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Abstract
Controlling for background demographic effects is important for accurately identifying loci

that have recently undergone positive selection. To date, the effects of demography have

not yet been explicitly considered when identifying loci under selection during dog domesti-

cation. To investigate positive selection on the dog lineage early in the domestication, we

examined patterns of polymorphism in six canid genomes that were previously used to infer

a demographic model of dog domestication. Using an inferred demographic model, we com-

puted false discovery rates (FDR) and identified 349 outlier regions consistent with positive

selection at a low FDR. The signals in the top 100 regions were frequently centered on can-

didate genes related to brain function and behavior, including LHFPL3, CADM2,GRIK3,
SH3GL2,MBP, PDE7B, NTAN1, andGLRA1. These regions contained significant enrich-

ments in behavioral ontology categories. The 3rd top hit, CCRN4L, plays a major role in lipid

metabolism, that is supported by additional metabolism related candidates revealed in our
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scan, including SCP2D1 and PDXC1. Comparing our method to an empirical outlier

approach that does not directly account for demography, we found only modest overlaps

between the two methods, with 60% of empirical outliers having no overlap with our demog-

raphy-based outlier detection approach. Demography-aware approaches have lower-rates

of false discovery. Our top candidates for selection, in addition to expanding the set of neu-

robehavioral candidate genes, include genes related to lipid metabolism, suggesting a die-

tary target of selection that was important during the period when proto-dogs hunted and

fed alongside hunter-gatherers.

Author Summary

Identification of the genomic regions under selection during dog domestication is
extremely challenging because the demographic fluctuations associated with domestica-
tion can produce signals in polymorphism data that mimic those imposed by selective
sweeps. We perform the first analysis of selection on the dog lineage that explicitly incor-
porates a demographic model, that by controlling for the rate of false discovery, more
robustly identifies targets of selection. To do so, we conduct a selection scan using three
wolf genomes representing the putative centers of dog domestication, two basal dog breeds
(Basenji and Dingo), and a golden jackal as outgroup, for which we previously inferred a
demographic model. We find that our demographically informed analyses filters out
many signals that would be otherwise classified as putative selection signals under an
empirical outlier approach. We identify 68 regions of the genome that have likely experi-
enced positive selection. Besides identifying a number of new neurobehavioral candidate
genes, our candidate regions contain genes related to lipid metabolism, including
CCRN4L, which is centered in the 3rd ranked region. This suggests a previously unre-
ported locus of dietary adaptation, potentially due to the change in diet composition as
hunting efficiency increased when proto dogs began hunting alongside hunter-gatherers.

Introduction
Identifying regions of the genome that have undergone recent positive selection is central to
understanding the causes of evolutionary diversification. Nevertheless, developing efficient and
statistically robust methods for distinguishing genomic regions under selection from the neu-
tral background expectation remains extremely challenging, particularly under complex, non-
equilibrium demographic scenarios. The rapid rise in frequency of a new favorable allele typi-
cally leads to a reduced diversity in flanking regions as linked neutral polymorphism accompa-
nies the adaptive substitution in a phenomenon known as genetic hitchhiking [1]. Many
methods have been developed to detect such “selective sweep” signatures using genome-wide
polymorphism data [2–4]. However, the distortions of the site-frequency spectrum (SFS) and/
or extended linkage-disequilibrium accompanying episodes of positive selection can be difficult
to distinguish from that produced by neutral processes related to a specific demographic his-
tory. For example, coalescent trees produced by population bottlenecks or founder events may
be indistinguishable from those generated by selection [5,6], and in general, bottlenecks can
generate long haplotypes that mimic those observed in selective sweeps [7]. Furthermore, pop-
ulation subdivision can produce counterintuitive and confounding effects [8,9]. Consequently,
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such demographic heterogeneity contributes to the low power and high false positive rates that
can occur in genome-wide selection when using contemporary approaches [10–12].

The domestication of dogs from gray wolves is relevant to understanding the broader his-
tory of animal domestication and the genetic architecture of rapid phenotypic evolution
[13,14]. As humans migrated out of Africa, they encountered gray wolves, which served as the
founding stock for the domestic dog lineage. Archaeological remains [15–18], analyses of
whole genome sequence data [19], and mitochondrial genomes of ancient and extant canid lin-
eages [20] jointly support a pre-agricultural origin of dogs which was initiated by association
with hunter-gatherers. During this initial interaction, selection for domestication traits was less
intentionally directed by humans than it has been with the recent evolution of breed dogs, and
instead, was predominantly an incidental by-product of human-wolf-prey interactions [21]. It
is likely that dog domestication involved significant genetic changes in response to dietary and
behavioral divergence from a wolf ancestor, and comparisons of brain-specific gene expression
differences between dogs and wolves support the importance of the latter [22].

Identifying the targets of selection responsible for phenotypic divergence between wolves
and dogs is hampered by the demographic complexity of the earliest phases of dog domestica-
tion, during which the ancestral dog lineage experienced at least one severe bottleneck and
admixture with wolves occurred [19]. Such bottlenecks and admixture can bias selection scans
that do not incorporate a demographic model, leading to false positive and negative signals,
depending on the circumstances. Despite these potentially confounding effects, of the several
studies investigating the genetic basis of phenotypic variation among recently formed breeds
and early in domestication [23–28], none have formally modeled demography to generate a
null, neutral expectation for patterns of variation.

Recently, we used coalescent-based analysis of whole genome sequence data from dogs and
wolves to elucidate the complex demographic history underlying the domestication process.
We estimated that domestication entailed a>16-fold reduction in effective population size
(Ne) for dogs, and a weaker, 3-fold reduction in wolves that began shortly after the initial dog-
wolf divergence [19]. By comparison to modern wolves, earlier studies inferred a weaker
domestication bottleneck [28–30], but the ancestral wolf bottleneck had not been previously
known, and thus our results showed a greater loss of variation because dogs descended from a
more variable ancestral wolf population. We also found evidence for considerable post-diver-
gence admixture, not only between dogs and wolves, but also between wolves and golden jack-
als, and between golden jackals and the dog-wolf ancestor [19]. Recent admixture between
dogs and wolves [31], and admixture between wolves and coyotes [32] had been previously
detected, but the extent to which admixture events may obscure dog origins has only recently
been appreciated [18,21,33,34]. This combination of bottlenecks and admixture substantially
complicates efforts to distinguish between neutral processes and natural selection.

Previous investigations of selection on the dog lineage have taken an approach sometimes
referred to as an empirical outlier scan for selection in which putatively selected regions are
identified as outliers falling above some arbitrary value [13,25,27,35]. While this approach will
detect loci under intense selection, controlling the rate of expected false positives is difficult
because the distribution of test statistics under a null demographic model are not taken into
account. Similarly, other recent studies of selection in domestic [36,37] and wild populations
[38] have not accounted for demographic complexity. One difficulty is that a complete demo-
graphic model for large genome studies requires a time-consuming investigation of alternative
scenarios that is computationally intensive.

To investigate positive selection on the dog lineage early in the domestication process and
prior to the recent diversification of breeds, we re-examine patterns of polymorphism at 10
million single-nucleotide variant sites using six previously sequenced canid genomes that were
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used to infer a demographic model of dog domestication [19]. This sample included three
wolves from Israel, Croatia, and China; two divergent dog breeds thought to be basal in the dog
phylogeny, Basenji and Dingo; and a golden jackal [19]. Specifically, we use our previously
inferred demographic model to calibrate a genome-wide scan for signatures of positive selec-
tion on the dog lineage and more confidently identify possible targets of recent positive selec-
tion while controlling for false positives. Although a recent genomic analysis of a wolf fossil has
suggested a slower mutation rate for canids than used in our initial interpretation of our model
[39], the raw parameter estimates from our model are independent of the mutation rate, i.e.
our model explains the neutral distribution of polymorphism across our samples, regardless of
the well-known uncertainty surrounding mutation rates. Finally, we contrast our findings with
a demography-agnostic approach typical of previous studies. Our results expand the catalog of
candidate neurobehavioral and dietary genes involved in domestication and provide candidates
for future functional studies.

Results
By leveraging the dataset of Freedman et al. [19], we were able to compute three summary sta-
tistics that are sensitive to the effects of positive selection in sliding windows across the dog ref-
erence genome [40]. These three statistics are as follows: 1) the difference in nucleotide
diversity between dogs and wolves (Δπ); 2) FST; and 3) the difference between dogs and wolves
in Tajima’s D (Δ TD). After filtering on genome and sample level features, we computed sum-
mary statistics for 195,998 100kb sliding windows incremented in 10kb steps. Considerable
variation was observed in the distribution of the three summary statistics (S1 Fig), and in our
composite-of-multiple-signals statistic, comprised of the product of 1-FDR for those statistics
(CMS1-FDR, see Methods and Materials; Fig 1). We used coalescent simulations based upon our
previously constructed demographic model [19] to evaluate these signals relative to a genome-
wide neutral expectation. Our model was inferred from a set of putatively neutral loci defined
by a stringent set of filters with respect to features such as proximity to genic regions, degree of
conservation, and the presence of segmental duplications. To estimate window-specific false

Fig 1. Distribution of CMS1-FDR statistic calculated in 100kb sliding windows, with a 10kb step.

doi:10.1371/journal.pgen.1005851.g001
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discovery rates (q-values [41] from our empirical data), we conducted 200,000 simulations of
100kb windows with parameters fixed to the mean posterior values inferred for our demo-
graphic model (S12 Table in [19]). After calculating our three summary statistics for the simu-
lated windows, for each statistic in each observed window, we calculated a p-value as the
probability of observing in the simulated windows a value equal to or greater than that in the
observed window. We then used the Benjamini-Hochberg procedure to calculate the probabil-
ity of false discovery given that p-value as a means to correct for multiple comparisons [42].

To contrast the FDR-based findings with those not explicitly incorporating demography, we
also identified outliers using an empirical outlier method. In this approach, we identified out-
lier regions as those comprised of the top 1% of all 100kb regions based on the joint percentiles
of the underlying summary statistics (see Methods for details) which is similar to that used in a
previous assessment of selection in dogs [35]. We collapsed windows into regions using the
same criteria as in our FDR-based method.

Regions under selection
Comparison of our observed data to summary statistics observed in 200,000 simulations of
100kb windows under our previously inferred demographic model indicated a general over-
dispersion of empirical windows relative to simulated ones. While some of this over-dispersion
may be due to heterogeneity in genomic features (e.g. mutation rate) and the collective impact
of various evolutionary processes, there is a clear excess of extreme values falling in the right-
hand tails, outside the distribution of neutrally evolving windows, and consistent with the
action of positive selection (Fig 2). Employing a false discovery rate (FDR) of 0.01 for Δπ, FST,
and Δ TD statistics, we identified 353, 827, and 982 windows, respectively, bearing signals con-
sistent with positive selection (Table 1), for a total of 2081 unique windows. As an alternative
approach, we repeated the procedure using null simulations with parameters drawn from the
joint posterior distribution rather than fixing them at their mean posterior values (see Meth-
ods). The distributions of summary statistics were similar under both approaches (S2 Fig, Pear-
son correlations between FDR estimates between each approach>0.999, P< 2.2 × 10−16, 2558
unique windows identified). To be conservative, our subsequent analyses focus on the more
limited set of 2081 windows found using both approaches.

After joining significant windows that were� 200kb apart, both within and across statistics,
349 regions remained in total (S1 Table). These regions overlapped only partially with those
identified in previous studies of selection in dogs. Specifically, 53 regions from previous studies
were recovered using our approach, and additionally, we detected 296 novel regions.

With the 1% threshold, the empirical outlier approach identified 309 outlier regions. The
overlap between the FDR-based and empirical outlier methods was low: 59% of the loci based
on the FDR-based approach had no overlap with those from the empirical outlier method and
60% of empirical outliers had no overlap with the FDR-based approach (S3 Fig). Two patterns
help to explain the low degree of overlap between the methods. First, looking at each summary
statistic separately, the vast majority of windows in the top 1% of the empirical distribution
have an FDR that would not pass our threshold of 0.01 (S4 Fig). A similar pattern is observed
with the joint percentile statistics in that the vast majority of windows with an empirical joint
percentile in the top 1% have high FDR for individual statistics (S5 Fig, red points), and in
many cases more than one statistic. In both cases such outlier windows would be excluded
using our FDR-based method. These results suggest that, in the absence of a baseline to assess
if signals are consistent with neutral evolution, more than half of outliers in the empirical
approach are not supported by an FDR-based approach, and many may actually be false posi-
tives. Furthermore, at the gene-level, the FDR and empirical outlier methods identify

Demographically-Based Evaluation of Selection in Domestic Dogs

PLOS Genetics | DOI:10.1371/journal.pgen.1005851 March 4, 2016 5 / 23



substantially different sets of genes, with 64% of genes identified in empirical outliers falling
outside of FDR-identified regions. This suggests that inferences without demography might
lead to mistaken functional interpretation of putative selection signals and gene ontology
enrichments (S6 Fig).

Fig 2. Distributions of observed values for selection scan statistics and those computed from neutral
coalescent simulations based up the inferred demographic history [19] for (A) Δπ, (B) FST, and (C) Δ
Tajima’s D. Dashed lines indicate threshold values for FDR� 0.01.

doi:10.1371/journal.pgen.1005851.g002
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To rank the putative regions under selection we used a composite-of-multiple signals
approach [43]. Specifically, we computed window-specific probabilities of false discovery (i.e. a
false inference of deviation from neutrality) for our three summary statistics, and then com-
puted the product of 1-FDR across those statistics to obtain a quantity we label CMS1-FDR. As
the three summary statistics are not independent within windows, this product does not scale
exactly with the weight of evidence for positive selection. Nevertheless, larger values of this sta-
tistic should indicate regions that are less likely to have been evolving neutrally. We used the
maximum CMS1-FDR statistic observed for any outlier window to rank windows and to localize
the selection signal within each region (Fig 3). This statistic localizes the selection signal within
outlier regions more tightly than computing a joint empirical percentile statistic (S7 Fig) which
does not explicitly incorporate the probability of observing any of the constituent statistics
under neutrality. When describing specific candidate genes likely under selection, we employ
an additional filter in order to minimize false positives, by considering only genes within the
top 100 regions.

The joint distribution of summary statistics, joint percentile, and CMS1-FDR for 100kb win-
dow highlights the potential problems of not explicitly incorporating demography into selec-
tion scan for our set of genomes. To visualize these problems, we classify 100kb windows into
four categories. The first category consists of those windows with both a low CMS1-FDR statistic
and high FDR for all three summary statistics, falling completely within neutral expectations
(“low CMS, high FDR” in Fig 4A and 4C). It is possible for a window to have FDR�0.01 for all
three statistics, but still have low enough FDR such that CMS1-FDR is comparable to that
observed in outlier regions. We distinguish high CMS1-FDR windows as those with a value for
this statistic greater or equal to that observed in the top 100 ranked regions (i.e. the minimum
across those 100 regions of the maximum value observed within a region). Thus, the second
category consists of sites with FDR�0.01 across all three summary statistics, but CMS1-FDR
above this threshold (“high CMS, high FDR” in Fig 4A and 4C). In some cases, windows have
FDR�0.01 for at least one summary statistic but there is at least one statistic with high FDR,
such that they are classified as deviating from neutrality while having relatively low CMS1-FDR,
beneath the threshold defined above (“low CMS, low FDR in Fig 4A and 4C). Finally, there are
windows that have consistently low FDR across statistics such that CMS1-FDR is high, owing to
consistent signals of selection across statistics (“high CMS, low FDR in Fig 4A and 4C).

Based upon this classification of windows, we can distinguish different types of evidence for
positive selection (Fig 4A and 4C). In contrast, many of the windows identified by the joint per-
centile method have high FDR for all three statistics (contrast blue points in Fig 4A and 4C
with red points in Fig 4B and 4D), or have high enough FDR for some statistics such that
CMS1-FDR is low (contrast orange points in Fig 4A and 4C with red points in Fig 4B and 4D).
However, by restricting our analysis to the top 100 windows we exclude regions that would be

Table 1. FDR threshold values and window counts for selection scan statistics.

Statistic FDR Windows <FDR Minimum value � FDR threshold P at FDR

Δπ 0.05 519 3.127 1.25 × 10−4

0.01 353 3.332 1.0 × 10−5

FST 0.05 1495 0.481 3.8 × 10−4

0.01 827 0.544 4.0 × 10−5

Δ Tajima’s D 0.05 2329 1.466 6.0 × 10−4

0.01 982 1.763 5.0 × 10−5

doi:10.1371/journal.pgen.1005851.t001
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flagged by such low CMS1-FDR windows that have very low support across all three summary
statistics.

Key functional changes that derive from selection during the domestication process involve
brain function and behavior [27,28,35], diet and metabolism [27], and pigmentation [44]. Con-
sequently, we focus our discussion of the results on genes in regions showing evidence of a
selective sweep with the FDR-based approach that are potentially relevant to these phenotypes.
We only report genes that either overlap with the peak of the CMS1-FDR statistic within an out-
lier region, or those that appear most proximate to that peak signal. As a further filter, we eval-
uated diversity patterns in 500kb intervals surrounding our top 100 outlier regions in a broader
panel of 12 diverse breed dogs sequenced to approximately 40x mean coverage (SRA
PRJNA288568). These sequence data include the dingo and basenji used in Freedman et al.
[19] and genotypes were called for these data in a manner analogous to [19]. Based on these

Fig 3. Z-transformed selection scan statistics, CMS1-FDR, and gene annotations within the (A) top ranked, (B) 3rd ranked, (C) 4th ranked, and (D) 5th

ranked candidate regions for positive selection on the dog lineage.

doi:10.1371/journal.pgen.1005851.g003
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data, we excluded from further consideration any of the top 100 outlier regions where diversity
in the 12-breed panel was greater or equal to that in adjacent non-outlier regions, or where the
outlier region was centered on a localized reduction in diversity comparable to those seen in
adjacent non-outlier intervals. This confirming data resulted in a reduced set of 68 regions.

Fig 4. Biplots of summary statistics for 100kb sliding windows classified by their (A, C) CMS1-FDR and (B, D) joint percentile. CMS1-FDR is classified
according to whether it is� the minimum value observed in the top 100 regions for the maximum of CMS1-FDR comprising the region (i.e. “high CMS”), and
whether at least one summary statistic has an FDR� 0.01 (i.e. low FDR). Thus, windows can be classified as “low CMS, high FDR”, “high CMS, high FDR”,
“low CMS, low FDR”, and “high CMS, low FDR.” The first two categories are consistent with neutral expectations, the third is characterized by very weak
evidence for selection, and the last category includes those windows with the strongest evidence for selection. For more details on these categories, see
Regions under selection in Results.

doi:10.1371/journal.pgen.1005851.g004
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The filtered set of regions overlapped with only 21 previously identified candidate regions, and
contained 47 novel regions (Fig 5 and S8 Fig).

In some cases, for any given outlier region, more than one gene may meet our criteria out-
lined above, such that highlighting particular genes will be ad hoc. Furthermore, it is possible
that focusing on particular genes may exclude un-annotated regulatory elements that alter
expression of downstream genes more distant from the statistical signal of selection. These

Fig 5. Top 25 outlier regions identified using the FDR-basedmethodology usingΔout FST, Δ Tajima’s D and validated with the 12-breed dog
diversity panel (see text), with regions ranked according their respective maximumCMS1-FDR statistic. Columns within “This study” are based on the
sequencing data generated here, while those under “CanMap” are computed from a ~48k SNP data set for a large set of wolves and ancient/basal dog
breeds [35]. Heat map colors reflect upper percentiles of the calculated metrics, with warmer colors indicating higher percentiles. Overlaps with previous
studies: 1, vonHoldt et al. 2010 [35]; 2, Vaysse et al. (2011) [25]; 3, Boyko et al. (2010) [23]; and Axelsson et al. (2013), [27]; with numbers indicating the joint
percentile, FST, FST and region id, respectively for each study.

doi:10.1371/journal.pgen.1005851.g005
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caveats aside, we emphasize that our goal is to provide an updated list of candidate genes that
can be used as a resource on which to base future investigations and functional assays, rather
than to make absolute claims about the importance of any one gene to the domestication pro-
cess. On a region-by-region basis, we document the extent to which the reported gene is the
only one in the putative sweep region or whether it is the gene closest to the peak of the
CMS1-FDR statistic. Fig 5 and S8 Fig, provide a summary of the top regions we present given
these considerations.

Brain function/behavior genes
Eight of the top 20 candidate regions contain genes that have been implicated in neurological
functions in other mammalian species. Our top region is centered on LHFPL3, a member of
the lipoma HMGIC fusion partner family (Fig 3A). Mutations in LHFPL3 have been detected
in malignant glioma patients [45] and associated with autism risk [46]. CADM2 is located
within the 4th most extreme outlier region (Fig 3D) and is a synaptic cell adhesion molecule
whose flanking regions show reduced homozygosity in autism patients [47]. GRIK3 is the only
gene within the 6th region, and overlaps with the peak in the CMS1-FDR signal. It is a glutamate
receptor that has been associated with personality traits such as harm avoidance [48], schizo-
phrenia and bipolar disorder [49], and was a neurobehavioral candidate gene in a selection
scan of domestic cattle [36]. One cautionary note is that within this region our filters exclude
large regions immediately adjacent to it, which raises the possibility that local genomic features
might influence the quality of genotype calls.

SH3GL2 is the only gene proximate to the peak in the CMS1-FDR within the 8th ranked
region and affects synaptic vesicle formation [50]. The peak signal in the 16th ranked region is
closest toMBP, a major constituent of the myelin sheath of oligodendrocytes and Schwann
cells, and shown to be involved in schizophrenia [51]. PDE7B, which is the only gene overlap-
ping the 17th ranked region, is highly expressed in the brain and is involved in striatal functions
related to dopaminergic pathways [52]. Inactivation of NTAN1 (19th region) in mice impairs
spatial memory and leads to compensatory gains in non-spatial learning [53,54]. However, a
RNA polymerase I-specific transcription initiation factor (RRN3) and PDXDC1, a gene with
carboxylase activity associated with diverse phenotypes including renal carcinoma [55] and
sensorineural hearing loss [56] were also either proximate to or overlapping the peak in
CMS1-FDR signal. GLRA1 (the only gene in the 20th region) mediates postsynaptic inhibition in
the central nervous system, and mutations have been associated with startle disease [57]. For
information on the remaining candidate genes with potential connections to behavior see
S1 Text.

Diet/lipid metabolism genes
In our 3rd top outlier, the putative selection signature is most strongly peaked on CCRN4L (Fig
3B). CCRN4L (also known as Nocturnin) is expressed in a circadian fashion and studies in
mice indicate that CCRN4L activates PPAR-γ, a gene that promotes bone adipogensis as
opposed to osteoblast formation and that harbors a known diabetes risk variant in humans
[58]. It also is known to regulate the expression of genes involved in lipogenesis and fatty acid
binding, and knock-out mice are remarkable in being resistant to diet-induced obesity [58–61].
CCRN4L also suppresses IGF1, a well-known activator of bone growth [61] that underlies size
variation amongst dog breeds [62,63]. The direction of these pleiotropic effects of CCR4NL
implies a gain-of-function mutation would promote adipocyte formation, alter lipid metabo-
lism, and suppress bone-growth.

Demographically-Based Evaluation of Selection in Domestic Dogs
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Within our 9th region, a second peak in CMS1-FDR is centered on SCP2D1, a paralog of sterol
carrier protein 2 (SCP2), which is highly expressed in genes involved in lipid metabolism,
thought to function as an intracellular lipid transfer protein, and for which mice knockouts
present altered lipid metabolism [64]. PDXC1, found within the 19th region in addition to
NTAN1 (see above), is associated with plasma phospholipid concentrations and is functionally
connected to the glycerophospholipid and sphingolipid pathways [65]. For information on
additional candidate genes see S1 Text.

Pigmentation candidate genes
The 10th top region was centered on agouti signaling protein (ASIP), a well-known gene influ-
encing pigmentation in mammals [66,67], that has a lesser known role in inhibiting lipolysis
[68]. More recently, evidence is emerging that variation at ASIP can influence social behavior,
most likely through its antagonistic effects on melanocortin receptors or α-melanocortin stim-
ulating hormone [69,70]. Other than a small, predicted gene of unknown function, LYST is the
only gene in the 30th region. LYST not only overlaps the peak CMS1-FDR signal, it overlaps the
majority of the region as well. LYST has been associated with eye color variation in humans
[71], and mutations can produce lighter skin and hair pigmentation [72].

Characterizing dog-specific mutations in outliers
We found 8883 sites (2226 in outlier regions) containing dog-specific mutations that were at
high allele frequency in the 12-breed panel (S9 Fig). Sites fixed between the dog and wolves we
sequenced were enriched in outliers with respect to functional class relative to other genomic
regions (χ2 = 23.06, df = 9, P = 6.1 × 10−3). The relative abundance of fixed differences in
regions within one kb upstream of the transcriptional start site was twice that of the neutral
background. Even so, there were only 12 upstream dog-specific mutations in outlier regions
(S9 Fig), representing only 0.5% of all fixed sites in outlier regions. In contrast, the majority of
dog-fixed sites fall within introns (29.2%) and putative intergenic (68.0%) regions. Only eight
non-synonymous fixed sites were observed in outlier regions, and only five within regions that
showed reduced diversity in the12-breed panel. Ensembl’s Variant Effect Predictor tool pre-
dicted that, for the transcript annotation displaying the maximum effect, all five variants were
mutations of moderate effect. Associated SIFT predictions were as follows: SLK, in 115th

ranked region, low-confidence deleterious; two mutations in ACSBG2, 135th ranked region,
deleterious and tolerated, respectively; NOL8 (uncharacterized protein), 292.5th ranked region,
tolerated; ZNF585B, 292.5th ranked region, tolerated. The one high confidence deleterious pre-
diction based upon SIFT is in ACSBG2, which encodes a protein that is testis and brain-spe-
cific, and may play a role in spermatogenesis [73]. Nevertheless, the low frequency of dog-
specific non-synonymous fixed sites and their occurrence within relatively low ranked outlier
windows suggest coding mutations have been less important in the phenotypic divergence
between dogs and wolves.

Enrichment analyses
For enrichment analyses, we focused on the top 100 regions ranked by CMS1-FDR, minus those
that did not also show reduced diversity in the 12-breed data set. We further filtered the gene
set by only considering all genes that fell within 25kb of the peak in CMS1-FDR within those
regions. Based upon our requirement that FDR was� 10%, we identified three categories that
showed evidence of enrichment in the outlier regions. Notably, we found enrichments for
behavior, locomotory behavior, and adult behavior (Table 2). However, after correction for
multiple tests, none of these categories was significant. While it has been suggested that family-
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wise control of Type I errors is overly conservative for enrichment analyses [74], we consider
our enrichment findings tentative, albeit consistent with the frequent appearance of brain func-
tion/behavior genes in our top hit regions.

Discussion
Extreme population bottlenecks are a hallmark of domestication events, and, in particular,
demographic fluctuations and frequent admixture are regarded as important features of the
evolutionary history of dogs [18,21,33]. We present the first effort to control for potential con-
founding effects of bottlenecks when inferring positive selection on regions of the dog genome,
using a robust demographic model constructed from the same set of samples used to perform
selection scans.

Two categories of genes continually emerged in the top half of our candidate regions list:
those influencing behavior, neuropsychiatric disorders and brain function, and genes related to
metabolism, in particular lipid metabolism. Genes associated with brain function and behavior
are expected, given the dramatic shift from wild to domestic existence. However, genes related
to fat metabolism are more surprising, and complement previous evidence for dietary adapta-
tion occurring during domestication, particularly for increased starch metabolism [27]. Our
3rd ranked region is nocturnin (CCRN4L). Evolution at this locus and at other metabolism
genes (e.g. ADRB2, DIP2C, PLCXD3) may have facilitated shifts in lipid content of early
domestic dog diets as they scavenged more on carcasses left behind by early humans. In fact, as
incipient dogs and early humans began hunting together, prey capture rates may have
increased relative to wild wolves and with it, the amount of lipid consumed by the assisting
protodogs [75,76]. Unique dietary selection pressure may have resulted both from the amount
consumed and the shifting composition of tissues that were available to protodogs after
humans removed the most desirable parts of the carcass.

In addition to genes that may influence behavior and lipid metabolism, our selection scan
also identified regions containing genes known to influence pigmentation. The effects of
domestication on pigmentation are likely complex, potentially involving a combination of
relaxed selection for crypsis, as well as positive selection for particular coat patterns [21]. The
classic experiment selecting for tameness in foxes produced piebald and spotted coat color pat-
terns after only 10 generations [44], suggesting that selection on pigmentation might not be
direct but a by-product of selection on behavioral traits. While one investigation found no
genetic correlation between coat coloration and tameness in rats [77], it is possible that in
other species these two traits might be functionally coupled. As some of the pigmentation
genes in our selection scans influence additional traits, the selection signals we detected may be

Table 2. Enrichment categories discovered from the top 100 regions within 25kb of peak in joint statistic signal, excluding regions that fail to show
reduced diversity in the 12-breed data set and categories with FDR >10%. Input and background total number of genes are 50 and 13,528, respectively.

Category P P-correcteda FDR
(%)

Background in
Term

Fold
Enrichmentb

Genes

Biological process: behavior 0.0014 0.5877 2.1 469 4.6 DOCK2, GLRA1, LYST, ABAT, NTAN1,
MBD2, ASIP, CXCL10

Biological process:
locomotory behavior

0.0030 0.6163 4.4 274 5.9 DOCK2, GLRA1, LYST, ABAT, NTAN1,
CXCL10

Biological process: adult
behavior

0.0037 0.5421 5.4 86 12.6 GLRA1, ABAT, NTAN1, ASIP

a Benjamini-corrected P-value.
b (number of enriched genes in GO term/50)/(background genes in GO term/13528).

doi:10.1371/journal.pgen.1005851.t002
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produced by direct selection on early dog pigmentation phenotypes—the nature of which is
not yet clear—or via other traits influenced by such putative pigmentation genes (e.g. the K
locus, Anderson et al. [31]).

The general trend of reduced fear/aggression in domesticated species raises the possibility
that this behavioral shift may have involved selection on the same set of genes in different
domesticated species [78]. Although a comprehensive analysis of neurobehavioral candidates
across species is beyond the scope of this paper, there are some notably parallelisms. In cats,
both glutamate receptor (GRIA1) and protocadherin (PCDHA1, PCDH4B) genes show evi-
dence of positive selection [79]. Similarly, in our top 10 candidate regions, we observe a gluta-
mate receptor (GRIK3) which was also identified in a selection scan in cattle [36]. In contrast,
top neurobehavioral candidate genes in rats did not overlap with our candidate gene set [80].
These comparisons suggest that positive selection during domestication may act on particular
pathways, such as glutamate receptors, but not necessarily the same genes within those
pathways.

The simultaneous appearance of multiple traits during domestication, labeled the “domesti-
cation syndrome,” raises fundamental questions concerning the genetic architecture of trait
correlations. A recent, as of yet untested, hypothesis is that such correlations are functionally
connected early in development during the processes of stem cell proliferation, differentiation,
and migration [81]. Additionally, our results also suggest that pleiotropy may play a role in
generating trait complexes observed in domestication species. For example, CCRN4L (our 3rd

top hit) directly influences lipid metabolism, but may indirectly reduce body size through sup-
pressive effects on the well-established growth regulator IGF1. As an additional example, varia-
tion at agouti can influence lipid metabolism and behavior as well as pigmentation. While
these examples may point to a mechanism facilitating the domestication syndrome, validation
of potential pleiotropic effects among the candidate genes within our outlier regions will
require analyses of tissue-specific expression and focused functional studies.

Our candidate regions contain a number of potential targets of selection not observed in
recent selection scans, and only overlap to a small degree with regions detected by previous
studies on dogs (Fig 5 and S8 Fig). While the lack of reproducibility of candidate regions
among studies has raised questions concerning their general utility [82], we attribute discor-
dance with prior studies to several factors. First, we employed a two-level filtering scheme on
genotypes that included excluding genotypes intersecting with genome-level features such as
copy number variants, where incorrect read mappings will distort allele frequency estimates
and summary statistics that rely on those estimates. For example, the filters we used exclude
the copy number variable amylase gene that had been reported previously as a crucial target of
selection during dog domestication [27]. In that regard, one caveat of our study is that we only
will detect adaptations based on copy number variants or structural variation through their
effects on linked single nucleotide variation.

Second, methods that explicitly incorporate demographic information will likely produce
different results from those that do not. This is perhaps most clearly demonstrated by the lack
of overlaps between our FDR-based and demography-free joint percentile method (Fig 5), the
latter being characteristic of “empirical” approaches which can potentially miss key targets of
selection and falsely identify others [82].

Third, the set of genomes evaluated can have an effect on which regions are identified. From
our previous demographic analysis [19], we determined that admixture between dogs and
wolves is geographically structured such that the probability of gene flow is higher for wolf and
dog lineages that are geographically proximate. Thus, biased sampling of dogs towards particu-
lar breeds may confound selection scan results in dogs by revealing specific features of regional
dog breeds and wolves. Interestingly, our candidate regions did show some overlaps with an
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empirical outlier approach using SNP chip genotyping data when we restricted our sampling
to so called “ancient” breeds (Fig 5 and S8 Fig). This overlap presumably occurs because our
genomes and the ancient breed panel both retain patterns of polymorphism typical of the earli-
est dogs.

Our model-based assessment of FDR represents the first effort to account for demography
in understanding positive selection during dog domestication. While this should reduce false
positives among our candidate regions, a few caveats are necessary. First, our analysis is based
on a small number of genomes. As a result, our approach should provide sufficient power for
sweeps that have been strong, but partial sweeps that have led to less dramatic changes in dog
allele frequencies will likely be missed. The challenge for future work is to expand the number
of genome sequences analyzed while grounding selection scans with a demographic model that
considers the intricacies of population dynamics and inter-lineage admixture. In particular,
modeling demography for dozens to hundreds of lineages will pose a substantial inferential
and computational challenge. A second caveat is that partial sweeps and soft sweeps may be
difficult to detect with the summary statistics used here. It has been recently suggested that soft
sweeps are the dominant mode of adaptation in wild populations [83] but there is still consid-
erable uncertainty [84]. A third caveat is that, despite employing a stringent set of filters on
both genome and sample level features, we cannot rule out the possibility that clusters of geno-
typing errors may have occurred in samples from either the dog or wolf lineage, such that some
outlier regions may be false positives. Finally, while our use of overlapping, sliding windows
allows us to localize the peak signal in outlier regions, it does raise the issue of non-indepen-
dence and how it affects our approach to controlling for false discovery rate. Previous work
indicates that the Benjamini-Hochberg FDR correction should be robust to certain kinds of
dependence structure if tests meet the “positive regression dependency on each from a subset”
(PRDS) criterion [85]. Furthermore, evidence has been presented that linkage mapping and
associated tests fulfill PRDS [86], and the dependency among statistics at SNPs in such cases
should very similar to that observed among statistics computed over windows across the
genome. Nevertheless, should some features of our genome scans violate PRDS, it would mean
that our estimates of FDR would be slightly less conservative (although certainly more so than
empirical outlier approaches). We consider this an area worthy of future investigation.

Regardless of which mode is dominant, future work will likely uncover additional loci that
have undergone positive selection in canids. In particular, future analyses using a larger set of
dog and wolf genomes should provide power for assessing potential changes in adaptive substi-
tutions occurring in multiple canine lineages, particularly if a neutral expectation can be calcu-
lated using a demographic model inferred for this larger sample. Despite these concerns, our
model-based approach identifies a substantial number of new behavioral, metabolic, and pig-
mentation candidate genes that may contribute to the remarkable success of the oldest domes-
ticated species and the only large carnivore adapted to life with humans.

Methods

Genome sequencing, sequence alignment and genotyping
All sequence alignment, genotyping, and quality-filtering methods were described previously
[19]. Genotypes for all six canid genomes in that study were benchmarked against high quality
genotypes from the Illumina CanineHD BeadChip, and showed a high degree of concordance
with the chip data (e.g., 99.4% − 99.9% of heterozygous genotypes are confirmed by the Cani-
neHD BeadChip). Sequence data are available at http://www.ncbi.nlm.nih.gov/bioproject/
PRJNA274504. Vcf files can be obtained via the Dryad data repository at doi:10.5061/dryad.
sk3p7.
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We chose lineages to sequence with the goal of elucidating the timing, demographic context,
and geographic origins of dogs. We selected the Basenji and Dingo for sequencing, as they rep-
resent two divergent breeds basal on the dog phylogeny [35]. We also utilized the Boxer refer-
ence genome as an additional haploid chromosome set. The Chinese, Croatian, and Israeli
wolves represent lineages sampled geographically from the three regions from which dogs were
previously hypothesized to have originated (East Asia, Europe, and Middle East, respectively).
The golden jackal was chosen as an outgroup. This sampling strategy is also informative for
understanding selection early in the dog lineage, as it captures the range of variation found in
both dogs and wolves, thus minimizing the confusion of selection signals from later, lineage-
specific effects, such as might occur were we to bias sampling towards modern breeds of Euro-
pean origin. All genotypes initially generated in CanFam 3.0 reference genome coordinates by
Freedman et al. [19] were converted to the most current version, CanFam 3.1.

Mapping regions with recent selective sweeps
Summary statistics. Demographic factors, such as population expansions, bottlenecks, or

population structure, are confounders that distorts expected signatures of recent positive selec-
tion [9,11,12,87]. Since most domesticated species experience a population bottleneck [88],
and a frequent mode of selection during domestication is selection from standing variation
[40,89], detection of positive selection during domestication is difficult. To detect selective
sweeps on the dog lineage during domestication, we selected three statistics that have been
shown to have the highest power to detect selection under these conditions [89]: FST [40], Δπ
[40], and ΔTD [40,90]. We used a sliding window approach in which we divided the reference
genome into overlapping windows of size 100kb with 10kb increments. For each 100kb-win-
dow, we computed summary statistics using only sites that passed the genome and sample-
level filters [19]. We considered the boxer reference haplotype when we compute statistics
within the dog sample or between the dog and wolf sample. Because our analysis included a
mixture of haploid (boxer reference) and diploid samples, we calculated FST from estimates of
nucleotide diversity, i.e. (πbetween − πwithin)/ πbetween, where nucleotide diversities are average
per site estimates calculated across all pass filter sites within a 100kb window. We computed
Δπ as πwolf/πdog in each window, and report values on a log-scale (i.e. log(Δπ)) and ΔTD is com-
puted as the difference in Tajima’s D between the wolf and dog sequences. In cases where πdog
was zero, we added a small fractional increment so that Δπ would still be computable. In cases
where no segregating sites within dogs exist in a window, we did not calculate ΔTD.

Window filtering. We obtained 195,998 sliding windows of size 100kb with 10kb incre-
ments genome-wide. We then discarded any windows in which the number of fully observed
sites is less than 30kb, because it is more likely that those windows are within or close to repeat/
CNV regions or regions of poor sequencing quality.

Identifying outlier regions. In order to minimize the confounding of neutral, demo-
graphic signals with those produced by positive selection, we developed an approach to control
for the false positive rate with simulations. Using the posterior mean parameter estimates from
the best-fitting model (Fig 5A in [19]), we first simulated 200,000 100 kb windows using the
program ms [91] under the demographic model that we previously inferred from the same
seven genomes (including boxer) analyzed here [19], and computed Δπ, FST, and ΔTD for
those windows. Next, for each window in our observed data, we computed the proportion of
simulated windows with a test statistic� that in an observed window, i.e. a p-value defined as
the probability of the observed data under neutrality. We then computed FDR using the Benja-
mini-Hochberg procedure for our set of windows based upon our empirical data. For each test
statistic, we retained windows with FDR�0.01. We considered the effects of simulation strategy
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on FDR calculations and outlier window identification by drawing 1000 samples from the joint
posterior distribution of our best-fitting demographic model and simulating each of these sam-
ples 200 times for a total of 200,000 100kb windows. As the sliding window approach means
that windows are often clustered across the genome (Fig 1), we collapsed windows across statis-
tics into outlier regions if they were within 200kb of each other. As a heuristic to rank outlier
regions, we took a “composite of multiple signals” (CMS) approach, similar to that employed
in a recent selection scan in humans [43]. Specifically, we computed CMS1-FDR as (1-FDRΔπ)�

(1-FDRFST)�(1-FDRΔTD), and ranked regions according to the maximum CMS1-FDR observed
in any of the 100kb windows comprising a region. We note that given Δ Tajima’s D cannot be
calculated for windows with no polymorphism, we have excluded windows with strong signals
in FST and Δπ that are potentially of interest (orange points on far right of Fig 4A).

To contrast our demography-informed approach of controlling for FDR with neutral simu-
lations, we examined overlap of outliers based upon this approach with a fundamentally differ-
ent, “demography-free” approach that examines an arbitrary percentage of a top set of outliers,
similar to many genome-wide selection scans that don’t explicitly include demography. In this
approach, for each summary statistic (FST, Δπ and ΔTD), we computed empirical percentiles
by ranking each window by the summary statistic in question and transforming the ranks to
percentiles (% FST, % Δπ and % ΔTD). We then calculated a “joint” empirical percentile by
computing the product of the empirical percentiles obtained for the three summary statistics in
each window [(% Product) = (% FST) � (% Δπ) � (% ΔTD)] and then ranking each window by
the products (% Product) and transforming the ranks to percentiles (% Joint). In order to draw
Manhattan plots, we transformed the joint empirical percentiles defined for each window into
joint empirical p-values. Joint empirical p-values are defined as a probability of obtaining a
joint empirical percentile greater than or equal to that observed for the window in question.
For the joint empirical percentile, we defined the top 1% windows as outlier windows. As with
our primary approach described above, windows� 200kb apart were collapsed into outlier
regions. For this method, we ranked outlier regions by the maximum joint percentile.

Dog-specific mutations
For our analysis of the distribution of sites fixed between dogs and wolves, we first identified
sites where the Basenji and Dingo were homozygous for the Boxer reference derived allele, and
where the three wolves and golden jackal were fixed for an alternative (i.e. the ancestral) allele.
We then reduced this set of candidate sites by only including sites where the dog derived allele
was observed across the 12-breed genome sequences at a frequency� 0.75. We evaluated the
functional consequences of dog-specific non-synonymous variants using Ensembl’s Variant
Effect Predictor (http://www.ensembl.org/info/docs/tools/vep/index.html).

Enrichment analyses
To detect functional enrichment within the genes intersecting our outlier regions, we used the
program DAVID [74], with the Canis lupus gene set as background. We focused on the genes
falling within 25kb of the peak CMS1-FDR signal for the top 100 regions, minus those regions
that did not also show a reduction in diversity in the 12-breed data set. Because enrichment
analyses require a relatively large input set of genes in order to detect enrichment patterns, and
given that we already perform statistical inference to identify regions under selection, we report
all categories with FDR� 10%. We also report uncorrected P-values as well as P-values cor-
rected for multiple comparisons using Benjamini’s method, although the latter are generally
considered to be extremely conservative [74].

Demographically-Based Evaluation of Selection in Domestic Dogs

PLOS Genetics | DOI:10.1371/journal.pgen.1005851 March 4, 2016 17 / 23

http://www.ensembl.org/info/docs/tools/vep/index.html


Supporting Information
S1 Text. Description of additional candidate genes.
(PDF)

S1 Table. Outlier regions identified with the FDR-based method, ranked according to
CMS1-FDR.
(XLS)

S1 Fig. Genome-wide distribution of Δπ, FST, Δ Tajima’s D in 100kb sliding windows.
(PDF)

S2 Fig. Comparison of distributions computed from neutral coalescent simulations based up
the posterior mean parameter estimates from the inferred demographic history, [19] and 1000
samples from the joint posterior distribution for (A) Δπ, (B) FST, and (C) Δ Tajima’s D.
(PDF)

S3 Fig. Distribution of overlaps between outlier regions detected between methods for
FDR and empirical outlier methods.
(PDF)

S4 Fig. Bi-plots of empirical percentile vs. FDR for individual summary statistics across
100 kb windows, demonstrating that the majority of windows in the top 1% have
FDR> 0.01. (A) Entire range of empirical percentile and (B) Focus on the top 20% of the
empirical distribution. Horizontal and vertical dotted lines indicate the 99th percentile and 1%
FDR, respectively.
(PDF)

S5 Fig. FDR of individual statistics vs. the joint percentile statistic for 100kb windows, used to
identify outlier windows in the empirical outlier (non-FDR) approach, for (A) Δπ, (B) FST, and
(C) Δ Tajima’s D.
(PNG)

S6 Fig. Venn diagram displaying overlap of candidate gene sets obtained with FDR-based
and empirical outlier (EO) methods for detecting positive selection on the dog lineage.
Genes unique to empirical methods relative to FDR methods are those falling within windows
with a high false discovery rate (and thus are likely to be enriched with false positives)
(PDF)

S7 Fig. Distribution of CMS1-FDR and the joint percentile statistic for the top and 3rd

ranked regions, demonstrating that CMS1-FDR localizes the peak of the outlier region signal
more precisely than the joint percentile.
(PDF)

S8 Fig. All 68 outlier regions identified using the FDR-based methodology using Δπ, FST, Δ
Tajima’s D that were validated with the 12-breed dog diversity panel. Columns within “This
study” are based on the sequencing data generated here, while those under CanMap are com-
puted from a ~48k SNP data set for a large set of wolves and ancient/basal dog breeds. Heat
map colors reflect upper percentiles of the calculated metrics, with warmer colors indicating
higher percentiles. Overlaps with previous studies: 1, vonHoldt et al. 2010 [35]; 2, Vaysse et al.
(2011) [25]; 3, Boyko et al. (2010) [23]; and Axelsson et al.(2013), [27], with numbers indicat-
ing the joint percentile, FST, FST, and region id, respectively for each study.
(PDF)
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S9 Fig. Distribution of sites fixed between dogs and wolves in neutral and outlier regions
according to functional class, filtered according to the requirement that the dog-specific
allele be at a frequency of 0.75 or greater among a panel of 12 additional breed dogs. Num-
bers above bars indicate counts of fixed sites.
(PDF)
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