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Abstract
Genomic analysis of human hepatocellular carcinoma (HCC) is potentially confounded by

the differentiation state of the hepatic cell-of-origin. Here we integrated genomic analysis of

mouse HCC (with defined cell-of-origin) along with normal development. We found a major

shift in expression of Wnt and RXR-α pathway genes (up and down, respectively) coincident

with the transition from hepatoblasts to hepatocytes. A combinedWnt and RXR-α gene sig-

nature categorized HCCs into two subtypes (high Wnt, low RXR-α and lowWnt, high

RXR-α), which matched cell-of-origin in mouse models and the differentiation state of

human HCC. Suppression of RXR-α levels in hepatocytes increased Wnt signaling and en-

hanced tumorigenicity, whereas ligand activation of RXR-α achieved the opposite. These

results corroborate that there are two main HCC subtypes that correspond to the degree of

hepatocyte differentation and that RXR-α, in part via Wnt signaling, plays a key functional

role in the hepatocyte-like subtype and potentially could serve as a selective

therapeutic target.

Introduction
Most hepatocellular carcinomas (HCCs) develop after years of chronic liver inflammation dur-
ing which time small nodular lesions develop from clonal expansion of hepatocytes and/or he-
patic progenitor cells [1]. Recurrent genetic alterations that drive subsequent progression to
malignancy include mutation of the β-catenin proto-oncogene CTNNB1 [2], co-amplification
of the neighboring proto-oncogenes FGF19 and CCND1 at 11q13.3 [3], or amplification or
other genomic activation of the proto-oncogenesMET andMYC [4,5]. In addition, recurrent
alterations affecting the tumor suppressor genes TP53 and DLC1 have been shown to promote
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HCC progression [6,7], and more recently, recurrent mutations affecting antioxidant response
genes NFE2L2 and KEAP1 and histone methyltransferases genes of theMLL family have been
found in multiple cohorts of hepatocellular carcinoma [8–10]. The only clinical trials of agents
that target this set of oncogenic drivers in HCC are ones involving inhibitors of Met, although
there is no biomarker guiding selection of patients in those trials [11].

Another possible avenue to matching HCC patients with specific treatments is through
identification of molecular subtypes by transcriptional profiling. One study found subgroups
with high Akt activation and proposed that these subtypes might respond well to inhibition of
Akt [12]. However there are conflicting reports on the relationship between oncogenetic alter-
ations and the molecular subtypes in HCC found by transcriptome profiling. In two studies,
mutational activation of CTNNB1 was found to be associated with Wnt pathway activation
[12,13], whereas in a subsequent larger study, activating mutations were enriched in a class of
differentiated hepatocyte-like tumors but Wnt pathway activation itself was associated with a
class of tumors with wild-type CTNNB1 [14]. Similarly, tumors with TP53mutations were as-
sociated with a proliferative class in one study but evenly distributed amongst all classes in a
different study [12,13]. Such inconsistencies add uncertainty to the preclinical development of
therapies that target specific pathways and to advancement of predictive biomarkers.

A major confounding factor in genomic analysis of HCC is that the tumor itself could arise
from clonal expansion of a variety of starting normal cells along the hepatocyte lineage. In ro-
dents, diethylnitrosamine (DEN) hepatocarcinogenesis oncogenically transforms mature hepa-
tocytes, whereas the carcinogen furan activates bile duct progenitor cells giving rise to
cholangiocellular carcinomas, and other carcinogenic regimens leading to HCC are thought to
target either hepatoblast-like bipolar progenitor cells or the periductual stem cell [15]. There is
also evidence based on comparative gene expression profiling of human tumors with rodent
models that some HCC are derived from hepatic progenitor cells whereas others are not and
instead retain differentiated features of hepatocytes [16].

Here we performed comparative genomic analysis of normal liver development and its rela-
tionship to both human hepatocellular (HCC) and mouse liver cancer models. Comparative
oncogenomic approaches have previously been used to gain insight into the development of
human HCC. Comparing mouse HCC models to their human counterparts led to the discovery
that activating mutations of β-catenin co-occur with activation of the Met protein-tyrosine ki-
nase, pinpointing a previously unappreciated cooperation between Wnt and Met signaling in
HCC [17]. In another case, comparison of copy number alterations led to the identification of
YAP and IAP1 as chromosomally-linked cooperating oncogenes [18]. In this report we used
comparative genomic analysis to address some unanswered questions regarding the relation-
ships between recurrent genetic alterations, differentiation state, and pathway activation in
HCC.

Results

Comparative oncogenomics of mouse and human HCC
Previously we used array CGH (ROMA) to discover focal amplicons in eight tumors derived
from two different hepatoblast transplantable mouse HCCmodels. These focal amplicons in-
cluded aMyc amplicon found in RAS/p53-/- hepatoblast tumors and a YAP1/BIRC2 amplicon
found in several independentMYC/p53-/- hepatoblast tumors [18]. Here we profiled copy
number alterations in an additional thirty mouse HCC tumors, including ten additional trans-
plantable hepatoblast-derived tumors and twenty tumors derived from transgenic mice. The
transplantable hepatoblast-derived tumors were generated from hepatoblasts isolated from ei-
ther p53-/- or Cdkn2a-/- mice that by retroviral transfection given a second oncogenic hit
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(overexpression ofMYC, activated RAS, or activated RHO, or shRNA-silencing of DLC1). The
twenty tumors from transgenic mice included ten expressing humanMET specifically in hepa-
tocytes under the control of doxycycline [17], and ten from mice expressing the humanMYC
gene driven by the albumin promoter. The most frequently observed focal copy number alter-
ation was the YAP1/BIRC2 amplicon (9qA1), observed in five of the transplantable hepato-
blast-derived tumors. Other focal amplicons were observed only once and only in the
transplantable hepatoblast-derived tumors, and included theMYC and RNF19 amplicons pre-
viously reported, and amplicons containingMTTP (3qG3), PKN2 (3qH1), FGFR2 (7qF3),
STK32C (7qF4), and SCN3B (9qA5) (S1 Table). We did not observe any focal deletions and fur-
thermore we observed neither focal nor broad copy number alterations in any of the twenty tu-
mors isolated from transgenic models. There were relatively few broad copy number gains or
losses in tumors arising from the transplantable mouse tumors, with broad losses involving
chromosomes 4, 7, and 12 and broad gains involving chromosomes 2, 3, 5, 6, 8, 15, and 19 ob-
served in 11% to 28% of the 18 transplantable mouse tumors, compared to the more frequent
broad copy number alterations observed in human HCC (Fig. 1).

Since the low frequency of DNA copy number alterations in mouse HCC tumors did not
lend itself to a comprehensive comparison with copy number alterations in human HCCs, we
turned our attention to comparison of gene expression alterations. We first focused on gene ex-
pression alterations in mouse tumors, as their initiating oncogenic lesions are known and they
are less heterogeneous than human HCC. Only sixteen of the thirty mouse tumors analyzed for
DNA copy number alterations yielded RNA suitable for genome-wide analysis, so we added an
additional four mouse hepatoblastomas that were generated by hydrodynamic tail-vein injec-
tion of an inducibleMYC expression plasmid [19]. Thus we analyzed three different types of
mouse HCC models driven byMYC overexpression: the transplantable hepatoblast model
where p53-/- hepatoblasts were retrovirally transduced with aMYC overexpression plasmid, a
hepatoblastoma model where tail-vein injection is used to delivery a TET-inducibleMYC
transgene directly into liver cells (the presumed cell-of-origin was deduced from histological
analysis of the resultant tumors[4]), and a classic transgenic model where the hepatocyte-
specific ALB promoter is used to driveMYC expression. We analyzed in parallel normal mouse
liver tissue taken from different stages of development. By unsupervised cluster analysis of the
transcriptomes of these samples that there were two major clusters (Fig. 1). These two clusters
were comprised of samples with similar stages of liver differentiation (Fig. 1 and S1 Fig.). Tu-
mors that either were known[18] or suspected[4] to originate from hepatoblasts, regardless of
whether the initiating oncogene wasMYC or RAS, grouped together with hepatoblast-enriched
fetal liver from embryonic day 14.5, whereas other mouse tumors initiated byMYC orMET
but that arise from hepatocytes grouped together with normal liver at later stages of develop-
ment (Fig. 1 and S1 Fig.; a complete listing describing the mouse tumors is found in S3 Table).

Wnt/β-catenin pathway genes and retinoic acid receptor X (RXR-α)
pathway genes are major features of the two subtypes of mouse HCC
We then used pathway analysis of the transcriptome data to determine what pathways were
most significantly altered between the two groups. We used two commonly used computation-
al pathway tools (Ingenuity and GSEA) to determine which pathways (as defined by gene sets)
showed statistically significant, concordant expression differences between the two groups.
Two of the ten most significantly altered pathways pinpointed by Ingenuity involved RXR-α, a
nuclear hormone receptor which forms heterodimers with several other nuclear hormone re-
ceptors including RARs, LXRs, FXR, and PPAR-□ [20] (Fig. 2A). Three of the top ten most
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significantly altered pathways pinpointed by GSEA involved Wnt/β-catenin signaling (Fig. 2B).
Both of these pathways have established roles in liver development [21] [22].

We then tested whether, instead of the entire transcriptome, a much smaller gene set de-
fined by RXR-α and Wnt signaling could be used to similarly categorize mouse model HCCs.
We formed the gene signature by combining Wnt signaling genes (Reactome [23]) with
RXR-α genes (Ingenuity Systems Inc.) (S2 Table). As with the clustering based on all genes,
clustering with the combined pathway gene signature partitioned mouse model HCCs into

Fig 1. Comparative genomic analysis of human andmousemodel HCC. (A) Frequency plots of copy number alterations in human HCC. Frequency of
gains (red) and losses (green) as determined by ROMA array CGH analysis of 101 human HCC samples. (B) Frequency plots of copy number alterations in
mouse model HCC as determined by ROMA array CGH analysis in 38 mouse model HCC samples. (C) Unsupervised hierarchical clustering of expression
profiles of various mouse HCC tumors and normal stages of liver development. See S3 Table for a description of the different samples.

doi:10.1371/journal.pone.0118480.g001
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two subtypes (high Wnt, low RXR-α and low Wnt, high RXR-α) that corresponded to the
cell-of-origin (S2 Fig.).

Reciprocal relationship between RXR-α andWnt pathways in normal
liver development
We then examined the relationship between different stages of normal liver development and
the transcriptional targets of RXR-α andWnt signaling. We used unsupervised clustering to
find patterns in the expression levels of these transcriptional targets from liver samples isolated
at embryonic days E14.5 and E18.5 as well as later postnatal stages (P5 and P56). This analysis
revealed a major shift in the expression of the transcriptional targets of both pathways occur-
ring between E14.5 and E18.5, with transcriptional targets for Wnt signaling upregulated at
E14.5 and down regulated in E18.5 and the opposite result for transcriptional targets of RXR-α
signaling (Fig. 3A). The pattern established by E18.5 was maintained during later stages
(Fig. 3A). In an independent transcriptome dataset covering several different stages of liver de-
velopment, there was a similar shift involving both Wnt and RXR-α pathway transcriptional
targets occurring between E16 and birth (S3 Fig.). Together, these results demonstrate that a
major shift in the activity of both the Wnt and the RXR-α pathways occurs between E16
and E18.5.

To confirm these findings, we used transcriptional-reporter assays and found that there was
a 2-fold down-regulation of Wnt signaling in E18.5 immature hepatocytes relative to E14.5

Fig 2. Pathways that distinguish the twomajor clusters of mouse HCC. Top ten most significantly different pathways based on gene expression of the
two major clusters of mouse HCC and normal liver samples determined by GSEA (A) and Ingenuity (B).

doi:10.1371/journal.pone.0118480.g002
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hepatoblasts (Fig. 3B), concurrent with a near 2-fold reduction in RXR-α signaling (Fig. 3C).
We also determined that there was a major increase in the levels of RXR-αmRNA and protein
during the transition from hepatoblasts to immature hepatocytes (Fig. 3D and 3E).

CombinedWnt and RXR-α gene signature classifies human HCC into
two subtypes
We then used the combined Wnt and RXR-α pathway gene signature to analyze human HCC.
Unsupervised clustering with this signature using the Boyault et al. dataset [12] revealed two
major classes, one that exhibited higher expression of Wnt transcriptional targets and lower ex-
pression of RXR-α transcriptional targets (Wnt high, RXR-α low), and the opposing group
(Wnt low, RXR-α high) (Fig. 4), similar to the classification we observed with the signature in
mouse HCC (S2 Fig.). Additionally, the clusters identified by the combined Wnt and RXR-α
pathway gene signature overlapped significantly with the two major clusters formed by analysis
of the entire transcriptome (Fig. 4). Quantification of a 65 gene-based risk score classifier that
predicts overall survival in hepatocellular carcinoma[24] revealed that the Wnt high, RXR-α
low group has much lower predicted rate of survival than the Wnt low, RXR-α high group
(Fig. 4). Analogous to what we observed in mouse HCC, the classification of human HCC
based on the combined Wnt and RXR-α pathway gene signature was highly reflective of the
two major groups found by hierarchical clustering based on the entire transcriptome (Fig. 4).

Seemingly paradoxical but similar to the study of Hoshida et al. [14], we observed less
CTNNB1mutations in the group associated with Wnt pathway activation than we did with the
group associated with lower Wnt pathway activation (Fig. 4). However, there is a high degree
of cell-context dependency in the transcriptional targets of β-catenin activation [25] and as
would be expected, CTNNB1-mutant HCC showed a strong tendency to overexpress the five

Fig 3. Gene expression and biochemical changes in RXR-α andWnt pathways during liver development. (A) Clustering of RXR-α andWnt pathway
gene expression profiles of normal mouse liver samples taken from four different periods of development. (B) Reporter assays for Wnt and RXR pathways
comparing hepatoblasts (E14) to immature hepatocytes (E18). Both TCF (p = 0.016) and (C) RXR-α activities (p = 0.021) were significantly different (D) RNA
and (E) protein expression of RXR-α in hepatoblasts compared to immature hepatocytes.

doi:10.1371/journal.pone.0118480.g003
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Fig 4. Classification of human HCC based on expression of RXR-α andWnt pathway genes.HCC samples in the Boyault dataset[12] were clustered
based on expression of 138 RXR-α andWnt pathway genes. Beneath the heatmap are four rows, showing for each HCC sample (1) cluster assignment to
the two major groups found by unsupervised clustering of all genes (2) relative prognosis based on the 65-gene signature of Kim et al.[24], ranging from
red = poor, white = neutral, green = good; (3) grey bars indicate activating mutation inCTNNB1; (4) average expression of the 5 genes known to be
overexpressed inCTNNB1-mutant HCC cells; red = expression, green = less expression of the 5-gene signature associated with CTNNB1mutation[12].

doi:10.1371/journal.pone.0118480.g004
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genes previously found to be selectively overexpressed in CTNNB1-mutant HCC (Fig. 4)
[26–28]. The discrepancy between this 5-gene signature and the Wnt pathway signature is ad-
dressed in the discussion.

The combined Wnt and RXR-α pathway gene signature also classified human HCC expres-
sion profiles in two other datasets into two basic groups (Wnt high, RXR-α low and Wnt low,
RXR-α high) that reflected both prognosis and the grouping based on whole transcriptome
analysis. This included the Wurmbach et al. dataset[25] of HCC and non-malignant liver sam-
ples (S4 Fig.) and the Kim et al. dataset[24] (S5 Fig.). Thus the combined Wnt and RXR-α
pathway gene signature performs consistently across three distinct human HCC datasets: it de-
fines two major clusters that correspond closely to the two major clusters formed by consider-
ing the entire transcriptome, and it also corresponds closely to the poor prognosis signature
generated by Kim et al. [24].

Modulating RXR-α activity alters β-catenin signaling and affects
tumorigenicity
We then tested whether reducing hepatocyte RXR-α levels affected either Wnt signaling or
tumorigenicity. We screened for two independent shRNAs that were both effective at reducing
the level of RXR-α protein in hepatocytes (Fig. 5A). Both of these shRNAs increased Wnt activ-
ity (Fig. 5B) and elevated β-catenin levels (Fig. 5C). Additionally, these shRNAs induced
Myc/p53-/- hepatocytes to form large tumors when injected subcutaneously (Fig. 5D) and led to
rapid liver cancer formation in situ (Fig. 5E). Histological examination of the tumors formed in
situ revealed that they were composed of a population of proliferative, undifferentiated cells
that resembled human HCC (Fig. 5F).

We then looked at the effect of stimulating RXR-α with its ligand 9-cis retinoic acid. To de-
termine stimulating RXR-αmight suppress Wnt signaling, we tested the effects of 9-cis retinoic
acid on aWnt-pathway transcriptional reporter in the hepatocyte-like cell line Huh7. Wnt acti-
vation was reduced approximately 50% with 1 μM 9-cis retinoic acid and reduced 80% at
higher dosage (Fig. 6A). These levels of 9-cis retinoic acid also reduced β-catenin protein levels
(Fig. 6B). Expression of mutationally activated CTNNB1 significantly reduced the ability of
9-cis retinoic acid to suppress clonogenic growth (Fig. 6C).

Discussion
Despite years of genomic studies aimed at molecular classification of human HCC, there is still
concern about lack of overlap between different studies[29]. A computationally oriented ap-
proach to resolve discrepancies provided a meta-analysis of several studies with the conclusion
that there were three basic subgroups [14]. Here we took a biologically-oriented approach
based on mouse models of HCC and normal liver development that instead indicates two basic
subtypes of both mouse and human HCC that correspond to either a hepatoblast or hepatocyte
differentiated state, corroborating earlier findings of Thorgeirsson’s group [16,30]. Moreover,
we found that in mouse models of HCC that the cell-of-origin plays the dominant role in over-
all transcriptional patterns irrespective of the initiating oncogene. This sheds light on why it
has been difficult to consistently explain the heterogeneity of human HCC based on the under-
lying genetic alterations [29].

We found that expression of RXR-α and Wnt pathway genes are key features of the tran-
scriptional changes that distinguish the two subtypes of mouse model and human HCC. Both
of these pathways play key roles in hepatocyte development. Deletion of β-catenin in mouse
hepatoblasts prevents their maturation, expansion, and survival [21]. Similarly, deletion of
RXR-α has been shown to dramatically delay liver differentiation [22]. In our study we found
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Fig 5. Effects of lowering RXR-α protein levels in hepatocytes onWnt signaling and tumorigenicity. (A) Validation of two independent shRNAs for
their ability to lower RXR-α protein levels in hepatoctyes as determined by immunoblotting using Ras Gap protein expression as a loading control and shRNA
directed against luciferase as a vector control. B) Tumor growth following subcutaneous injection in nude mice of MYC/p53-/-; E18 hepatocytes infected with
either shluc (red column), RXRA sh1 (purple column), or RXRA sh2 (blue column). Error bars indicate standard deviations. Tumor incidence is noted above
columns for each condition. C) Survival curves of nude mice after intrasplenic injections ofMYC/p53-/-; E18 hepatocytes transfected with either shluc (red
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an inverse relationship between Wnt and RXR-α pathway transcription, with a major reduc-
tion in Wnt target genes coincident with a major increase is RXR-α target genes occurring be-
tween E16 and E18.5, a developmental period where the majority of hepatoblasts acquire an
epithelial morphology and become arranged into epithelial sheets [31].

Hepatocellular carcinomas that have de-differentiated into hepatoblasts appear to have intrin-
sically higher Wnt signaling. The relatively lowWnt signaling activity of hepatocytes may form a
tumor suppressor barrier, providing the selective pressure underlying the high frequency of acti-
vating CTNNB1mutations in this subtype. In previous studies where mutational activation of
CTNNB1 was found to be associated withWnt pathway activation [12,13] the genes used to de-
fineWnt pathway activation were genes that had been specifically found to be upregulated in
CTNNB1-mutant HCCs, rather than standardWnt signaling genes used in our study (e.g. BTRC,
[32]. There can be considerable tissue-specificity and temporal-restrictiveness in the transcrip-
tional targets of Wnt pathway activation and it is very likely that a significant proportion of Wnt
signaling target genes differ depending on the differentiated state of the hepatocytes [33].

In this study we showed that RXR-α has tumor suppressive function in hepatocytes and that re-
ducing its expression increases β-catenin levels and signaling, whereas increasing RXR-α function
by ligand activation lowered β-catenin levels and signaling. These findings are in agreement with a
previous study using other cancer cell types where ligand activation of RXR-α was shown to en-
hance degradation of β-catenin independently of the APC-proteasomal degradation pathway [34].
However, RXR-α does not appear to be a frequent target for genetic or epigenetic inactivation in
HCC [35], which may reflect a requirement of residual level of its function for tumor maintenance.
In our study, shRNA-mediated suppression of RXR-α reduced but did not eliminate the protein.

Methods

Ethics
This study was approved by Cold Spring Harbor Laboratory’s Institutional Animal Care and
Use Committee (IACUC). The Cold Spring Harbor Laboratory animal facilities are fully

line), or RXRA sh1 (purple line), or RXRA sh2 (line), n = 10 injections. D) Images of livers taken frommice following transplantation ofMYC/p53-/- E18
hepatocytes transfected with shluc, RXRA sh1, or RXRA sh2. The five panels are from left to right, intact livers, GFP-imaging of livers, hematoxylin and eosin
staining of liver tissue sections, PCNA immunohistochemical staining, GFP immunohistochemical staining. Size bar = 200 μm.

doi:10.1371/journal.pone.0118480.g005

Fig 6. 9-cis retinoic acid activation of RXR-α suppresses β-catenin signaling. (A) Effect of 9-cis retinoic acid onWnt signaling activity in Huh-7 and HLE
cell lines as measured using a TCF transcriptional reporter. Labeling as in Panel B. (* = p< 0.05; ** = p< 0.001). (B) Effect of 9-cis retinoic acid on β-catenin
protein levels in Huh-7 cells. (C) Effect of 9-cis retinoic acid on clonogenic growth of Huh-7 cells transfected with either mutationally activatedCTNNB1
(S33Y; red column) or empty vector (blue column) ((p = 0.0037 and 0.0041). In all panels, error bars indicate standard deviations.

doi:10.1371/journal.pone.0118480.g006
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accredited by the American Association for Accreditation of Laboratory Animal Care. Animals
are maintained in accordance with the applicable portions of the Animal Welfare Act and the
DHHS “Guide for the Care and Use of Laboratory Animals”. All mice were monitored closely
for pain and suffering as a result of tumor burden and sacrificed prior to or immediately upon
observation of discomfort. Specific criteria for euthanasia was as follows: 1) further observation
is no longer necessary for the purposes of the study (i.e. tumors have appeared and grown large
enough for isolation of DNA or cells) OR 2) upon observation of substantial weight loss, abnor-
malities with movement or breathing, excessive lethargy or tremors, or upon the advice of the
facility veterinarian. Upon a decision to sacrifice, tumor tissue was recovered from the animal
for genetic and histological analysis. Mice were euthanised by carbon dioxide asphyxiation as
recommended by the 2000 Report of the AVMA Panel on Euthanasia, JAVMA, vol. 218, No. 5,
March 1, 2001.

Cell line
HCC cell line Huh-7 was obtained from ATCC and grown in RPMI medium with 10% FBS
and 1% Pen-Strep.

Statistical analysis
All experiments with animals or cell lines were done in triplicate or quadruplicate. Student’s
t-test was used to access significance of differences in two populations and error bars indicate
the standard error of the means.

Genomic analysis
Total RNA from whole livers taken at different developmental timepoints (embryonic day 14,
embryonic day 18, post-natal day 5 and post-natal day 56) along with hepatoblasts isolated
from E14 livers and immature hepatocytes isolated from E18 livers was extracted and purified
using the Qiagen RNeasy Mini Kit. RNA purity and integrity were assayed by the Bioanalyser
2100 (Agilent Technologies). For each sample, 2 μg of total RNA was reverse transcribed and
amplified by using an RNA amplification kit from Ambion. Fifteen micrograms of amplified
RNA were labeled by direct chemical coupling to the Cy5 NHS ester (Amersham Biosciences).
Normal adult mouse liver (Agilent) was used as control and Cy3 labeled. Labeled RNAs were
purified, fragmented, and used as probes to hybridize microarrays. Gene expression profiling
was done with the 4x44k mouse Agilent platform. Expression profiling of the 23 human HCC
samples was previously described21.

Computational analysis
Microarray data for normal liver samples used in this study was normalized and analyzed with
limma R package. Gene expression datasets from different platforms were combined after scal-
ing by setting the mean to zero and the Standard deviation to 1. Significance Analysis of Micro-
arrays (SAM) was used to identify differentially expressed genes between the two clusters
shown in Fig. 2. Pathway analysis of differentially expressed genes was performed using Inge-
nuity Pathway Analysis (Ingenuity Systems, Redwood City, CA) and GSEA. GSEA analysis
was performed using software downloaded from Broad Institute ((www.broadinstitute.org/
gsea/<http://www.broadinstitute.org/gsea/>). RXR-α pathway genes were obtained from In-
genuity Gene Sets, and Wnt pathway genes were obtained from Reactome (www.reactome.
org<http://www.reactome.org/>). Clustering and heatmaps were performed using the
R software.
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Cloning
RXRα shRNA constructs in polIII-promoter based pSM2c vectors were obtained from Open
Biosystems (Huntsville, AL). shRNA inserts were subcloned using EcoRI and XhoI restriction
sites into themir30-cassette of the polII-promoter based expression vector (MSCV)-
LTRmiR30-puro22. The mouse RXRα gene (kindly obtained from Dr. Chambon, IGBMC) was
subcloned from the pSG5 vector into the pcDNA3.1 vector using EcoRI. It was then partially
digested with BamHI and subsequently cut with XhoI to be cloned into the pMSCV-hygro vec-
tor (Clontech, Palo Alto, CA). Human RXRα cDNA was PCR amplified from the pBABE-
hygro human RXRα (plasmid 11440 from Addgene) using primers with engineered BglII and
XhoI restriction site sequences. The product was then cloned into the BglII and XhoI sites of
the MSCV-hygro vector. MSCV-murine-Myc-IRES-GFP vector was kindly obtained from
Dr. Scott Lowe’s laboratory. Bing packaging cells were plated on 60 mm dishes prior to being
transfected with 2μg of helper plasmid and 4μg of target DNA (cloned into an MSCV vector)
using the calcium phosphate method (E1200, Promega). After 48 hours, cells were infected
using filtered viral supernatant supplemented with 8 μg/ml polybrene. The infection procedure
was repeated three times every 8 hours. 24 hours after the latest infection, infected cells were se-
lected using puromycin or hygromycin at 3 μg/ml and 500μg/ml respectively.

Liver hepatoblast/hepatocyte isolation and immortalization
Day 14 and 18 liver embryos of C57BL/6 mice were harvested and cultivated modified from

a protocol described previously12. Briefly, after dispase treatment for 30 minutes at 37°C, fil-
tered cells were E-Cadherin immunopurified (Calbiochem, 205603) using the MACS technolo-
gy (Miltenyi Biotec). Collected cells were plated on gelatin-coated plates with gamma-
irradiated NIH3T3 feeder layer cells in serum free HGMmedium23. To immortalize p53-/- har-
vested hepatoblasts, kindly obtained from Dr. Lowe, cells were retrovirally infected with mouse
Myc using pMSCV-GFP-Myc plasmid. We used the same infection protocol as above and the
virus was collected in serum free HGMmedium. Serum was added to the plate the day before
the cells needed to be split. Once the cells were immortalized, they were cultivated in
10% serum DMEM.

Experimental animals
Manipulated cells were injected subcutaneously or into the spleen. Nude mice were gamma ir-
radiated (400 rad) the day before injections. To generate subcutaneous tumors, we used
5 weeks old female nude mice and injected 106 cells (unless otherwise noted in the figure leg-
end) resuspended in 200 μl MEM. Tumor volume (cm3) was calculated as 0.52 x length
x width2. Intrasplenic injections were done modifying a previously described method using
10-week-old female mice. Briefly, C57BL/6 mice received 2 doses of retrorsine 70 mg/kg i.p. be-
fore injection[36]. To avoid cell leakage into the mouse body, lower pole of the spleen was tak-
ing outside of the peritoneum to inject 2x106 cells (unless otherwise noted in the figure legend)
resuspended in 100 μl MEMmedium. After injection, the lower pole of the spleen was tightly
ligated with a 4–0 vicryl ligation. C57BL/6 mice received 3 doses of 0.5 ml/kg i.p. CCl4 every
5 days after transplantation. Intrasplenic injected nude mice were neither treated with retro-
rsine or CCl4. Tumor progression was monitored using whole body palpation and
GFP imaging.

Colony formation assay
1000 cells were plated in triplicate on 6-well plates. Medium was changed every 3 days.

After 3 weeks culture, cells were methanol fixed and stained with 0.5% crystal violet. After pic-
tures were taken, crystal violet was dissolved with 0.1% SDS over night. Dissolved crystal violet
staining was read at 595 nm using the Victor 3 machine (Perkin Elmer).
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Immunoblotting
Immunoblotting was carried out using antibodies against RXRα (4RX3A2 kindly obtained

from Dr Rochette-Egly, IGBMC 1:500 dilution 25), KRT18 (abcam ab32118, 1:10 000 dilution),
KRT8 (abcam ab59400, 1:1000 dilution) and actin (abcam ab1801, 1:1000 dilution) or Ras Gap
(BD Bioscience 610040, 1:1000dilution) as loading control. Briefly, proteins were separated by
electrophoresis in SDS-polyacrylamide gel (10% acrylamide) and transferred to nitrocellulose
electrophoretically at 110 V for 1 h 30 min. The nitrocellulose sheets were first blocked at room
temperature for 1 hour in TBS containing 0.1% Tween and 5% nonfat dry milk. They were
then sequentially incubated in primary and secondary antibodies diluted in blocking buffer.
We used the LI-COR Odyssey infrared image system to visualize and quantify
protein expression.

Immunohistochemistry
Fresh tissues were fixed in 10% formalin and paraffin embedded. Hematoxylin and eosin

(H&E) sections were stained according to standard protocols. Immunohistochemistry was car-
ried out using antibodies directed against PCNA (Abcam, 1:4000 dilution) and GFP (1:800 di-
lution). To block endogeneous peroxidase, 150 μm sections were treated with TBS containing
3% H2O2 for 15 min. After washing with TBS, antigen was retrieved in 0.1 M sodium citrate,
for 5 min in microware, 40% power. DNase I treatment at 5 U/ml was used to enhance detec-
tion of nuclear proteins. Sections were treated with blocking buffer (TBS + 0.5% Tween20 + 1%
BSA + 5% serum) for 1 h at room temperature and then incubated with primary antibodies di-
luted in blocking buffer overnight at 4°C. Binding of the antibodies was detected using biotin-
conjugated anti-mouse or rabbit IgG diluted in blocking buffer and HRP-conjugated avidin di-
luted in TBS (Vectastain ABC kit, Vector) for 1 h and for 45 min respectively. Color develop-
ment was achieved by treatment with the chromogen DAB (Vector Laboratories, Redwood
City, CA) and was carried out for 5–10 min under a microscope. The slides were rinsed in tap
water, counter-stained with hematoxylin.

Supporting Information
S1 Fig. Unsupervised clustering of RNA expression of normal and tumor mouse liver sam-
ples. The mouse tumors that originate from hepatoblasts[17,18] segregate with normal fetal
liver isolated from E14.5, a developmental time at which livers are mostly hepatoblasts. The
mouse tumors that originate from hepatocytes[19] segregate with post-natal liver samples as
well as fetal liver isolated from E18.5, after the point at which hepatoblasts have differentiated
into immature hepatocytes. See S3 Table for sample details.
(TIF)

S2 Fig. Clustering of normal and tumor mouse liver samples based on expression of RXR-α
andWnt pathway genes. The mouse tumors that originate from hepatoblasts[17,18] segregate
with normal fetal liver isolated from E14.5, a developmental time at which livers are mostly
hepatoblasts. The mouse tumors that originate from hepatocytes[19] segregate with post-natal
liver samples as well as fetal liver isolated from E18.5, after the point at which hepatoblasts
have differentiated into immature hepatocytes. See S3 Table for sample details.
(TIF)

S3 Fig. Clustering of normal fetal liver samples and normal adult liver samples based on ex-
pression of RXR-α and Wnt pathway genes. The fetal liver samples were taken from several
different periods of embryonic development (E), and the adult liver samples were taken at vari-
ous time points after partial hepatecomy (PH) [31].
(TIFF)
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S4 Fig. Classification of human HCC based on expression of RXR-α and Wnt pathway
genes.HCC and non-malignant liver samples in the Wurmbach et al. dataset[25] were clus-
tered based on expression of 138 RXR-α andWnt pathway genes. Beneath the heatmap are
three rows, showing for each sample (1) the one of two major clusters it belonged to following
unsupervised clustering based on all genes; (2) relative prognosis based on the 65-gene signa-
ture of Kim et al., red = poor, green = good, white = neutral; (3) CTNNB1-mutation signature
status, red = expression, green = less expression of the 5-gene signature associated with
CTNNB1mutation[12].
(TIF)

S5 Fig. Classification of human HCC based on expression of RXR-α and Wnt pathway
genes.HCC samples in the Kim et al. dataset[24] were clustered based on expression of 138
RXR-α and Wnt pathway genes. Beneath the heatmap are three rows, showing for each HCC
sample (1) the one of two major clusters it belonged to following unsupervised clustering based
on all genes; (2) relative prognosis based on the 65-gene signature of Kim et al.[24], red = poor,
green = good, white = neutral; (3) CTNNB1-mutation signature status, red = expression,
green = less expression of the 5-gene signature associated with CTNNB1mutation[12].
(TIF)

S1 Table. Focal amplicons observed in transpantable hepatoblast-derived tumors.
(XLSX)

S2 Table. List of genes in the RXR- α and Wnt- pathways
(XLSX)

S3 Table. List of mouse tumors and normal liver samples used for gene expression analysis
(XLSX)
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