

dose of MMR vaccine (models A1, B1). However, the

model fit is considerably worse in terms of AIC. All

results in Table 3 are based on the assumption that

the coverage levels of the non-card holders are half

those of card holders (adjustment factor 0.5). We tried

several adjustment factors to investigate the robust-

ness of our results. The ranking of the models ac-

cording to AIC does not change for an adjustment

factor <0.6. With regard to AIC an adjustment fac-

tor of 0.2 yields the best fit.

Figure 2 shows the estimated parameters li and

corresponding 95% confidence intervals for models

Table 3. Analysis of bi-weekly aggregated measles data

Model log(L) p AIC

Epidemic component Endemic component

b0 (S.E.) b1 (S.E.) a0 (S.E.) a1 (S.E.) A (S.E.) Q (S.E.)

Log proportion of unvaccinated school starters

A0 x1778.1 5 3566.1 3.01 (0.52) 1.38 (0.23) 1.78 (0.06) — 0.66 (0.08) x0.10 (0.12)
B0 x1783.4 5 3576.8 x0.17 (0.02) — 5.43 (0.69) 1.52 (0.29) 0.73 (0.09) x0.10 (0.39)

Log proportion of school starters who received at most 1 dose of MMR vaccine

A1 x1787.1 5 3584.1 1.34 (0.31) 1.02 (0.21) 1.76 (0.06) — 0.65 (0.08) x0.08 (0.13)
B1 x1790.7 5 3591.4 x0.17 (0.02) — 3.59 (0.45) 1.17 (0.29) 0.71 (0.09) x0.09 (0.41)

No covariates

C x1799.4 4 3606.8 x0.16 (0.02) — 1.76 (0.06) — 0.66 (0.08) x0.06 (0.12)
D x5213.9 3 10433.8 — — 3.25 (0.03) — 1.65 (0.04) x0.52 (0.02)

The log-likelihood is denoted by log(L) ; p is the number of parameters and Akaike’s Information Criterion
(AIC)=x2log(L)+2p ; lower AIC values indicate better fit. The parameters b0 and a0 denote intercepts ; b1 and a1 denote the
effect of the covariate ; A and Q denote the amplitude and onset of the seasonal pattern. The standard error is denoted by S.E.

0·0

1·2

1·0

0·8

0·6

0·4

0·2

BW BY HB HH HE NI NW RP SL SH BE BB MV SN ST TH

State

λi
^

Fig. 2. Estimated autoregressive parameters l̂li and corresponding 95% confidence intervals for models A0 ($) and A1 (r).

For comparison, the horizontal line denotes the estimated parameter l̂l for model C without covariates with the dashed lines
representing the corresponding 95% confidence intervals. For definition of state abbreviations see Table 1.
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A0 and A1 for each state. There is considerable het-

erogeneity across states. The ML estimates for the five

states in East Germany are markedly lower than esti-

mates for the remaining states. Vaccination coverage

is considerably higher in these states. Note that model

A0 which includes the log proportion of unvaccinated

school starters in the epidemic component performs

better in terms of AIC than a model with the original

(untransformed) proportion.

The analysis of the multivariate time-series of

measles surveillance counts showed that there is an

association between vaccination coverage and the

occurrence and size of measles epidemics within

states, with model A0 fitting best. Figure 3 shows the

fitted number of cases, decomposed into endemic and

epidemic components, for this model in three of the

states shown in Figure 1 for illustrative purposes. The

estimated mean is clearly dominated by the epidemic

component.

DISCUSSION

We observed a significant association between esti-

mated vaccination coverage at school entry and the

overall incidence of measles in the federal states

of Germany (Table 3). The inclusion of the log pro-

portion of unvaccinated school starters in the epi-

demic component of the model is the most suitable

formulation to describe the occurrence and size of

measles epidemics. This is plausible since the pro-

portion of unvaccinated school starters acts as a

proxy for the population of susceptibles, and the

number of cases at a future time point depends on the

number of infectious cases in the present as well as on

the number of individuals susceptible to infection.

A strength of the proposed model is the decompo-

sition of the disease incidence into an endemic and

an epidemic component. Compared to a standard log-

linear Poisson regression model our formulation is

able to account for occasional outbreaks by including

an autoregressive component. This is particularly

important for the analysis of highly infectious diseases

such as measles. In addition, information about vac-

cination coverage was included to cope with regional

heterogeneity.

There are some limitations to this study. The RKI

also provides estimates of vaccination coverage at

school entry for children aged 4–7 for the years 2005

and 2007. However, the measles data comprise cases

of all ages. Thus, changes in age-specific vaccination

coverage may lead to shifts in the age distribution of

the number of cases, but it will be impossible to dis-

cern such shifts from age-aggregated surveillance

data. In addition, there is uncertainty about the true

vaccination status, when obtained from school entry

examinations. Hence small changes in coverage levels

in successive years are not expected to be particularly

meaningful. Therefore, we used only data for 2006 as

an approximate measure of the overall immunization

status in each state in all age groups.

We were aware that vaccination coverage was

probably overestimated because vaccination uptake

in school starters who presented vaccination cards is

assumed to be higher [12]. Roughly 10% of school

starters did not present vaccination cards and cover-

age for them is unknown. To assess the sensitivity of
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the assumed coverage for those without cards (0.5

times that of card holders) we considered values

ranging from the same coverage as children who

presented cards (corresponding to 1) to all children

who did not present cards being unvaccinated (cor-

responding to 0). In terms of AIC, model B where the

covariate is included in the endemic component is

not very sensitive with regard to the assumed cover-

age. In contrast, the AIC for model A where the co-

variate is included in the epidemic component changes

considerably. When coverage for non-card holders

is >0.6 times that of card holders, model B is pre-

ferred.

Wichmann et al. [4] investigated a local outbreak

in a school in Duisburg (North Rhine-Westphalia)

in 2006. They estimated that receipt of one dose of

MMR in the 22% without cards was 75% (signifi-

cantly lower than the coverage of 95% in students

with vaccination cards). This corresponds to a cover-

age level for non-card holders around 0.8 times that of

card holders. However, this investigation involved

only one school and no information about uncer-

tainty around the estimated 75% coverage was given.

The results are probably not generalizable to data

at state level in this study. According to AIC, the

measles data in our study are best described assuming

coverage in non-card holders of 0.2 times that of card

holders and using a model in which the proportion

of unvaccinated school starters is incorporated in the

epidemic component of the model.

To investigate the ability of AIC to identify the

correct type of the model, we conducted a simulation

study (Appendix). We used a simple model, com-

parable to the model of type A, where vaccination

coverage influences the epidemic component. The

simulation study showed that AIC identifies the true

underlying model as long as the influence of vacci-

nation coverage is strong or non-existent.

The proposed model approach allows us to

consider infectious disease counts with several

time-varying covariates. If quarterly, age-specific

vaccination coverage was available, it could also be

investigated whether vaccination-related trends in

age-specific incidence [32] are observable using such

notification data. Another interesting aspect would

be to investigate the behaviour of the model where

vaccination coverage is simultaneously included as an

explanatory variable in both components. In this case,

attention should be paid to potential issues related

to multicollinearity or identifiability of parameter

estimates.

In order to apply the proposed model to data at

a finer spatial resolution we would need more detailed

information about vaccination coverage because

there are great regional and local differences leading

to immunization gaps [6, 15]. For example, coverage

levels for one dose of MMR vaccine ranged from

77.5% to 98% in the 77 health districts of Bavaria

at school entry examinations 2005/2006 [33]. At a

finer spatial resolution, it might also be necessary

to account for spatio-temporal dependence, e.g.

due to commuting. This could be done by including

the previous number of cases in adjacent regions in

the epidemic component [10, 23].

Although the data on measles incidence and vacci-

nation coverage have some limitations, clear associ-

ations were observed. The pattern observed in the

reported measles cases for all ages is best described by

including the log proportion of unvaccinated school

starters as an explanatory variable in the auto-

regressive (epidemic) component of the model.

APPENDIX : Simulation study

We investigated whether AIC identifies the correct

structure of the model with a simulation study.

Multivariate time-series of length T=156 (3 years of

weekly data) were simulated based on a model where

the number of cases yi,t in region i at time t is influ-

enced by vaccination coverage as a covariate. Each

Table 4. Population sizes (Ni) and corresponding

vaccination coverage levels (xi) used in the simulation

study

Region State Ni ni xi log(1–xi)

1 Bavaria 12 492 658 0.44 0.90 x2.30
2 Lower Saxony 7 982 685 0.28 0.85 x1.90

3 Saxony 4 249 774 0.15 0.85 x1.90
4 Berlin 3 404 037 0.12 0.80 x1.61

The states used in the simulation study were selected at
random. The population fraction is denoted by ni.

Table 5. Models for the simulation analysis

Model

Epidemic component

log(li)=b0+
Endemic component

log(ni)=log(ni)+a0+

A b1 log(1xxi) —
B — a1 log(1xxi)

C — —
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simulated dataset is analysed with different models

and AIC is calculated.

We assumed that vaccination coverage influences

the epidemic component, which also contains an in-

tercept. The endemic component contains no seasonal

terms, an overall intercept a0 and population frac-

tions ni as offset. Four randomly selected regions are

used where the population sizes Ni are selected from

population data of Germany in 2006 and artificial vac-

cination coverage levels xi are attached (see Table 4).

The coverage levels xi differ between the regions

and have been transformed with log(1 – xi) as in the

measles analysis. The simulation model corresponds

to model A in Table 5 and is similar to model A0 for

the measles data (Table 3).

We chose different values for the yearly incidence c

(10x4, 10x5) and the basic level of the epidemic com-

ponent not influenced by covariates, �ll (0.5, 0.8).

Furthermore, we assumed that vaccination coverage

has either no (b1=0), a small (b1=0.1), or a strong

(b1=0.5) influence. All combinations of these values

give 12 different simulation scenarios. For each of

these scenarios, 1000 datasets have been simulated.

The incidence c and the population size Ni are used to

calculate the mean number of cases for the first week

mi,1 for each region with mi,1=cNi /52. The parameter �ll

is used to calculate the intercept b0 as a basic level

b0=log(�ll)xmean(b1log(1xxi)):

Next, the epidemic component li is calculated as in

model A (Table 5) and used for the simulation. The

endemic component n is calculated with the stationary

mean equation [10]

ni=mi, t
(1x�ll)

ni
=

cNi

52

(1x�ll)
P

i Ni

Ni

=
c

52
(1x�ll)

X
i

Ni

and is the same for all regions. The cases yi,t are

simulated for each region i and point in time t as

follows:

yi, t � Po
nin

1xli

� �
(t=1),

yi, t � Po(liyi, tx1+nin) (t=2, . . . ,T):

For the analysis of each simulated dataset three dif-

ferent models, listed in Table 5, have been considered.

The models differ with regard to the influence of vac-

cination coverage : in the epidemic component, in the

endemic component, or none. Note that the values of

the covariates used in the analysis are the same as in

the simulation.

The results of the analysis are shown in Table 6. In

all simulations where there was no influence of vacci-

nation coverage the true underlying model C resulted

most frequently in the lowest AIC value (i.e. highest

AIC %). When there was a small influence of vacci-

nation coverage in the epidemic component, AIC in

general preferred model C with no influence, followed

by model A with influence in the epidemic compo-

nent. When there was a strong influence, model A is

clearly preferred. In summary, AIC identifies the true

Table 6. Results for the simulation study

Sim

Fixed parameters Average number of cases AIC % of model
True
modelc �ll b1 Reg 1 Reg 2 Reg 3 Reg 4 A B C

1 10x4 0.5 0 3813 2296 1201 1061 10.1 8.8 81.1 C
2 10x4 0.5 0.1 3587 2613 1332 1014 26.1 19.8 54.1 A
3 10x4 0.5 0.5 3232 2294 1259 1246 81.9 18.1 0.0 A

4 10x4 0.8 0 4004 2396 1318 660 10.9 10.6 78.5 C
5 10x4 0.8 0.1 3139 2377 1080 997 48.3 22.0 29.7 A
6 10x4 0.8 0.5 2111 2247 1214 2162 99.3 0.7 0.0 A
7 10x5 0.5 0 364 223 129 96 12.6 12.4 75.0 C

8 10x5 0.5 0.1 376 249 141 98 14.1 11.6 74.3 A
9 10x5 0.5 0.5 305 295 127 132 62.7 12.6 24.7 A
10 10x5 0.8 0 333 256 206 107 13.7 13.8 72.5 C

11 10x5 0.8 0.1 413 258 183 76 20.9 13.6 65.5 A
12 10x5 0.8 0.5 234 146 146 359 87.1 3.9 9.0 A

AIC, Akaike’s Information Criterion.
Parameter values are shown for the simulations (Sim), the mean number of cases for each region (Reg), and how often each

model has the lowest AIC value (AIC % of model).
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underlying model as long as the influence of vacci-

nation coverage is strong or non-existent.
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