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Abstract

More than half of human colorectal cancers (CRCs) carry either KRAS or BRAF mutations, and 

are often refractory to approved targeted therapies. We report that cultured CRC cells harboring 

KRAS or BRAF mutations are selectively killed when exposed to high levels of vitamin C. This 

effect is due to increased uptake of the oxidized form of vitamin C, dehydroascorbate (DHA), via 

the GLUT1 glucose transporter. Increased DHA uptake causes oxidative stress as intracellular 

DHA is reduced to vitamin C depleting glutathione. Thus, ROS accumulates and inactivates 
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glyceraldehyde 3-phosphate dehydrogenase (GAPDH). Inhibiting GAPDH in highly glycolytic 

KRAS or BRAF mutant cells leads to an energetic crisis and cell death not seen in KRAS and BRAF 

wild-type cells. In vivo studies indicate that high-dose vitamin C can impair tumor growth in Apc/

KrasG12D mutant mouse intestinal cancers. While it is unclear whether human tumors will respond 

similarly, our results provide a mechanistic rationale for exploring the therapeutic use of vitamin C 

to treat CRCs with KRAS or BRAF mutations.

Main Text

Activating KRAS and BRAF mutations are found in approximately 40% and 10% of human 

colorectal cancers (CRCs), respectively (1). BRAF is a direct target of KRAS and both 

activate the mitogen-activated protein kinase (MAPK) pathway. Clinical studies indicate 

that activating mutations in KRAS and BRAF predict resistance to epidermal growth factor 

receptor (EGFR)-targeting agents (2–4). Thus, novel therapies for KRAS or BRAF-mutant 

CRCs are urgently needed.

Glucose uptake, as measured by FDG-PET, correlates with KRAS or BRAF mutations and 

GLUT1 overexpression in CRCs (5, 6) consistent with our previous finding that KRAS or 

BRAF mutant CRC cells rewire glucose metabolism, in part by upregulating GLUT1 

expression (7). These data suggest a strategy for targeting KRAS or BRAF-mutant cancers by 

exploiting the selective expression of GLUT1 and the metabolic liability that comes with 

increased reliance on glycolysis.

Dietary vitamin C is transported across cellular membranes by sodium vitamin C 

cotransporters (SVCTs) and facilitative glucose transporters (GLUTs) (8, 9). While SVCTs 

transport vitamin C directly into the cell, GLUTs—mainly GLUT1 and GLUT3—transport 

the oxidized form of vitamin C, dehydroascorbate (DHA). Following import, DHA is 

reduced to vitamin C at the expense of glutathione (GSH), thioredoxin and NADPH (10). 

Given that GLUT1 levels in KRAS and BRAF mutant cells are elevated, we hypothesized 

that the increase in DHA uptake could disrupt redox homeostasis and compromise cellular 

viability. To test our hypothesis, we used a panel of isogenic CRC cell lines harboring WT 

or mutant alleles of KRAS (HCT116 and DLD1) or BRAF (VACO432 and RKO) (7).

In cell culture media, vitamin C is oxidized to DHA (half-life ~70 min) unless reducing 

agents are added (fig. S1) (11). Using 14C-radiolabeled vitamin C, we tested which form of 

vitamin C (reduced or oxidized DHA) is preferentially imported. Both HCT116 and 

VACO432 cells take up [14C]-vitamin C efficiently (Fig. 1A). However, adding GSH to the 

media to prevent oxidation of vitamin C to DHA abrogated [14C]-vitamin C uptake (Fig. 

1A). Furthermore, [14C]-vitamin C uptake was significantly decreased in both HCT116 and 

VACO432 cells treated with a GLUT1 specific inhibitor, STF31, and in GLUT1 knockout 

cells (Fig. 1A and 1B). Glucose competed with DHA for uptake in CRC cells (fig. S2). 

These results indicate that CRC cells preferentially import DHA, rather than vitamin C, and 

that uptake is mediated by GLUT1 (fig. S3, A and B). Given the increased expression of 

GLUT1 in mutant cells, we investigated whether KRAS or BRAF mutations influenced 

vitamin C uptake. Importantly, the mutant lines took up significantly more [14C]-vitamin C 

than their WT counterparts (Fig. 1B and 1C). Overexpressing GLUT1 in WT cells was 
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sufficient to increase [14C]-vitamin C uptake to levels commensurate with those of the 

mutants (Fig. 1B and fig. S3C). Moreover, KRAS and BRAF mutant cells imported DHA 

faster than [14C]-vitamin C (fig. S4), consistent with the observation that vitamin C must 

first be oxidized to DHA to enter cells through GLUT1. Together, these results indicate that 

GLUT1 is the primary means of vitamin C uptake in CRC cells and that elevated GLUT1 

expression in KRAS or BRAF mutant cells drives increased DHA uptake.

We next asked whether the increased uptake of DHA in KRAS and BRAF mutant cells could 

affect their survival and growth. When plated at a low density and grown in low glucose 

media (2 mM), all cell lines grew at similar rates and formed colonies (Fig. S5). However, 

24 to 48 hours of vitamin C treatment inhibited KRAS and BRAF mutant cell growth and 

colony formation with reduced effects on their WT counterparts (Fig. 2A and fig. S5). Due 

to the competitive nature of DHA import, mutant lines were most sensitive to vitamin C 

under low glucose conditions (2 mM). Nevertheless, selective cytotoxicity against the 

mutant lines was achieved even under higher glucose conditions (5–20 mM) when treating 

with less than 1 mM vitamin C (fig. S6), indicating that vitamin C can selectively kill 

mutant cells under physiological glucose concentration (5–10 mM). Importantly, plasma 

vitamin C concentrations greater than 10 mM are easily achieved in humans and in our 

murine pharmacokinetic study (fig. S7) without significant toxicity (12, 13). Vitamin C was 

cytotoxic rather than cytostatic as evidenced by increased staining for the apoptotic marker 

Annexin V in the mutants (fig. S8A). Adding GSH to the culture medium was sufficient to 

rescue the death of each mutant line (Fig. 2A). PIK3CA is one of three frequently mutated 

oncogenes in CRCs in addition to KRAS and BRAF. Unlike KRAS or BRAF, the PIK3CA 

genotype did not predict vitamin C sensitivity (fig. S8B). Notably, although the 

overexpression of GLUT1 in WT cells increased vitamin C uptake (Fig. 1B), it did not 

sensitize WT cells to vitamin C (fig. S8C) indicating that high GLUT1 expression alone, 

without oncogene induced metabolic reprograming, is not sufficient to make cells 

susceptible to vitamin C-dependent toxicity.

We next explored whether vitamin C altered the growth of KRAS and BRAF mutant CRC in 

mice. Mice bearing established xenografts derived from parental HCT116 and VACO432 

cell lines were treated twice a day via intraperitoneal (IP) injection of high-dose vitamin C 

(4g/kg) or PBS (vehicle control), for 3–4 weeks, at which point control mice had to be 

sacrificed due to tumor size. Vitamin C treatment significantly reduced tumor growth 

compared to vehicle control treatment (Fig. 2B). KRAS and BRAF wild-type isogenic 

HCT116 and VACO432 cell lines cannot form xenograft tumors in mice. To directly test the 

impact of Kras mutation on the sensitivity of tumors to vitamin C treatment, we generated a 

transgenic model of intestinal cancer, driven by either Apc mutation, or combined Apc and 

Kras (G12D) mutations. Compound mutant mice were generated by crossing available 

Apcflox mice (14), LSL-KrasG12D mice (15), and Lgr5-EGFP-creERT2 (16) animals, 

enabling intestinal restricted alteration of Apc and Kras. Tumors were induced with a single 

IP injection of low-dose tamoxifen (20 mg/kg) and treated daily thereafter with high-dose 

vitamin C (IP, 4g/kg) for 5–7 weeks. While Apcflox/flox mice showed no difference in polyp 

burden following vitamin C treatment, Apcflox/flox/KrasG12D mice had significantly fewer 

and smaller small intestine polyps (76 vs 165 in control group) confirming that vitamin C 
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selectively affected Kras mutant tumors (Fig. 2C, fig. S9). Consistent with experiments in 

CRC lines, tumors from Apcflox/flox/KrasG12D mice showed higher GLUT1 expression and 

greater vitamin C uptake than tumors from Apcflox/flox mice (Fig. 2, D and E, fig. S10).

To investigate the mechanism by which vitamin C is selectively toxic to KRAS and BRAF 

mutant cells, we used LC-MS/MS based metabolomics to profile metabolic changes 

following vitamin C treatment (17). In untreated KRAS and BRAF mutant lines, the relative 

intracellular metabolite levels of glycolysis and the non-oxidative arm of the pentose 

phosphate pathway (PPP) were increased compared to their isogenic WT counterparts (fig. 

S11). Addition of a MEK1/2 inhibitor to the parental KRAS or BRAF mutant cells also 

decreased glycolytic and PPP metabolite levels indicating that the increased metabolite 

levels were driven by oncogene-induced MAPK activity (fig. S12) (18). Notably, within an 

hour of vitamin C treatment, the metabolic profile of the mutant cells changed dramatically. 

Glycolytic intermediates upstream of glyceraldehyde 3-phosphate dehydrogenase (GAPDH) 

accumulated while those downstream were depleted suggesting that GAPDH was inhibited 

(Fig. 3A, fig. S13). Also, oxidative PPP metabolites increased (Fig. 3A and fig. S13), 

indicating that the blockage may shift glycolytic flux into the oxidative PPP. Indeed, vitamin 

C treatment stimulated oxidative PPP-dependent 14CO2 production from [1-14C] glucose in 

both KRAS and BRAF mutant cells, and to a lesser degree in WT cells (fig. S14A). 

Decreased NADPH/NADP+ ratios are known to activate glucose-6-phosphate 

dehydrogenase allosterically to enhance oxidative PPP flux. The increased flux is an attempt 

to restore cytosolic NADPH back to homeostasis to mitigate oxidative stress (19). We 

reasoned that DHA uptake may deplete cellular GSH and NADPH as they are consumed in 

reducing DHA to vitamin C. If the capacity of this pathway to restore GSH levels is 

exceeded, cellular reactive oxygen species (ROS) increase because GSH is the major 

cellular antioxidant (20). Indeed, the ratio of reduced to oxidized glutathione decreased as 

intracellular vitamin C increased (Fig. 3B, fig. S14B). Cysteine, the major limiting precursor 

for GSH biosynthesis, was also dramatically depleted following vitamin C treatment (fig. 

S13). As expected, vitamin C treatment induced a substantial increase in endogenous ROS 

in KRAS and BRAF mutant cells (Fig. 3C).

Given that cancer cells with KRAS or BRAF mutations are heavily dependent on glycolysis 

for survival and growth and that pyruvate, the end product of glycolysis, is a major carbon 

source for the mitochondrial TCA cycle (7, 21), we hypothesized that inhibition of 

glycolysis at GAPDH might deplete ATP and thereby induce an energetic crisis ultimately 

leading to cell death. Vitamin C treatment caused a rapid decrease in the glycolytic rate of 

KRAS and BRAF mutant cells, but not in WT cells, as determined by the extracellular 

acidification rate (ECAR), a proxy for lactate production (Fig. 3D, fig. S15). Accordingly, 

vitamin C induced a significant drop in ATP levels with a concomitant increase in AMP 

levels (Fig. 3E and fig. S16A). Within one hour, AMPK, a marker for energy stress, was 

activated and activation was strongest in the mutant lines (Fig. 3F). The cell permeable 

reducing agent and glutathione precursor N-acetyl-cysteine (NAC) rescued both AMPK 

activation and cell death in the mutant lines (Fig. 3F and 3G). Consistent with the in vitro 

results, supplementing drinking water with NAC over the course of vitamin C treatment 

abolished ability of vitamin C to reduce xenograft growth (Fig. 3H). Similarly, pyruvate and 

Yun et al. Page 4

Science. Author manuscript; available in PMC 2016 December 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



oxaloacetate, both of which can enter the TCA cycle and thus provide ATP, or trolox (a 

water-soluble analog of the antioxidant vitamin E) rescued energy stress and cell death (Fig. 

3G, fig. S16B and S16C). Rotenone, a complex I inhibitor, attenuated the ability of pyruvate 

to rescue vitamin C-induced cytotoxicity (fig. S17), indicating that the lack of mitochondrial 

substrates caused by glycolytic inhibition also contributes to ATP depletion in mutant cells 

(21).

We next sought to determine the mechanism by which vitamin C inhibits GAPDH. GAPDH 

is known to have an active-site cysteine (C152) that is targeted by ROS (22). The active-site 

cysteine can undergo reversible S-glutathionylation in which the oxidized cysteine forms a 

mixed disulfide with GSH (Cys-GSH), or undergo further irreversible oxidations that 

include sulfonic acid (Cys-SO3H) (23, 24). Both cases result in loss of GAPDH activity. We 

measured GAPDH S-glutathionylation following vitamin C treatment by 

immunoprecipitating endogenous GAPDH and blotting with an antibody that recognizes S-

glutathionylation under non-reducing conditions. In both KRAS and BRAF mutant lines, 

GAPDH S-glutathionylation levels were two to three fold higher in vitamin C treated cells 

compared to vehicle treated cells (Fig. 4A). However, GAPDH sulfonylation was not 

detected with a GAPDH-SO3H antibody (Fig. 4B). GAPDH activity was assayed in lysates 

of vitamin C treated cells to confirm inhibition by S-glutathionylation (fig. S18). A one-hour 

vitamin C treatment decreased GAPDH activity by 50% in both KRAS and BRAF mutant 

cells. Combining NAC with vitamin C fully rescued GAPDH activity (fig. S18).

We reasoned that the 50% reduction in GAPDH activity following vitamin C treatment 

could be explained by S-glutathionylation (Fig. 4A). However, given that the GAPDH 

substrates were added to the lysates to perform the activity assay, and the striking 

accumulation of the GAPDH substrate glyceraldehyde-3-phosphate (G3P) - up to 19 fold 

(Fig. 3A, fig. S13), we suspected that additional mechanisms may contribute to GAPDH 

inhibition. This led us to examine the levels of the NAD+ substrate required for GAPDH-

dependent oxidation of G3P. In contrast to G3P levels, intracellular NAD+ levels were 

significantly diminished following vitamin C treatment (fig. S19). PARP activation due to 

ROS-induced DNA damage consumes NAD+ to form ADP-ribose polymers on acceptor 

proteins. We observed PARP activation and phosphorylation of H2AX, a marker of DNA 

damage, shortly after vitamin C treatment (Fig. 4C), suggesting that PARP activation may 

diminish NAD+ levels thereby further inhibiting GAPDH activity by depleting substrate 

availability (25). To investigate whether PARP activation or NAD+ depletion contributes to 

vitamin C-induced cytotoxicity in KRAS and BRAF mutant cells, we treated cells with a 

PARP inhibitor, Olaparib, or a cell-permeable NAD+ precursor, nicotinamide 

mononucleotide (NMN), prior to vitamin C treatment. Cell viability following vitamin C 

treatment was partially rescued by inhibiting PARP or supplementing with NMN (Fig. 4D). 

Taken together, these results indicate that in KRAS and BRAF mutant cells vitamin C-

induced endogenous ROS inhibits GAPDH by both post-translational modifications and 

NAD+ depletion ultimately leading to an energetic crisis and cell death (Fig. 4E).

High-dose vitamin C cancer therapy has a controversial history. While some early clinical 

studies indicated that vitamin C had anti-tumor activity (26, 27), others have shown little 

effect (28, 29). The underlying differences between these seemingly contradictory results are 
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unclear, but recent studies revealed that the contradictory clinical data stems, at least in part, 

from differences in administration route; the millimolar vitamin C plasma concentrations 

cytotoxic to cancer cells are only achievable via intravenous administration but not via oral 

administration (30, 31). Given these findings, a growing number of phase I/II clinical trials 

are reevaluating intravenous infusion of vitamin C to treat various cancers (12, 13, 32, 33). 

However, despite the previous studies demonstrating that high-dose vitamin C is cytotoxic 

to cancer cells in vitro (34–36) and delays tumor growth in xenograft models (37, 38), the 

mechanism by which vitamin C kills cancer cells while sparing normal cells has been 

unclear. Our findings address this fundamental question, suggesting that the oxidized form 

of vitamin C, DHA, is the pharmaceutically active agent, and that the selective toxicity of 

vitamin C to tumor cells stems from high GLUT1 expression combined with KRAS or BRAF 

oncogene-induced glycolytic addiction. Although it is unclear whether the results we have 

observed in our cell culture and mouse studies will translate to human tumors at this 

moment, our findings on the mechanism of action of vitamin C warrants further 

investigation in human clinical trials.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. KRAS and BRAF mutant cells predominantly take up DHA, the oxidized form of vitamin 
C, via GLUT1
(A) DHA, but not vitamin C, is transported into colorectal cancer cells (CRC) via GLUT1. 

[14C]-vitamin C was added to the culture media (2 mM glucose) for 30 minutes. [14C] 

Scintillation count per microgram of protein input was measured. Treating cells with GSH 

or STF31 (GLUT1 inhibitor) significantly reduced vitamin C uptake in all cases when 

compared to no GSH or STF31 treatment. One-way ANOVA followed by Dunnett’s post-

test for multiple comparisons. *p < 0.01, **p < 0.001, n=3. (B) [14C]-vitamin C uptake was 

monitored in 2 mM glucose and signal normalized to total protein. P; Parental cells, WT-

GLUT1; Exogenously expressed GLUT1 in WT cells, GLUT1 KO; GLUT1 knockout cells. 

Asterisks indicate significant decreases in vitamin C uptake of WT or GLUT1 KO cells 

relative to the parental lines, MUT, and WT-GLUT1. One-way ANOVA followed by 

Dunnett’s post-test. *p < 0.01, n=3. (C) LC/MS analysis of intracellular vitamin C and DHA 

in KRAS or BRAF isogenic cell lines derived from HCT116 and VACO432, respectively. 

Cells were treated with 1 mM (HCT116) or 2 mM (VAOC432) vitamin C for one hour 

before extracting vitamin C and DHA (Student’s t test, n=6). All data represent means ± s.d.
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Fig. 2. Vitamin C is selectively toxic to cells with mutant KRAS or BRAF alleles
(A) Cell viability assay in 2 mM glucose or 2 mM glucose plus GSH in the presence of 

vitamin C (VC) for 48 hrs (HCT116, DLD1, RKO: 0.125 mM; VACO432: 0.375 mM) after 

cells were plated at a low density. Values were normalized to vehicle control. Parental (P) 

and MUT cells were significantly more sensitive than WT cells in the presence of vitamin C. 

One-way ANOVA (p<0.0001) with Dunnett’s post-test. *p < 0.0001, n=3. (B) HCT116 

(KRAS: G13D/+) or VACO432 (BRAF: V600E/+) cells were injected subcutaneously into 

the flank of 6 to 8-week-old female athymic nude mice. After 7–10 days, mice were 

randomly divided into two groups. One group was treated with freshly prepared vitamin C in 

400 ul PBS (4 g/kg) twice a day via IP injection (HCT116: n=6, VACO432: n=6). Control 

group mice were treated with PBS with the same dosing schedule (HCT116: n=4, 

VACO432: n=7). Tumor sizes were measured 2–3 times per week in an unblinded manner. 

Experiments were repeated twice independently. (C) At 7 weeks of age, Apcflox/flox mice and 

Apcflox/flox/LSL-KrasG12D mice were treated with a single intraperitoneal injection (IP) of 

low dose tamoxifen (20 mg/kg) to activate the stem-cell-specific Cre and facilitate loss of 

Apc and activation of the Kras G12D allele. 3 weeks after tamoxifen injection, Apcflox/flox 

mice (male=8 and female=9 mice) and Apcflox/flox/LSL-KrasG12D mice (male=7 and 

female=9) were divided into two groups (vitamin C at 4 g/kg or PBS) and treated daily with 

IP injections (5–6 times per week). Based on weight loss and Hemoccult score, all 

Apcflox/flox mice were sacrificed at 6 weeks of treatment. Apcflox/flox/LSL-KrasG12D male 

mice were sacrificed at 5 weeks after treatment and Apcflox/flox/LSL-KrasG12D female mice 
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were sacrificed at 7 weeks after treatment; average polyp numbers in the PBS group for 

female and male mice were similar. Apcflox/flox/LSL-KrasG12D mice experiments were 

repeated twice. Polyp number and volume was determined in whole mount tissue following 

methylene blue staining using a dissecting microscope in an unblinded manner. (D) 

Immunoblots of GLUT1 protein, phospo-ERK1/2, and total-ERK in tumors from Apcflox/flox 

mice (n=4) and Apcflox/flox/LSL-KrasG12D mice (n=4). In. E.: normal intestinal epithelial 

cells. (E) Absolute amounts of intracellular vitamin C (VC) were measured in tumors 

derived from Apcflox/flox mice and Apcflox/flox/LSL-KrasG12D mice treated with either vitamin 

C (4 g/kg) or PBS. Samples were harvested one hour post treatment. Two-way ANOVA (p 

=0.0002) followed by tukey’s test for multiple comparisons. All data represent means ± s.d.
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Fig. 3. Vitamin C inhibits glycolysis thereby depleting ATP and selectively killing KRAS and 
BRAF mutant cells
(A) Heatmap depicting significantly changed glycolytic and PPP metabolite levels in mutant 

cells after a one-hour vitamin C or vehicle treatment as analyzed by LC-MS/MS. Red: 

increase; blue: decrease. PPP; Pentose phosphate pathway, TCA; tricarboxylic acid cycle. 

(B) Relative ratios of reduced to oxidized glutathione (GSH/GSSG) in KRAS and BRAF 

isogenic cell lines determined by LC-MS/MS as in (A). The ratio was significantly 

decreased following vitamin C in both MUT and WT cells (Student’s t test, *p <0.002, n=3) 

but the extent was greater in the MUT cells than in the WT cells. (C) Following a one-hour 

vitamin C (VC) treatment, cells were incubated with the ROS-sensitive fluorescent dye, 

DCF-DA, for 30 min and fluorescence measured by flow cytometry. Asterisks indicate 

significant increases in ROS following vitamin C treatment (Student’s t test, *p <0.01, n=3). 

(D) The extracellular acidification rate (ECAR) was monitored in KRAS and BRAF isogenic 

cell lines. Red arrows indicate the time of vitamin C (VC) or vehicle (CON) addition (n=6). 

(E) ATP levels were determined in KRAS and BRAF isogenic cell lines after a one-hour 

vitamin C (VC) treatment. Although ATP levels were significantly decreased in all cells 

(Student’s t test, *p<0.05, **p<0.002, n=3), the decrease was much more pronounced in 

MUT cells (two way ANOVA). (F) Cells were treated with vitamin C (VC) or vitamin C 

combined with N-acetyl cysteine (NAC) for one hour before immunoblotting for Thr172 

phosphorylation (p-AMPK) or total AMPK (t-AMPK). (G) Cells were treated with vitamin 

C alone (VC) or vitamin C plus NAC, pyruvate (Pyr), or Trolox for 48 hours and viability 

measured with a CellTiter-Glo assay. Cell viability in parental (P) and MUT cells compared 

to WT cells was significantly decreased in vitamin C alone but not vitamin C combination 

treatments. One-way ANOVA (p<0.0001, VC group) with Dunnett’s post-test. *p <0.0001, 

n=3. (H) 8-week-old female athymic nude mice with subcutaneous tumors from parental 

HCT116 cells were treated with vitamin C (VC) alone (4 g/kg), NAC alone (30 mM in 

drinking water), VC plus NAC, or PBS twice a day via IP injection. Tumor sizes were 

measured once per week in an unblinded manner. Experiments were repeated twice 

independently. Vitamin C treatment alone significantly decreased tumor growth compared to 

PBS (p =0.016) but adding NAC to the vitamin C treatment abolished this effect (p=0.845). 

Mixed effect analysis followed by Tukey’s test. 1 and 2 mM Vitamin C was used for 

HCT116 and VACO432 cells, respectively (A–F). For viability assays at low cell densities, 

0.125 and 0.375 mM vitamin C was used for HCT116 and VACO432 cells, respectively 

(G). All data represent means ± s.d.
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Fig. 4. Vitamin C-induced ROS inhibits GAPDH by cysteine S-glutathionylation and depleting 
NAD+

(A) Cells were incubated with vehicle (CON) or vitamin C (VC) for one hour (HCT116: 1 

mM, VACO432: 2 mM). Cell extracts were prepared in the presence of iodoacetic acid 

(IAA) to prevent S-thiolation during extraction, immunoprecipitated with a GAPDH 

antibody, and analyzed by non-reducing SDS-PAGE and probed with the indicated 

antibodies. (B) HCT116 cells were incubated with vehicle, vitamin C (VC) or H2O2 for one 

hour. Immunoblots were performed with the indicated antibodies as in (A). (C) 

Immunoblots for p(ADP)r (ADP-ribose polymers), Ser-139-phosphorylated, total H2AX, 

and β-actin on lysates from cells treated with vehicle (CON) or vitamin C (VC) for one hour. 

(D) Cells were treated with vitamin C alone (VC) (0.125 mM) or vitamin C plus Olaparib 

(10 uM) (VC + PARPi) or β-nicotinamide mononucleotide (NMN, 1 mM) (VC + NMN). 

Viability after 48 hours of treatment was measured using a CellTiter-glo assay and 

normalized to untreated controls. Asterisks indicate significant differences compared to 

MUT cells treated with vitamin C alone. Two-way ANOVA followed by Tukey’s test. *p 

<0.01, **p <0.001, MUT groups, n=3. (F) Schematic showing how vitamin C selectively 

kills cells KRAS or BRAF mutant cells.
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