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Extending reference assembly models
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Abstract

The human genome reference assembly is crucial for
aligning and analyzing sequence data, and for
genome annotation, among other roles. However, the
models and analysis assumptions that underlie the
current assembly need revising to fully represent
human sequence diversity. Improved analysis tools
and updated data reporting formats are also required.
complex structural variation, and then released GRCh37
using this new model [10]. The release of GRCh37 also
Background
One of the flagship products of the Human Genome
Project (HGP) was a high-quality human reference assem-
bly [1]. This assembly, coupled with advances in low-cost,
high-throughput sequencing, has allowed us to address pre-
viously inaccessible questions about population diversity,
genome structure, gene expression and regulation [2-5]. It
has become clear, however, that the original models used
to represent the reference assembly inadequately represent
our current understanding of genome architecture.
The first assembly models were designed for simple

‘linear’ genome sequences, with little sequence variation
and even less structural diversity. The design fit the
understanding of human variation at the time the HGP
began [6]. The HGP constructed the reference assembly
by collapsing sequences from over 50 individuals into a
single consensus haplotype representation of each chromo-
some. Employing a clone-based approach, the sequence of
each clone represented a single haplotype from a given
donor. At clone boundaries, however, haplotypes could
switch abruptly, creating a mosaic structure. This design
* Correspondence: deanna.church@personalis.com; schneiva@ncbi.nlm.nih.gov;
rd@sanger.ac.uk; flicek@ebi.ac.uk
1Personalis Inc., Menlo Park, CA 94025, USA
2National Center for Biotechnology Information, National Library of Medicine,
NIH, Bethesda, MD 20894, USA
14Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus,
Hinxton, Cambridge CB10 1SD, UK
7European Molecular Biology Laboratory, European Bioinformatics Institute,
Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
Full list of author information is available at the end of the article

© 2015 The article is a work of the United Sta
available for any work of the United States go
introduced errors within regions of complex structural
variation, when sequences unique to one haplotype pre-
vented construction of clone overlaps. The assembly
therefore inadvertently included multiple haplotypes in
series in some regions [7-9].
The Genome Reference Consortium (GRC) began

stewardship of the reference assembly in 2007. The GRC
proposed a new assembly model that formalized the in-
clusion of ‘alternative sequence paths’ in regions with

marked the deposition of the human reference assembly
to an International Nucleotide Sequence Database
Collaboration (INSDC) database, providing stable,
trackable sequence identifiers, in the form of accession
and version numbers, for all sequences in the assembly.
The GRC developed an assembly model that was incorpo-
rated into the National Centre for Biotechnology Information
(NCBI) and European Nucleotide Archive (ENA) assem-
bly database that provides a stable identifier for the collec-
tion of sequences and the relationship between these
sequences that comprise an assembly [11]. Subsequent
minor assembly releases added a number of ‘fix patches’
that could be used to resolve mistakes in the reference se-
quence, as well as ‘novel patches’ that are new alternative
sequence representations [10].
The new assembly model presents significant advances

to the genomics community, but, to realize those ad-
vances, we must address many technical challenges. The
new assembly model is neither haploid nor diploid - in-
stead, it includes additional scaffold sequences, aligned
to the chromosome assembly, that provide alternative
sequence representations for regions of excess diversity.
Widely used alignment programs, variant discovery and
analysis tools, as well as most reporting formats, expect
reads and features to have a single location in the refer-
ence assembly as they were developed using a haploid
assembly model. Many alignment and analysis tools
penalize reads that align to more than one location
under the assumption that the location of these reads
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Table 1 Examples of regions with alternative loci, sequences
within these regions and genes unique to them

Region name Sequence Chromosome Unique genes

APOBEC GL383583.2 22 APOBEC3A_B

MHC GL000250.2 6 HLA-DRB2

GL000251.2 HLA-DRB3

GL000252.2 HLA-DRB4

GL000253.2 HLA-DRB7

GL000254.2

GL000255.2

GL000256.2

KI270758.1

CCL5_TBC1D3 KI270909.1 17 CCL3L1

CCL4L1

CCL3P1

CYP2D6 KB663069.1 22 LOC101929829
(CYP2D6 pseudogene)

LRC_KIR KI270938.1, 19 LILRA3

GL949747.2

GL000209.2, KIR2DS1

GL949747.2

KI270882.1,

KI270887.1,

KI270890.1,

KI270916.1,

KI270921.1

TRB KI270803.1 7 TRBV5-8
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cannot be resolved owing to paralogous sequences in
the genome. These tools do not distinguish allelic dupli-
cation, added by the alternative loci, from paralogous
duplication found in the genome, thus confounding
repeat and mappability calculations, paired-end place-
ments and downstream interpretation of alignments in
regions with alternative loci.
To determine the efforts needed to facilitate use of the

full assembly, the GRC organized a workshop in con-
junction with the 2014 Genome Informatics meeting in
Cambridge, UK (http://www.slideshare.net/GenomeRef).
Participants identified challenges presented by the new
assembly model and discussed ways forward that we
describe here.

Towards the graph of human variation
A graph structure is a natural way to represent a
population-based genome assembly, with branches in
the graph representing all variation found within the
source sequences. Most assembly programs internally
use a graph representation to build the assembly, but
ultimately produce a flattened structure for use by
downstream tools [12-14]. Recently, formal proposals
for representing a population-based reference graph
have been described [15-17]. The newly formed Global
Alliance for Genomics and Health (GA4GH) is leading
an effort to formalize data structures for graph-based
reference assemblies, but it will likely take years to develop
the infrastructure and analysis tools needed to support these
new structures and see their widespread adoption across
the biological and clinical research communities [18].
The introduction of alternative loci into the assembly

model provides a stepping-stone towards a full graph-
based representation of a population-based reference
genome. The alternative loci provided by the GRC are
based on high-quality, finished sequence. Although it
is not feasible to represent all known variation using
the alternative locus scheme, this model does allow us
to better represent regions with extreme levels of di-
versity. Alternative loci are not meant to represent all
variation within a population, but rather provide an
immediate solution for adding sequences missing from
the chromosome assembly. In practice, alternative locus
addition is limited by the availability of high-quality
genomic sequence, and the GRC has focused on repre-
senting sequence at the most diverse regions, such as the
major histocompatibility complex (MHC). The representa-
tion of all population variation is better suited to a graph-
based representation. The high quality of the sequence at
these locations provides robust data to test graph imple-
mentations. Additionally, because both NCBI and Ensembl
have annotated these sequences, we can also begin to
address how to annotate graph structures at these com-
plex loci.
While GRCh37 had only three regions containing nine
alternative locus sequences, GRCh38 has 178 regions
containing 261 alternative locus sequences, collectively
representing 3.6 Mbp of novel sequence and over 150
genes not represented in the primary assembly (Table 1).
The increased level of alternative sequence representa-
tion intensifies the urgency to develop new analysis
methods to support inclusion of these sequences. Inclu-
sion of all sequences in the reference assembly allows us
to better analyze these regions with potentially modest
updates to currently used tools and reporting structures.
Although the addition of the alternative loci to current
analysis pipelines might lead to only modest gains in
analysis power on a genome-wide scale, some loci will
see considerable improvement owing to the addition
of significant amounts of sequence that cannot be
represented accurately in the chromosome assembly
(Figure 1).
Omission of the novel sequence contained in the alter-

native loci can lead to off-target sequence alignments,
and thus incorrect variant calls or other errors, when a
sample containing the alternative allele is sequenced and
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Figure 1 Histogram displaying unique sequence per alternative
locus. While the vast majority of alternative loci contribute less than
50 kb of unique sequence, some contribute well over 100 kb of
novel sequence.

Figure 2 (a) Alignment of decoy-specific reads to GRCh38. To identify
traces01/compress/1KG.p2/NA19200.mapped.ILLUMINA.bwa.YRI.low_covera
NA12878.mapped.ILLUMINA.bwa.CEU.low_coverage.20120522.8levels.csra. U
false; [n] (maximum number of allowed errors): 6; [M] (maximum allowed m
uniquely aligned to SN:hs37d5 (the decoy). As a control, these reads were
(GCF_000001305.13), chr. MT (GCF_000006015.1) and the decoy. Collectivel
decoy sequence in the updated assembly, the reads were aligned to a targ
and chr. MT (GCF_000006015.1) (referred to as GRCh38pm) or the full GRCh
that aligned only to the decoy (by SRPRISM) when using GRCh37pmd as th
of decoy sequences in GRCh38. Upper panel: graphical view of NT_187681.1,
gene annotations are shown in green. Two components (AC226006.2 and AC
decoy sequences were derived (AC208587.4:7500–12511, AC226006.2:5581–87
from the chromosome. The alignment of the decoy fragments and GRCh3
mismatch; blue tick, deletion; thin red line, insertion). Note that the decoy
chromosome. Lower panel: graphical view of NC_000011.10, GRCh38 chr.1
to this region for GRCh38 is a fosmid from which decoy sequence was de
the decoy adds exonic sequence from MUC2 that is missing from compon
NT_187681.1 to the alternative scaffold are shown as gray bars (red tick, m
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aligned to only the primary assembly. Using reads simu-
lated from the unique portion of the alternative loci, we
found that approximately 75% of the reads had an off-
target alignment when aligned to the primary assembly
alone. This finding was consistent using different align-
ment methods [10]. The 1000 Genomes Project also ob-
served the detrimental effect of missing sequences and
developed a ‘decoy’ sequence dataset in an effort to
minimize off-target alignments [19,20]. Much of this
decoy has now been incorporated into GRCh38, and
analysis of reads taken from 1000 Genomes samples that
previously mapped only to the decoy shows that ap-
proximately 70% of these now align to the full GRCh38,
with approximately 1% of these reads aligning only to
the alternative loci (Figure 2).
We foresee many computational approaches that allow

the inclusion of all assembly sequences in analysis pipelines.
To better support exploration in this area, we propose
decoy-specific reads, the following read sets were used: /panfs/
ge.20120522.8levels.csra and /panfs/traces01/compress/1KG.p2/
sing SRPRISM [26] (with parameters [p] (force paired/unpaired search):
emory usage): 2048.) reads were extracted with MAPQ >20 that

aligned to a target set comprising the GRCh37 primary assembly unit
y, this target set is referred to as GRCh37pmd. To assess capture of the
et set comprising the GRCh38 primary assembly (GCF_000001305.14)
38 assembly (GCF_000001405.26). A captured read was defined as one
e target set, and also aligned to GRCh38pm or full. (b) Incorporation
a GRCh38 alternative loci scaffold. Blue bars are assembly components;
208587.4, highlighted in red) in this alt scaffold are fosmids from which
70, AC226006.2:20483–21626). The decoy sequences represent variants
8 chr. 11 to the alternative scaffold are shown as gray bars (red tick,
fragments align to regions that are missing from the reference
1. An assembly component (AC239832.2, highlighted in red) added
rived (AC239832.3:6602–10993, AC239832.3:24434–27364). In this case,
ent AC139749.4. The alignments of the decoy fragments and
ismatch; blue tick, deletion; thin red line, insertion).
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some improvements to standard practices and data struc-
tures that will facilitate future development.

� Enhancement of standard reporting formats (such as
BAM/CRAM, VCF/BCF, GFF3) so that they can
accommodate features with multiple locations.
Doing so while maintaining the allelic relationship
between these features is crucial [21-24].

� Adoption of standard sequence identifiers for
sequence analysis and reporting. Using shorthand
identifiers (for example, ‘chr1’ or ‘1’) to indicate the
sequence is imprecise and also ignores the presence
of other sequences in the assembly. In many cases,
other top-level sequences, such as unlocalized
scaffolds, patches and alternative loci, have a
chromosome assignment but not chromosome
coordinates. These sequences are independent of
the chromosome assembly coordinate system and
have their own coordinate space. Alternative loci
are related to the chromosome coordinates
through alignment to the chromosome assembly.
Developing a structure that treats all top-level
sequences as first-class citizens during analysis is
an important step towards adopting use of the
full assembly in analysis pipelines.

� Curation of multiple sequence alignments of the
alternative loci to each other and the primary path.
Currently, pairwise alignments of the alternative loci
to the chromosome assembly are available to provide
the allelic relationship between the alternative locus
and the chromosome. However, these pairwise
alignments do not allow for the comparison of
alternative loci in a given region to each other. These
alignments can also be used to develop graph
structures. The relationship of the allelic sequences
within a region helps define the assembly structure,
and the community should work from a single set of
alignments. These should be distributed with the
GRC assembly releases.

Recently, the GRC has released a track hub [25] that al-
lows for the distribution of GRC data using standard track
names and content (http://ngs.sanger.ac.uk/production/
grit/track_hub/hub.txt). Additionally, the GRC has created
a GitHub page to track development of tools and resources
that facilitate use of the full assembly (https://github.com/
GenomeRef/SoftwareDevTracking).

Concluding remarks
As we gain understanding of biological systems, we must
update the models we use to represent these data. This
can be difficult when the model supports common infra-
structure and analysis tools used by a large swath of the
scientific community. However, this growth is crucial in
order to move the scientific community forward. While
adoption of this new model will take substantial effort,
doing so is an important step for the human genetics
and broader genomics communities. We now have an
opportunity and imperative to revisit old assumptions and
conventions to develop a more robust analysis framework.
The use of all sequences included in the reference will
allow for improved genomic analyses and understanding
of genomic architecture. Additionally, this new assembly
model allows us to take a small step towards the realization
of a graph-based assembly representation. The evolu-
tion of the assembly model allows us to improve our un-
derstanding of genomic architecture and provides a
framework for boosting our understanding of how this
architecture impacts human development and disease.
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