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Transcriptional regulatory elements (TREs), including enhancers and promoters, determine the 

transcription levels of associated genes. We have recently shown that global run-on and 

sequencing (GRO-seq) with enrichment for 5'-capped RNAs reveals active TREs with high 

accuracy. Here, we demonstrate that active TREs can be identified by applying sensitive machine-

learning methods to standard GRO-seq data. This approach allows TREs to be assayed together 

with gene expression levels and other transcriptional features in a single experiment. Our 

prediction method, called discriminative Regulatory Element detection from GRO-seq (dREG), 

summarizes GRO-seq read counts at multiple scales and uses support vector regression to identify 

active TREs. The predicted TREs are more strongly enriched for several marks of transcriptional 

activation, including eQTL, GWAS-associated SNPs, H3K27ac, and transcription factor binding 

than those identified by alternative functional assays. Using dREG, we survey TREs in eight 

human cell types and provide new insights into global patterns of TRE function.

Transcriptional regulatory elements (TREs), such as promoters, enhancers, and insulators, 

are critical components of the genetic regulatory programs of all organisms1. These elements 

regulate gene expression by facilitating or inhibiting chromatin decompaction, transcription 

initiation, and the release of RNA polymerase II into productive elongation, as well as by 

maintaining the three-dimensional architecture of the nucleus. TREs enable complex, cell-

type- and condition-dependent patterns of gene expression that contribute to nearly all 

biological processes.

Since the completion of high-quality gene catalogs for humans and most model organisms, 

the comprehensive identification of TREs has emerged as a primary challenge in genomic 

research. At present, these elements are most effectively identified using high-throughput 

genomic assays that provide indirect evidence of regulatory function, such as chromatin 

immunoprecipitation and sequencing (ChIP-seq) of bound transcription factors (TFs) or 

histone modifications, and DNase-I hypersensivity and sequencing (DNase-seq)2–4. 

However, the methods currently in wide use have important limitations. For example, ChIP-

seq requires a high-affinity antibody for the targeted TF or histone modification of interest 

and must be performed separately for each target. Likewise, assays that measure chromatin 

accessibility or histone modifications provide only circumstantial evidence that the 

identified sequences are actively participating in transcriptional regulation5. Even STARR-

seq, a clever high-throughput reporter-gene assay, identifies only regions that are inactive in 

situ, because the assay is independent of native local chromatin structure and genomic 

context6.

Recently it has become clear that a defining characteristic of active TREs is that they are 

associated with local transcription. Enhancer-templated non-coding RNAs, or eRNAs, have 

recently been associated with thousands of stimulus-dependent enhancers7. Like active 

promoters, these enhancers exhibit transcription initiation in opposing directions on each 

strand, a phenomenon called divergent transcription8–10. This characteristic pattern can be a 

powerful tool for the identification of active TREs in a cell-type specific manner7,11–15. 

Methods that measure the production of nascent RNAs, such as Global Run-On and 

sequencing (GRO-seq)8 and its successor, Precision Run-On and sequencing (PRO-seq)16, 

are particularly sensitive for detecting these transient enhancer-associated RNAs, because 
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they measure primary transcription before unstable RNAs are degraded by the exosome12,17. 

Recently, we have shown that an extension of GRO-seq that enriches the nuclear run-on 

RNA pool for 5'-7meGTP-capped RNAs, called GRO-cap, further improves sensitivity for 

eRNAs, and can be used to identify tens of thousands of transcribed enhancers and 

promoters across the genome18,19.

Here, we introduce a new computational method for accurately identifying transcribed TREs 

directly from standard GRO-seq or PRO-seq data. Our method, called discriminative 

Regulatory Element detection from GRO-seq (dREG), uses a novel, multiscale summary of 

GRO-seq or PRO-seq read counts, and then employs support vector regression20 (SVR) to 

detect the characteristic patterns of transcription at TREs. dREG allows high-quality 

predictions of TREs for any cell type with existing GRO-seq or PRO-seq data. We applied 

the method to four cell types for which data was previously available and four for which we 

provide new data. Combining these predictions with data from the ENCODE project, we 

found that the predicted TREs fall into four major classes. The class distinguished by a 

strong dREG signal was also enriched for H3K27 acetylation (H3K27ac), TF binding, 

eQTL, and GWAS-associated SNPs, suggesting that TREs identified using dREG are 

actively controlling cell-type-specific transcription.

Results

Regulatory Element Identification in Eight Cell Types

We devised a machine-learning approach, called dREG, to identify TREs, including both 

promoters and enhancers, from standard GRO-seq or PRO-seq data (Fig. 1a and 

Supplementary Fig. 1). The key to our method is a feature vector that summarizes the 

patterns of aligned GRO-seq reads near each candidate element at multiple scales. This 

feature vector consists of read counts for windows ranging in size from 10 bp to 5 kbp, 

standardized using the logistic function (Supplementary Fig. 2a). The feature vector is 

passed to a SVR, which scores sites with high PRO-seq signal for similarity to a training set 

of TREs. To train our classifier, we used TREs identified from GRO-cap data19 as positive 

examples and regions of matched PRO-seq signal intensity lacking additional marks 

associated with TREs as negative examples. After training and optimization of several 

tuning parameters (Supplementary Tables 1 and 2), the program displayed excellent 

performance when applied to PRO-seq data for K562 cells (AUC= 0.99; Supplementary Fig. 

2b).

We ran dREG to predict the location of TREs genome-wide in K562 cells, adopting a 

prediction threshold that limits the genome-wide false discovery rate to 10%. At this 

threshold, we recovered 94% of 21,082 GRO-cap 'paired' sites (i.e., sites for which divergent 

Pol II initiation was detected in both directions), and 94% of 9,940 active transcription start 

sites detected by CAGE (Fig. 1b). Furthermore, we observed high sensitivity within the 

subsets of GRO-cap peaks overlapping gene bodies (84%), chromHMM promoters (95%) 

and chromHMM enhancers (80%). We applied dREG to an independent cell type, 

GM12878 lymphoblastoid cells, without retraining the classifier. Based on GRO-cap data 

available for GM12878, dREG achieved similar performance in this cell type for all classes 

of regulatory elements tested (Fig. 1b), indicating that the method generalized well across 
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cell types. Finally, we examined the sensitivity of dREG to sequencing depth and data 

quality and found that sensitivity is satisfactory with as few as 40M mapped reads 

(Supplementary Fig. 3). Together, these findings demonstrated that dREG accurately 

identified active TREs across a broad spectrum of GRO-seq and PRO-seq data sets.

dREG enabled us to predict TREs for additional cell types for which GRO-seq or PRO-seq 

data is available. We analyzed existing GRO-seq data sets for MCF-7, IMR90, GM12878, 

and AC16 cell lines8,11,21–23, as well as new data that we generated in four cell types 

analyzed by the ENCODE and Epigenome Roadmap projects, including K562, primary 

CD4+ T-cells, Jurkat leukemia cells, and HeLa carcinoma cells. For each of these new cell 

types, GRO-seq or PRO-seq libraries were produced and sequenced to a depth of 53–375 

million mappable reads (Supplementary Table 3). The dREG model trained on K562 cells 

was applied to each data set. The dREG predictions for each cell type include ~30,000 TREs 

(20,848–37,545), covering ~1.3% (0.82–1.68%) of the human genome, at a median size of 

~1.1 kb. Approximately half of these elements mark active promoters and half mark a subset 

of distal enhancers (Supplementary Fig. 4). The union of these predictions across all eight 

cell types includes 103,096 TREs, covering 4.3% of the human genome.

Four Major Classes of Transcriptional Regulatory Elements

We compared dREG predictions with two complementary sets of TREs: ChromHMM 

predictions of promoters, enhancers, and insulators24, and DNase-I hypersensitive sites 

(DHSs)25,26. ChromHMM predictions are based on genome-wide ChIP-seq assays targeting 

histone modifications and CTCF binding, whereas the DHSs identify regions of ‘open’ 

chromatin where the DNA is accessible to DNase-I cleavage. For the DHSs, we used high-

confidence DNase-I accessible sites, defined as the intersection of Duke and UW DHS 

predictions (Supplementary Fig. 5). After taking the union of these three sets of putative 

TREs (see Methods), we labeled each TRE by the collection of methods that identified it 

(dREG, ChromHMM, and/or DNase-seq).

Our analysis of the labeled TREs indicated that these three methods identified nested sets of 

elements, with the ChromHMM predictions being most inclusive, the DHSs largely forming 

a subset of the ChromHMM predictions, and dREG, in turn, generally narrowing those 

identified by DNase-seq to a smaller subset (Fig. 2a and Supplementary Fig. 6). 

Interestingly, the ChromHMM predictions of insulators showed limited overlap with DNase-

seq or dREG predictions. Thus, we observe four main classes of TREs based on these 

methods: (1) actively transcribed TREs identified by dREG, DNase-seq, and ChromHMM, 

comprising 14–17% (depending on the cell type) of the merged set (+dREG); (2) ‘open’ but 

untranscribed TREs identified by DNase-seq and ChromHMM (excluding the insulator 

predictions) but not dREG, accounting for 10% (−dREG); (3) elements with histone 

modifications indicative of enhancers but that are untranscribed and display either weak 

(16.8%) or no (23.2%) evidence of DNase-I accessibility, accounting for 40% (Marked 

Chromatin Only; or MCO); and (4) the ChromHMM insulator predictions, which commonly 

overlap with DHSs and comprise 25% of all TREs (Insulator). Other combinations of assays 

account for only 1–6% of TREs, and can likely be attributed to experimental biases, false 

positive and/or false negative predictions. Notably, a follow-up analysis suggested that the 
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absence of dREG predictions in the −dREG set cannot be explained by an inadequacy of 

sensitivity or sequencing depth (Supplementary Fig. 7). These observations indicated that 

dREG identified a smaller collection of transcribed TREs that might have functional 

properties that distinguish them from sites predicted using chromatin modifications and/or 

DNase-seq alone.

Functional Properties of Distinct TRE Classes

We investigated the distinctions among the four classes of TREs by comparing their 

genomic distributions with those of complementary assays. First, we characterized the 

enrichments of three histone marks—H3K27ac, H3K9ac, and H3K4me1—among the MCO, 

−dREG, +dREG, and Insulator classes. H3K27ac and H3K9ac denote ‘active’ regulatory 

elements27,28, and H3K4me1 is a universal mark located at both active and so-called 

‘primed’ enhancers29. We found that dREG TREs are strongly enriched for the ‘active’ 

H3K27ac and H3K9ac signals and, accordingly, that the majority of ENCODE peak calls for 

these marks are also identified by dREG (Fig. 2b and Supplementary Fig. 8a–c). In contrast, 

the −dREG and MCO classes show little or no H3K27ac or H3K9ac signal. Moreover, the 

minority of +dREG TREs that are not associated with H3K27ac peak calls nevertheless 

display elevated H3K27ac ChIP-seq signal (Supplementary Fig. 9), suggesting that many 

simply fall below the detection threshold used in peak calling. These observations suggest 

that H3K27ac and +dREG point to the same class of functional element. H3K4me1 is not 

only enriched at dREG TREs, but is also found at high levels in the −dREG and MCO 

classes. Thus, dREG identifies the same genomic regions as detected using ChIP-seq for 

H3K27ac and H3K9ac, and a subset of H3K4me1 peaks, suggesting that it can effectively 

distinguish between ‘active’ and ‘poised’ enhancer classes.

The observation that TREs in the MCO class are not accessible to DNase-I cleavage 

suggests that access to these DNA sequences might be restricted by nucleosomes or higher-

order forms of chromatin structure. We used MNase-seq data to map the locations of 

nucleosomes surrounding all four classes of TREs in K562 cells. We found that TREs in the 

MCO class have a well-positioned nucleosome near their center (Fig. 2C), which likely 

occludes binding by transcriptional activators as well as cleavage by DNase-I. By contrast, 

−dREG enhancers typically contain an array of well-positioned nucleosomes in which the 

central nucleosome appears to have been displaced, whereas +dREG TREs, on average, 

contain a large nucleosome-free region surrounding the center and extending for ~1–2 kbp 

in both directions (although this pattern is most prominent at promoters; Supplementary Fig. 

8d). This observation of positioned nucleosomes in the MCO class, but not in the classes 

additionally characterized by DNase-I hypersensitivity and/or active transcription, further 

supports that these represent fundamentally distinct classes of TREs.

Transcription Factors Activate and Suppress eRNA Synthesis

Fundamental differences among the four TRE classes are likely to be mirrored by patterns of 

TF binding. Therefore, we examined binding of 91 TFs for which high-resolution ChIP-seq 

data is available in K562 cells. Almost 70% of TREs in the MCO class do not bind any TFs 

(Fig. 2d), and most −dREG TREs bind small numbers (i.e., 1–10). dREG TREs, by contrast, 

display a striking enrichment for binding many TFs (18 on average, and 39% bind >20 TFs).
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To identify TFs that contribute to transcriptional activation at TREs, we created a logistic 

regression model with the transcription status of each distal TRE as the response, and the 

presence or absence of ChIP-seq-assayed TF binding events within the TRE (in K562, 

GM12878, MCF-7, and HeLa cells) as the predictors. This model predicts the transcription 

status of a holdout set of DHSs with remarkably high accuracy (Supplementary Fig. 10a; 

AUC= 0.86–0.95), and preforms notably better than a model based only on the absolute 

level of DNase-seq signal intensity (AUC= 0.80 in K562). These observations suggest that 

binding by particular TFs, more than simply the degree of chromatin accessibility, is 

responsible for the differential transcriptional outcomes observed in dREG TREs. This 

regression analysis also provides additional information about the relative importance of 

individual TFs in predicting whether or not a site is transcribed (Supplementary Fig. 10b). A 

comparison of regression coefficients indicates that components of the preinitiation 

complex, the histone acetyltransferase P300, and many sequence-specific activators (e.g., 

AP-1, PU1, CEBPB) are highly predictive of transcription initiation at TREs. By contrast, 

transcriptional co-repressors (e.g., HDACs and TRIM28) are associated with an absence of 

transcription.

Insulator-associated proteins (e.g., CTCF, RAD21, and SMC3) are also associated with an 

absence of transcription. This finding is consistent with the overlap observed between dREG 

sites and either CTCF peak calls (Supplementary Fig. 8c) or raw signal (Supplementary Fig. 

11). Notably, the 18% of CTCF peak calls which do intersect dREG TREs are 

overwhelmingly found in promoters (77%) rather than enhancers (23%). These findings 

strongly suggest that CTCF plays an indirect role in transcriptional regulation.

Predicting Transcription Factor Binding using dREG

Having shown that TF binding is predictive of transcription initiation at TREs, we next 

addressed an inverse question: is transcription at TREs predictive of whether or not a TF is 

bound to DNA sequences matching its cognate motif? Most TFs bind only a small fraction 

of DNA sequences matching their motif30, making TF binding site prediction a challenging 

computational problem. We asked whether dREG could be useful as a surrogate for, or 

complement to, DNase-seq data, which is widely used as an aid in the identification of TF 

binding31–33. As a proof of concept, we chose four transcriptional activators (NRF1, ELF1, 

SP1, and MAX) with a range of motif information contents34 and positive regression 

coefficients in the analysis described above, but otherwise selected at random. For all four 

TFs, we found that dREG scores alone predict the occupancy of motif matches with 

accuracy similar to the PIQ program32, which makes use of DNase-seq data in predicting TF 

binding. For example, for ELF1 (Fig. 3), dREG produces a ROC score 3.8% lower than PIQ 

(AUC= 0.88 [dREG], 0.92 [PIQ]) and both assays identify TF binding sites more accurately 

than motif matches alone (AUC= 0.67). Jointly modeling DNase-seq, dREG, and the motif 

match score improves classification accuracy 2.6–6.6% (AUC= 0.94), exceeding the PIQ 

score in this task. Thus, dREG appears to be a useful complement to DNase-seq based 

models of TF-DNA interaction for sequence-specific activators.
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Enrichment for eQTL and GWAS hits in dREG Predictions

We asked whether +dREG TREs contain the subset of open-chromatin sites that are actively 

regulating gene expression. To explore this possibility, we compared the density of 

expression quantitative trait loci (eQTL) identified in lymphoblastoid cell lines (LCLs)35 

among +dREG, −dREG, and MCO TREs. We found that +dREG TREs in GM12878 LCLs 

contain 6.4–26.3-fold higher eQTL densities in LCLs than in other classes of TRE (Fig. 4a), 

and account for 571 out of 755 of the eQTL that intersect with the functional marks 

considered here (~76%). This observation is partially explained by systematic biases in 

eQTL density for gene promoters, yet if we focus on TREs associated with ‘enhancers’ only, 

we still observe a 2.4–9.8-fold enrichment in eQTL densities in +dREG TREs relative to the 

−dREG, MCO, and Insulator classes (p< 2e-5; Fisher’s Exact Test). This residual 

enrichment cannot be explained by differences in the distributions of the distance of these 

site classes relative to TSS annotations (Supplementary Fig. 12), and suggests that dREG 

TREs are more likely to be actively regulating gene expression than other TREs.

Genome wide association studies (GWAS) generally implicate long haplotype blocks of 

single nucleotide polymorphisms (SNPs), making it challenging to identify SNPs that are 

causally associated with disease processes. Because dREG identifies a relatively small 

subset of active TREs, we speculated that it might be a useful tool for narrowing GWAS 

SNPs for functional validation. To illustrate the utility of dREG in this application, we 

obtained a set of putatively functional GWAS SNPs36. We found that dREG sites detected 

in relevant primary cell types are substantially enriched in GWAS-associated SNPs. For 

example, SNPs associated with autoimmune disorders are enriched in dREG sites in CD4+ 

T-cells and GM12878 LCLs (B-cells), including SNPs for celiac disease (7.4 and 9.7-fold, 

respectively), rheumatoid arthritis (6.9 and 11.2), and type-1 diabetes (4.5 and 5.3). As we 

observed for eQTL, cell-type specific GWAS SNPs are found at higher densities in +dREG 

TREs compared with other functional classes (Fig. 4b). These observations demonstrate that 

dREG can be useful for prioritizing GWAS validation experiments.

Discussion

We have introduced a new high-throughput prediction method, called dREG, for detecting 

active TREs using GRO-seq or PRO-seq data. In combination with a single PRO-seq 

experiment, the dREG program allows investigators to interrogate many aspects of gene 

expression simultaneously, including not only TREs, but also TF binding, expression levels, 

and pausing. This efficiency is vital in a number of applications of current interest, for 

example in cancer genomics and personalized medicine, in which the use of genomics 

technologies is currently limited by sample quantities and the high cost of collecting data in 

large numbers of subjects.

By comparing dREG sites to other functional genomic assays, we demonstrated the 

existence of at least four major classes of TREs in human cells. These classes correspond to 

closed chromatin marked by histone modifications such as H3K4me1 (MCO), DNase-I 

accessible DNA without a dREG signal (−dREG), insulator factor binding (CTCF), and 

transcription initiation detected by dREG (+dREG). Several lines of evidence, including 
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enrichments for eQTL, transcriptional activators, and histone acetylation suggested that 

dREG identifies genomic sites that play a direct and active role in gene regulation.

We discovered three independent classes of regulatory elements that are untranscribed 

(−dREG, MCO, and Insulator). These TREs showed several indications of reduced 

regulatory activity, including a paucity of eQTL (Fig. 4a), depletion of transcription factor 

binding (Fig. 2d), and the absence of histone acetylation (Fig. 2b). Insulators appeared to be 

a distinct functional class, as they were found to be depleted for the functional marks 

examined here, yet their relatively high evolutionary conservation (Supplementary Fig. 13), 

as well as prior work37, strongly suggested that insulators function in various aspects of 

cellular biology. The other two inactive classes of TRE, MCO and −dREG, appeared to have 

distinct mechanisms of inactivation, including the presence of a central nucleosome that 

occludes activator binding (MCO), and either DNA sequence-dependent binding by 

transcriptional repressors, or a lack of binding by transcriptional activators, at open 

chromatin (−dREG). In some cases, we observed changes between these TRE classes in 

different cell types (Supplementary Fig. 14), suggesting that they might reflect intermediates 

in the assembly of active regulatory elements. Future studies will identify the functional 

mechanisms that are responsible for the assembly and activation of TREs, and will further 

elucidate the relationships and mechanistic transitions among these classes of regulatory 

elements.

Online Methods

Training the Support Vector Regression Model

Overview—We treated transcription start site detection using GRO-seq and PRO-seq data 

as a regression problem (hereafter we refer only to GRO-seq, but the same methods apply to 

both sources of data). Our goal was to separate regions of high GRO-seq signal intensity 

into a class in which RNA polymerase originates by initiation and rapidly transitions to 

elongation (positive set, comprised of transcription start sites), and a class through which 

polymerase elongates (negative set, largely comprised of gene bodies). This classification 

problem was addressed using a standard epsilon-support vector regression (SVR), as 

described in the following sections.

GRO-seq Signal Intensity Requirements—We removed from consideration genomic 

positions with very low signal levels, implicitly assigning these positions to the negative set. 

We retained sites meeting either of the following two signal intensity thresholds: one or 

more reads on both the plus and minus strand within a window of 1 kbp, or three or more 

reads within a window of 100 bp on either the plus or minus strand. At these cutoff 

thresholds, 93% of K562 GRO-cap peaks contained at least one informative site in a PRO-

seq library depth of ~40M reads. The remaining sites were segmented into non-overlapping 

50 bp intervals to improve the speed of processing on large datasets.

GRO-seq Feature Vector—GRO-seq read counts were summarized in our model as a 

multi-scale feature vector, as illustrated by the barchart (Fig. 2a). We counted GRO-seq 

reads that mapped in non-overlapping windows on either side of a central base that met the 

signal intensity requirements (as described above). Our approach represented the genome at 
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multiple scales (window sizes). For each scale, we counted reads in the specified number of 

non-overlapping windows both upstream and downstream of the central base. Each scale 

could represent redundant information in the GRO-seq read counts. The final feature vector 

was constructed by concatenating the vectors representing read counts at each scale and 

strand. The specific parameters of the scales and number of windows at each scale were 

optimized using cross-validation (as described below, and depicted in Supplementary Table 

2).

Data Standardization—GRO-seq data was standardized using the logistic function, F(t), 

with parameters α and β, as follows:

where t denotes the read counts in each window. We find it convenient to define the ‘tuning’ 

parameters α and β in terms of a transformed pair of parameters, x and y, such that x 

represents the fractional portion of the maximum read count depth at which the logistic 

function reaches 1 and y represents the value of the logistic function at read counts of 0. The 

relationship of (α, β) to (x, y) is given by the following equations:

(1)

(2)

where max (t) denotes the maximum read depth, as computed separately for each window 

size and strand in the feature vector. In practice, we found it convenient to fix the value of y 

at 0.01 and use x for tuning. We tried values of x between 0.01 and 1.0, and found that the 

optimal AUC was achieved at x = 0.05 (Supplementary Table 1). Using this function in its 

optimized form tends to assign each position a value near 0 or 1, and consequently most of 

the signal for dREG is dependent on where reads are located, rather than on the relative read 

depths.

We also evaluated alternative standardization approaches, including simply dividing the 

reads in each feature vector by their maximum value, but these approaches did not perform 

as well as the logistic function.

Training the dREG Support Vector Regression model—We fit an epsilon-support 

vector regression model using the e1071 R package38, which is based on the libsvm SVM 

implementation39. When training dREG, we assigned a label of 1 to sites intersecting both 

GRO-cap transcription start sites19 and high-confidence DHS, and excluded from the 

training set any sites intersecting a functional mark indicative of a regulatory element but 

not a GRO-cap peak (including ChromHMM enhancers or promoters). All other positions in 

the genome meeting the GRO-seq signal requirements (described above) were assigned a 

score of 0. The final SVR was trained on a matched set of 100,000 loci (comprised of 

50,000 positive and 50,000 negative examples) using PRO-seq data in K562 cells. Sites in 
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the positive set (i.e., GRO-cap peaks) were chosen at random. When selecting the set of 

negative (i.e., non-transcription start site) examples, we chose 25% of sites to enrich for 

positions that were commonly associated with false positives during preliminary testing. 

These include 15% of the negative set that were selected to be within 1–5 kbp of the positive 

regions (to improve the resolution of dREG), and 10% in regions where the 3' ends of 

annotated genes on opposite strands converged (to eliminate a common source of false 

positives). The remaining 75% of negative sites were selected at random from the set of 

positions across the genome meeting the GRO-seq signal requirements (described above).

Optimizing Tuning Parameters—Tuning parameters were optimized on a balanced set 

of 50,000 loci (comprised of 25,000 positive and 25,000 negative examples), and 

performance was evaluated on a holdout set of 2,000. Parameters were chosen to maximize 

the area under the receiver operating characteristic curve (AUC). We first selected 

parameters of the data transformation that maximized the AUC using a fixed feature vector 

(20 windows, each 10, 50, and 500 bp in size). Subsequently we fixed the optimal data 

standardization tuning parameter, x (see Data Standardization section, above), and selected 

the feature vector, including the number and size of windows, which maximized the AUC. 

False positives were defined as sites that did not overlap GRO-cap, DHSs, or ChromHMM 

(promoters, enhancers, or insulators). True positives were sites that overlapped GRO-cap 

HMM predictions19. False negatives were sites that were identified by GRO-cap, but were 

not identified by dREG. True negatives were sites that were not identified by dREG, or any 

of the other assays. Various tuning parameter settings are summarized in Supplementary 

Tables 1 and 2.

Running dREG and Post Processing—We ran dREG on GRO-seq or PRO-seq data in 

eight cell types. We used the SVR model trained in K562 cells to compute the predicted 

score at each position meeting the GRO-seq signal intensity thresholds. To call dREG 

‘peaks’ we thresholded this score at 0.77, which we found returned a ~10% false discovery 

rate (FDR) in two datasets for which extensive data was available (K562 and GM12878). In 

cell types with lower read counts, this score was likely to be conservative, resulting in both a 

lower FDR and lower sensitivity (see Supplementary Fig. 2). Regions meeting the dREG 

signal requirement within 500bp of one another were merged to prevent the independent 

detection of the same promoter or enhancer elements.

dREG Sensitivity to Sequencing Depth and Library Quality—To evaluate the 

sensitivity of dREG to sequencing depth, we subsampled the K562 data by removing reads 

at random from the bed files representing mapped reads. We ran the dREG algorithm as 

described, either with or without re-training the model on the reduced read depth (both are 

plotted in Supplementary Fig. 2). Artificial low-quality datasets were created by choosing 

genomic coordinates with mapped reads at random and redistributing their reads to 

neighboring sites in a 50 kbp (non-overlapping) window. In each window, locations were 

retained with probability proportional to the original read density at that site. This procedure 

was designed to re-create the profile observed in low-quality data, in which large numbers of 

reads tend to align on a small number of positions, creating the appearance of ‘spikes’ when 

viewed on the genome browser. The asymptotic unique reads metric used to evaluate data 
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quality was defined as the number of unique genomic coordinates in a GRO-seq library in 

the limit as the number of mapped reads approaches infinity. This value was estimated by 

subsampling the read depth and measuring the slope of the number of unique locations 

covered as a function of the library sequencing depth. We interpolated the number of 

uniquely covered genomic coordinates to 1% of its final value assuming that the slope of the 

read depth did not change.

Software availability—A software package implementing the dREG approach to TRE 

identification is freely available for download from https://github.com/Danko-Lab/dREG.

GRO-seq and PRO-seq Library Prep

Extraction of Primary CD4+ T-cells from Blood Samples—Blood samples (80–

100mL) from three human individuals were collected at Gannett Health Services at Cornell 

University in compliance with Cornell IRB guidelines. Informed consent was obtained from 

all donors. Mononuclear cells were isolated using density gradient centrifugation, and CD4+ 

cells were extracted using CD4 microbeads from Miltenyi Biotech (130-045-101), following 

the manufacturer’s instructions. Primary CD4+ T-Cells were kept in culture (RPMI-1640, 

supplemented with 10% FBS) for 1–3 hours to recover homeostasis.

Cell Culture Conditions and PRO-seq Library Preparation—Both primary and 

Jurkat CD4+ T-cells were maintained in RPMI-1640 media supplemented with 10% FBS, 

and treated for 30 minutes with low amounts of DMSO and ethanol (as they are controls for 

a separate experiment, manuscript in preparation). To isolate nuclei, cells were resuspended 

in 1mL lysis buffer (10mM Tris-Cl pH 8, 300mM sucrose, 10mM NaCl, 2mM MgAc2, 

3mM CaCl2, and 0.1% NP-40). Nuclei were washed in 10mL of wash buffer (10mM Tris-Cl 

pH 8, 300mM sucrose, 10mM NaCl, and 2mM MgAc2) to dilute free NTPs. Nuclei were 

washed in 1mL, and subsequently resuspended in 50uL, of storage buffer (50mL Tris-Cl pH 

8.3, 40% glycerol, 5mM MgCl2, and 0.1mM EDTA), snap frozen in liquid nitrogen, and 

kept for up to 6 months before preforming PRO-seq. HeLa cells were maintained in DMEM 

media supplemented with 10% FBS and 1× pen/strep (Gibco). Cells were harvested by 

rinsing the tissue culture plate several times in 1× PBS followed by scraping in 10ml of 1× 

PBS. Cells were pelleted by centrifugation and nuclei were isolated as described above. 

K562 cells were maintained in culture and nuclei were isolated exactly as previously 

described19. K562 and HeLa carcinoma cells were purchased from the American Type 

Culture Collection (ATCC; CCL-243 and CCL-2.2, respectively). GM12878 cells were 

obtained from the Coriell Institute for Medical Research (GM12878). Jurkat T-cells were 

obtained from the Mangelsdorf and Kliewer labs at UT Southwestern. All cells, except 

primary and Jurkat CD4+ T-cells, were tested for mycoplasma prior to starting experiments. 

For all cell types, PRO-seq or GRO-seq was performed as exactly described8,16, and 

sequenced using an Illumina Hi-Seq 2000 at the Cornell University Biotechnology Resource 

Center.

Comparison to ChromHMM and DNase-I data

We compared dREG TREs to ENCODE DNase-I and ChromHMM data. For ChromHMM 

data, we selected the set of sites annotated as promoter, enhancer, or insulator using data 
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from GM12878, K56224, HeLa40, or CD4+ T-cells41. We collected ENCODE DNase-I peak 

calls from the UW or Duke DNase-I-seq protocol2, and selected peaks identified using both 

experimental assays. To compare different experimental assays, we merged sites identified 

by ChromHMM, DNase-I-seq, and dREG, and labeled each merged site based on the 

experimental assays which identified it. TREs were subsequently divided into four 

independent, non-overlapping classes based on the set of experimental peak calls that they 

intersected. Site classes were defined as those sites that intersected: (1) dREG, DNase-I-seq, 

and ChromHMM (+dREG), (2) ChromHMM insulators but not dREG (Insulator), (3) 

DNase-I-seq and ChromHMM, but not dREG (−dREG), and (4) ChromHMM, but not 

DNase-I-seq or dREG (Modified Chromatin Only; or MCO). All operations in these 

analyses were performed using the bedops42, bedtools43, or bigWig software packages.

Logistic Regression Classifier of DNase-I peaks with and without dREG

We used a logistic regression classifier to evaluate the how accurately transcription factors 

(TFs) could be used to distinguish between DNase-I peaks with and without the presence of 

dREG. We collected the set of all high confidence DNase-I peaks, consisting of the 

intersection between the UW and Duke assays. To improve our confidence about the 

transcription status of each DNase-I peak, we required that dREG-positive sites contain 

dREG scores greater than 0.8, and dREG-negative sites have scores less than 0.3.

We modeled the presence or absence of dREG at a particular DNase-I peak as the response 

in a logistic regression. Co-variants consist of the presence or absence of each TF assayed in 

the cell type of interest. To determine the presence or absence of each TF, we collected 

uniform peak calls for all ChIP-seq data from the ENCODE project. For MCF-7 cells, 

ENCODE data was supplemented with a set of 37 TFs for which ChIP-chip data was 

available44. TFs having multiple ChIP biological replicates were associated with each peak 

if any of the replicates was enriched at that peak. The significance of the direction of effect 

for each TF on the presence of a dREG signal was determined using a 1,000-sample 

bootstrap, in which we chose one TF at random to omit from the regression analysis during 

each iteration. Supplementary Fig. 13b plots the set of all TFs for each cell type whose 

direction of effect is consistent across each of the bootstrap iterations.

Identification of TF Binding using dREG, DNase-I and a joint model

We identified all occurrences of motifs associated with four transcription factors (NRF1, 

ELF1, MAX, and SP1) in hg19 using the PIQ program with the default log-odds score 

threshold of 5. Each position was classified as ‘bound’ or ‘unbound’ to the TF of interest 

using ENCODE ChIP-seq peak calls in the appropriate cell type. ROC plots profiling the 

accuracy of binding detection were collected by varying the max dREG score in a 200 bp 

window (treating unscored sites as a score of 0), DNase-I read counts in a 200 bp window 

around each putative motif matching the canonical PWM, or more stringent matches to the 

canonical TF motif. PIQ was run using the instructions provided by the authors. To evaluate 

the accuracy of PIQ we varied a threshold for the predicted positive-predictive value (PPV) 

output by the PIQ program at each site. We also evaluated a joint model which used data 

from dREG, PIQ PPV, the motif, and the absolute amount of Pol II mapping to the forward 

and reverse strand (within 200 bp), using each data source as a covariate in a logistic 
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regression, and modeling the presence of a ChIP-seq peak at each motif match as the 

response variable.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
dREG schematic and validation. (a) High PRO-seq signal intensity marks TREs (highlighted 

with pink background) and gene bodies (yellow background). dREG is a shape detector 

trained to recognize the characteristic pattern of TREs in PRO-seq data (#1). After training, 

dREG can be used to identify TREs using a new PRO-seq data set (red peaks) (#2). Browser 

shot compares dREG-predicted TREs to ChromHMM-predicted promoters (red), enhancers 

(yellow), and insulators (green) (#3). (b) Bar charts (left) represent the genome-wide 

sensitivity of dREG for various classes of TRE at a 5% (line) or 10% (bar) false discovery 

rate in K562 (pink) and GM12878 (blue) cells. Classes of regulatory elements represent 

GRO-cap transcribed DHS (Transcribed DHS), transcription start sites identified by CAGE 

(CAGE TSS), histone acetylation associated with DHS (Acetyl DHS), GRO-cap transcribed 
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ChromHMM promoters (Promoters), GRO-cap transcribed chromHMM enhancers 

(Enhancers), GRO-cap TSS inside annotated Gene Bodies (Gene Body), and GRO-cap pairs 

(GRO-cap Pairs). Pie charts (right) represent the fraction of sites aligning within RefSeq 

transcription start sites (TSS), introns, or intergenic regions in each validation set.
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Figure 2. 
Comparison of putative TREs detected using dREG, DNase-I, and ChromHMM. (a) Four-

way Venn diagram depicting the relationships among separate genomic assays, which 

support the existence of four distinct classes of regulatory element. Numbers give the 

rounded overall fraction of TREs that fall into the specified intersection. TREs discovered 

using multiple assays were classified as +dREG, −dREG, Insulator, or as modified 

chromatin only (MCO). (b) Comparison of read-densities for H3K27ac (left) and H3K4me1 

(right) in each class of functional element. (c) Distribution of MNase-seq reads in the 

+dREG (red), −dREG (black), and modified chromatin only classes (MCO; blue). (d) 

Histogram compares the number of transcription factors found in each of the four functional 

classes.
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Figure 3. 
Sequence-specific transcription factors identified using dREG transcribed TREs. ROC plot 

shows the accuracy of predicting ELF1 binding to strong matches to the ELF1 consensus 

binding motif (sequence logo shown) using PIQ (black; AUC= 0.92), dREG (red; AUC= 

0.88), the DNA sequence motif (gray; AUC= 0.67), or a joint logistic regression model 

considering all three variables (blue; AUC= 0.94). Motif matches that intersect ENCODE 

ChIP-seq peak calls were used as the set of true binding sites.
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Figure 4. 
eQTL and GWAS SNP enrichments in the four classes of functional element. (a) The 

density of eQTL (n= 755) per site found in +dREG (further divided into promoters and 

enhancers using ChromHMM), −dREG, modified chromatin only (MCO), and Insulator 

classes. The asterisk indicates significantly lower eQTL densities than in dREG enhancers 

by a Fisher’s exact test (P<2×10−5). (b) The density of GWAS SNPs that correlate with cell-

type specific phenotypes (autoimmune disorders) in GM12878, a B-cell line (blue), and 

primary CD4+ T-cells (red).
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