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Abstract

We present an open-source web platform, Ginkgo (http://qb.cshl.edu/ginkgo), for the analysis and 

assessment of single-cell copy-number variations (CNVs). Ginkgo automatically constructs copy-

number profiles of cells from mapped reads and constructs phylogenetic trees of related cells. We 

validate Ginkgo by reproducing the results of five major studies and examine the characteristics of 

three commonly used single-cell amplification techniques to conclude degenerate oligonucleotide-

primed PCR to be the most consistent for CNV analysis.

Single-cell sequencing1 has become an important tool for probing cancer2, neurobiology3, 

developmental biology4–6, and other complex systems. Studying genomic variation at the 

single-cell level allows investigators to unravel the genetic heterogeneity within a sample 

and enables the phylogenetic reconstruction of subpopulations beyond what is possible with 

standard bulk sequencing, which averages signals over millions of cells. To date, thousands 

of individual human cells have been profiled to map the subclonal populations within 

cancerous tumors7 and circulating tumor cells8, to discover mosaic copy-number variations 

in neurons3, and to identify recombination events within gametes5, 9, among many other 

applications. One key application of single-cell sequencing is to identify large-scale (>10kb) 

copy-number variations (CNVs)3, 7, 10. For example, in cancer, CNVs form a “genetic 

fingerprint” from which one can infer the phylogenetic history of a tumor11 and trace 

progression of metastatic events7.
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Given the insights made possible by single-cell sequencing, many researchers are now 

interested in applying the technology to study diverse biological systems and species. 

However, the downstream analysis is complex. Although many approaches and 

computational tools exist for CNV analysis of bulk samples12 there are currently no fully 

automated and open-source tools that address the unique challenges of single-cell 

sequencing data: (1) extremely low depth of sequencing coverage (< 1X) makes for noisy 

profiles and makes split-read, paired-end, or SNP density approaches ineffective; (2) whole-

genome amplification (WGA) biases markedly distort read counts, including failure to 

amplify entire segments13; (3) badly assembled regions of the genome (e.g. centromeres) 

lead to the artificial inflation of read counts (“bad bins”)13; (4) calling copy number at 

single-cell, integer levels requires development of new algorithms; and (5) exploring 

population structure is not needed, and often not possible, in bulk sequencing. In addition, 

several unique sources of cell-specific errors are introduced during the experimental 

procedures, including GC content and other sequencing biases. While ad hoc methods have 

been developed for individual studies, there is currently no easy-to-use, open-source 

software available that executes this pipeline automatically and correctly.

Here we present our new open-source web analytics platform, Ginkgo, for the automated 

and interactive analysis of single-cell copy-number variations. Ginkgo enables researchers to 

upload samples, select processing parameters, and after processing, explore the population 

structure and cell-specific variants revealed within a visual analytics framework in their web 

browser.

Ginkgo guides users through every aspect of the analysis in a user-friendly interface, from 

binning reads into regions across the genome, to quality assessment, GC bias correction, 

segmentation, copy-number calling, visualization and exploration of results (Fig. 1). This 

pipeline builds on our previous single-cell sequencing work13, and includes several novel 

features not previously described to advance the state of the art, including: (1) a new 

algorithm for determining absolute copy-number state from the segmented raw read depth, 

(2) a new method for controlling quality issues in the reference assembly (see “bad bins” in 

Online Methods); (3) an option to integrate ploidy information from fluorescence-activated 

cell sorting (FACS) to accurately call copy number; and (4) a suite of interactive visual 

analytics tools to allow users to easily share results with collaborators and clinicians. Ginkgo 

provides functionality for five different species (human, chimp, mouse, rat, and fly) and 

includes a wide array of tunable parameters for individual users’ needs (Online Methods).

Once an analysis completes, Ginkgo displays an overview of the data in a sortable data 

table, an interactive phylogenetic tree14 of all cells used in the analysis, and a set of heat 

maps detailing the CNVs that drove the clustering results. Clicking on a cell in the 

interactive phylogenetic tree or data table allows the user to view an interactive plot of the 

genome-wide copy-number profile of that cell, search for genes of interest, and link out to a 

custom track of amplifications and deletions in the UCSC genome browser. Ginkgo also 

outputs several quality assessment graphs for each cell: a plot of read distribution across the 

genome, a histogram of read count frequency per bin, and a Lorenz curve to assess coverage 

uniformity15. Subsets of interesting cells can also be selected by the user to directly compare 

copy-number profiles, Lorenz curves, GC bias, and coverage dispersion.
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To validate Ginkgo, we set out to reproduce the major findings of five single-cell studies 

that used either multiple annealing and looping-based amplification (MALBAC) or DOP-

PCR amplification (Supplementary Note 1). These datasets address vastly different scientific 

questions, were collected from a variety of tissue types, and make use of different 

experimental and computational approaches at different institutions. Using Ginkgo, we 

replicated the vast majority of published CNVs for each cell in each of the datasets with the 

exception of one cell in Hou et al., which we believe was due to mislabeling in the National 

Center for Biotechnology Information (NCBI) short-read archive (SRA). Moreover, the 

Navin et al. and Ni et al. datasets used the identified CNVs to generate phylogenetic trees 

across all samples. Ginkgo is able to reproduce the distinct clonal subpopulations in the two 

Navin et al. datasets (Supplementary Fig. 1) and the patient clustering results from Ni et al. 

(Supplementary Fig. 3). Using simulated copy-number profiles we confirm that Ginkgo 

reliably identifies copy-number changes (98.8% accuracy, 98.7% true positive rate, 1.2% 

false positive rate) and perfectly reproduces the population structure through clustering of 

the individual samples (Online Methods).

While Ginkgo corrects for many of the biases present in single-cell data, higher quality data 

inevitably leads to higher quality results. In order to explore the effects of WGA on data 

quality, we set out to compare the biases and differences in coverage uniformity between the 

three most widely published WGA techniques: multiple displacement amplification (MDA), 

MALBAC, and DOP-PCR using 9 distinct datasets, 3 for each method.

Raw sequencing reads from each of nine datasets were downloaded from NCBI (Online 
Methods). Reads were mapped to the human genome and downsampled to match the lowest 

coverage sample. Finally, aligned reads were binned into 500kb variable-length intervals 

across the genome such that the intervals average 500kb in length but contain the same 

number of uniquely mappable positions (see Online Methods). We use these binned read 

counts to measure two key data quality metrics: GC bias and coverage dispersion. 

Importantly, raw bin counts provide a robust view of the data quality impartial to the 

different approaches to segmentation, copy-number calling, or clustering.

GC content bias refers to preferential amplification and sequencing because of the 

percentage of G+C nucleotides in a given region of the genome16. This introduces cell-

specific and library-specific correlations between GC content and bin counts. In particular, 

when GC content in a genomic region falls outside a certain range (typically <0.4 or >0.6), 

read counts rapidly decrease (Online Methods). We find that MDA has very high GC bias 

compared to MALBAC and DOP-PCR (Fig. 2a). Only 45.9% of MDA bin counts fall within 

the expected coverage range compared to 94.0% of MALBAC bin counts and 99.6% of 

DOP-PCR bin counts. It is important to note that, regardless of WGA approach, each cell 

has unique GC biases that must be individually corrected.

As a further measure of data quality, we calculated the median absolute deviation (MAD) of 

all pair-wise differences in read counts between neighboring bins for each sample, after 

normalizing the cells by dividing the count in each bin by the mean read count across bins. 

MAD is resilient to outliers caused by copy-number breakpoints, as transitions from one 

copy-number state to another are relatively infrequent. Instead, pair-wise MAD reflects the 
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bin count dispersion due to technical noise. For each of the nine datasets, the MAD was 

calculated for each cell and displayed in a box-and-whisker plot (Fig. 2b). As expected from 

previous comparisons of MDA to other WGA techniques15, 17, MDA data displays high 

levels of coverage dispersion on average, with a mean MAD 2 to 4 times that of the DOP-

PCR datasets. In addition, the MALBAC and MDA datasets show large differences in data 

quality between studies while the DOP-PCR datasets show consistent flat MAD across all 

three studies (Supplementary Fig. 3).

We find that DOP-PCR outperforms both MALBAC and MDA in terms of data quality. As 

previously reported15, 17–20, MDA displays poor coverage uniformity and low signal-to-

noise ratios. Coupled with overwhelming GC biases, MDA is unreliable for accurately 

determining CNVs compared to the other two techniques. Furthermore, while both DOP-

PCR and MALBAC data can be used to generate CNV profiles and identify large variants, 

DOP-PCR data has substantially lower coverage dispersion and smaller GC biases when 

compared to MALBAC data. Given the same level of coverage, our results indicate that data 

prepared using DOP-PCR can reliably call CNVs at higher resolution with better signal-to-

noise ratios, and is more reliable for accurate copy-number calls.

Online Methods

1. Code availability

The source code for Ginkgo is available open source at https://github.com/robertaboukhalil/

ginkgo and is preinstalled at http://qb.cshl.edu/ginkgo. It provides a large number of user 

specified parameters to control how the analysis is performed and how the results are 

interpreted (Supplementary Table 1). Several of these must be set according to the 

experimental design of the study (genome, bin size, sex chromosome masking, FACS copy 

number estimation), while others allow the researcher to explore the analysis using different 

metrics depending on the goals of the study. See the sections below for a more complete 

description.

1.a. Binning method

Copy number analysis begins with binning uniquely mapping reads into fixed-length or 

variable-length intervals across the genome. This aggregates read depth information into 

larger regions that are more robust to variable amplification and other biases. As discussed 

in the main text, fixed-length bins are generally discouraged as they lead to read drop out in 

regions that span highly repetitive regions, centromeres, and other complex genomic 

regions.

To generate boundaries for variable-length bins, we use the method outlined by Navin et al. 

(2010), where we sample 101bp stretches of the reference assembly at every position along 

the genome. These simulated reads are mapped back to the genome using Bowtie and only 

uniquely mapping reads are analyzed. For a given bin size, we assign reads into bins such 

that each bin has the same number of uniquely-mappable reads. Consequently, intervals with 

higher repeat content and low mappability will be larger than intervals with highly mappable 

sequences, although they will both have the same number of uniquely mappable positions.
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Using variable-length bins with sufficient depth of coverage and consistent ploidy, sequence 

reads are expected to map evenly across the entire genome with uniform variance. Users are 

provided with a variety of bin sizes from which to choose, depending on the overall 

coverage available; if the mean coverage per bin is too low, we encourage users to use larger 

bins.

1.b. Masking bad bins

As described in the main text, there are a number of regions, specifically around the 

centromeres of certain chromosomes, where there is an accumulation of very high read 

depth compared to the expected depth. These regions consistently display high read depth in 

both bulk and single-cell sequencing data. Using data from 54 normal individual diploid 

cells from multiple individuals (not presented here), these bins (designated as “bad bins”) 

were determined in the human reference genome (hg19) as follows. The bin counts were 

divided by the mean bin counts for each cell to normalize for differences between cells in 

total read count. For each chromosome, the mean of the bins over all cells is subtracted from 

each individual cell’s normalized bin count to normalize for differences between 

chromosomes. The mean and standard deviation of the autosomes is then used to compute 

an outlier threshold corresponding to a p-value of 1/N, where N is the number of bins used. 

In practice, less than 1% of bins are identified as extreme outliers and masked for further 

processing.

1.c. GC bias correction

Once reads are placed into bins, Ginkgo normalizes each sample and corrects for GC biases 

prior to segmentation. The normalization process begins by dividing the count in each bin by 

the mean read count across all bins. This centers the bin counts of all samples at 1.0. To 

identify and correct GC biases, Ginkgo computes a locally-weighted linear regression using 

the R function lowess (smoother span = .5, iterations = 3, delta=0.1*range(x)) to model the 

relationship between GC content and log-normalized bin counts. This lowess fit is then used 

to scale each bin such that the expected average log-normalized bin count across all GC 

values is zero. After the lowess fit, we monitor the bias of each cell by calculating the 

proportion of bins that fall outside an expected coverage of zero by +/− 1, log base 2.

1.d. Segmentation (CBS)

Following GC bias correction, bin counts are segmented to reduce fluctuations in noise 

across chromosomes and identify longer regions of equal copy number. To this end, Ginkgo 

makes use of Circular Binary Segmentation (CBS), which segments the genome by 

recursively splitting the chromosomes into segments based on a maximum t-statistic until a 

reference distribution estimated by permutation is reached. Once the CBS segmentation is 

complete, the breakpoints (segment boundaries) across all bins are determined, and the 

counts for all bins within each segment are reset to be the median bin count value within that 

segment.

The key step during segmentation is selecting the right reference sample for comparison. 

Using a diploid sample to normalize bin counts can eliminate additional biases uncorrected 

by GC normalization. Although Ginkgo supports uploading data from such a cell, this is not 
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always available so Ginkgo provides alternatives for segmenting samples: (1) Independent 

segmentation, where samples are segmented independently by their own normalized bin 

count profiles; and (2) Sample with lowest IOD, where Ginkgo selects the sample with the 

lowest index of dispersion (IOD - the ratio between the read coverage variance and the 

mean) and uses that sample as a reference for all other samples. The sample with the lowest 

index of dispersion will likely be among the most evenly balanced ploidy and highest 

quality of all submitted cells.

1.e. Determining copy-number state

Since we are analyzing single-cell data, we expect every genomic locus to have an integer 

copy number (CN) value. Furthermore, the quantized nature of single-cell data means that 

the same number of reads per bin should separate every sequential CN state, e.g., ~50 reads 

for CN 1, ~100 reads for CN 2, ~150 reads for CN 3, etc. While biological and technical 

noise prevent read counts from segregating perfectly into distinct CN states, read counts 

should still be centered around integer CN states.

The most direct approach for determining the CN state of each cell is available for users that 

have a priori knowledge of the ploidy of each sample. For example, cells that are DAPI-

stained prior to cell sorting can be gated based on their fluorescence activity, and ploidy can 

be determined by comparing its fluorescence activity to that of a reference cell with a known 

CN state. With these data, Ginkgo determines the copy number state of each sample by 

scaling the segmented bin counts such that the mean bin count is equal to the ploidy of the 

sample. Finally bin counts are rounded to integer copy number values. Advances in 

fluorescence activated cell sorting (FACS) will make this copy number prediction even 

more accurate in time, although cells that are incorrectly sorted and placed into wells with 

more than one cell will show much higher fluorescence activity and will have an incorrectly 

inferred copy number state.

Since FACS data is not always available for analysis and has potential for error, Ginkgo 

provides an alternative to determine the copy number of each sample. As discussed earlier, 

before determining the CN state of a cell, the cell is binned, normalized, and segmented. 

This copy number profile has a mean of one and is referred to as the raw copy number 

profile (RCNP). If the true genome-wide copy number of a sample were equal to X, the 

scaled copy number profile (SCNP) would then be the product of RCNP and X, and the final 

integer copy number profile (FCNP) would be the rounded value of the SCNP so all 

segments contain an integer value.

With these relationships, Ginkgo infers the genome-wide copy number X using numerical 

optimization. For a given cell, Ginkgo first determines the SCNP and FCNP for all possible 

values of X in the set [1.50, 1.55, 1.60, …, 5.90, 5.95, 6.00]. Ginkgo then computes the sum 

of square (SoS) error between the SCNP and the RCNP for each value of X and selects the 

value of X with the smallest SoS error. Once the multiplier is identified and applied, the 

scaled bins are rounded to generate the final integer copy number profile for each sample. 

Intuitively, this is equivalent to finding the copy number multiplier that causes the 

normalized segmented bin counts to best align with integer copy number values.
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1.f. Clustering

Before visualization, the final step is to look outside the scope of individual cells and 

determine the overall population structure. Ginkgo first determines the distance 

(dissimilarity structure) between all cells. We provide six choices of distance metrics: 

Euclidean, maximum, Manhattan, Canberra, binary, and Minkowski. After computing the 

dissimilarity matrix, Ginkgo then computes a dendrogram through neighbor joining or by 

hierarchically clustering samples using one of four different agglomeration methods: single 

linkage, complete linkage, average linkage, and ward linkage. In addition, Ginkgo generates 

a phylogenetic tree by first computing the Pearson correlation between all samples and using 

these dissimilarity values to cluster the samples.

1.g. Masking sex chromosomes

Careful consideration of gender must be given when analyzing patients from mixed 

populations, as the combined set of the X and Y-chromosomes make up a large fraction of 

the human genome that can distort the clustering results. Indeed, when we examined the Ni 

et al. dataset with Ginkgo with sex chromosomes masked, we could still discriminate 

between individual patient’s tumors, but we could no longer discriminate between ADC and 

SCLC (Supplementary Fig. 3B); the SCLC patients were exclusively female and, with one 

exception, the ADC patients were entirely male. Ginkgo comes prepackaged with the ability 

to selectively mask sex chromosomes to prevent gender biases from dominating the 

clustering.

2. Single-cell datasets analyzed

We validate Ginkgo by reproducing major findings of several single cell sequencing studies 

that employ three different WGA techniques: MALBAC, DOP-PCR/WGA4, and MDA. 

Take together, we analyze the data characteristics of nine datasets across five tissue types 

(Table 1). The Ginkgo parameters for these datasets are described in the main text, and 

additional parameters are noted below.

Reads were mapped to hg19 using bowtie and only uniquely mapped reads (mapping quality 

score >= 25) were kept. Mapped read counts ranged from 1,538,234 (Ni et al.) to 30,638,853 

(Lu et al.) with a mean of 15,827,886. To perform an unbiased comparison, all samples were 

randomly downsampled to 1,538,234 reads to match the lowest available coverage.

In order to compute the GC biases across all nine datasets we calculate the lowess fit of the 

log base 2 normalized read counts with respect to the bin GC content for each sample. A 

sample with no GC bias would have a flat normalized read count of zero across all bins and 

all GC values. After the lowess fit, we monitor the bias of each cell by calculating the 

proportion of bins that show a two fold change from the expected coverage in either 

direction (by +/− 1, log base 2).

3. Detailed comparison of MALBAC and DOP-PCR protocols

Whole-genome amplification using MDA introduces a large degree of biases compared to 

MALBAC or DOP-PCR, limiting its applicability to CNV analysis. As such, we focused the 

scope of the remaining comparisons on the latter two WGA techniques. For a fine-grained 
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comparison of MALBAC and DOP-PCR, we compare the T10 dataset from Navin et al. and 

the CTC dataset from Ni et al. due to their similar biological and technical conditions and 

similar published analysis. Both datasets contain aneuploid cancer cells, were sequenced to 

similar depth (CTC mean read count: 4,133,466; T10 mean read count: 6,706,119), and were 

used to generate phylogenetic clusters of samples based on CNVs. We begin by comparing 

the coverage dispersion and investigate the minimum coverage and bin size needed to 

reproduce the published results.

3.1. Coverage dispersion

Using the MAD criteria described above, the DOP-PCR-based T10 dataset shows markedly 

better bin-to-bin correlation than the MALBAC-based CTC dataset as judged by a lower 

MAD of adjacent and offset bin counts (Fig. 3). For adjacent bins, the first quartile of the 

CTC MAD comparison (orange) is higher than the third quartile of the T10 MAD 

comparison (blue). As we increase the bin offset, greater variation is seen in the CTC data as 

show by the separation of the mean MAD between the T10 and CTC datasets. We interpret 

this to mean that there is more local trending in amplification efficiency in MALBAC than 

in DOP-PCR data.

3.2. Minimum coverage requirement

We next explore whether WGA protocols differ with respect to the minimum coverage 

required to observe the same population/clonal substructure identified at full coverage. To 

this end, we down-sample all datasets and analyze each in Ginkgo to determine: (1) how 

well segment breakpoints are conserved and (2) how well the phylogenetic relationships are 

maintained. With all degrees of downsampling (from 25% to 99%), the T10 data shows 

better breakpoint conservation than the CTC data, but as expected, increased degrees of 

downsampling lead to substantial erosion of breakpoint boundaries in both datasets (see 

Supplementary Fig. 5).

Nevertheless, these downsampling experiments demonstrate MALBAC and DOP-PCR are 

remarkably robust with respect to preserving the overall clonal/population structure, even at 

extremely low coverage, although additional smaller CNVs can be discovered with deeper 

coverage. The clonal structure of the T10 dataset remains fully intact across all 

downsampling experiments even as the mapped reads are downsampled by 99% (from ~608 

reads/bin to ~6 reads/bin). The population structure of the CTC dataset is preserved when 

downsampled by 95% (from ~597 reads/bin to ~30 reads/bin); when downsampled to 99%, 

one cell from one patient is incorrectly clustered.

Although depth of coverage in both studies was originally very low (< 0.15×), our 

downsampling results indicate that Ginkgo can correctly determine the phylogenetic 

relationship between samples even when sequenced to a depth of coverage of only 0.01×. If 

generally applicable, which we have not proven here, this approach will allow sparser 

sequencing with higher throughput at equivalent cost. After low-coverage sequencing, a 

number of cells from the same phylogenic branch can be pooled for deeper sequencing if 

desired.

Garvin et al. Page 8

Nat Methods. Author manuscript; available in PMC 2016 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



3.3. Optimizing bin sizes

Bin size directly impacts the resolution at which CNVs can be called. Thus far we used 

500kb-bins to reproduce the results of Navin et al. and Ni et al. following the procedure by 

Ni et al. However, such large bin sizes hinder the identification of smaller copy-number 

events. To identify the minimum bin size needed to reproduce the published results, we 

decreased bin size from 500kb to 10kb (Supplementary Table 1) for both datasets until the 

hierarchical clustering of the copy number profiles produced different results.

The T10 dataset retained its hierarchical structure until bin sizes dropped below 25kb 

(Supplementary Fig. 6), while the CTC dataset lost it original hierarchical structure at a bin 

size of 100kb. In the T10 dataset, when bin sizes drop to 10 kb, a few hypodiploid cells 

incorrectly cluster. In the CTC dataset, as bin sizes approach 100kb, cells from two patients 

(4 and 7) begin to overlap. Using 50kb bins, there is widespread overlap between nearly all 

patients’ cells, and only the cells from two patient cluster correctly (Supplementary Fig. 7). 

This indicates that at the same level of coverage, DOP-PCR can resolve smaller CNVs than 

MALBAC, but more comparably structured studies are needed.

3.4 Detecting integer copy-number states

Preliminary analysis of bin counts indicate that at the same level of coverage, MALBAC 

data had a higher level of coverage dispersion and therefore a worse signal to noise ratio 

than DOP-PCR data. Our downsampling experiments support this claim as the ability to 

properly discriminate between CTC patients based on the CN states is lost at a bin resolution 

that is easily resolved with the T10 dataset. To understand the effects of noise further, we 

evaluated each dataset to discriminate distinct copy number states.

Because the copy-number states of individual cells are integer, we expect the data to be 

centered at integer values. If the data is highly uniform, read coverage per bin will tightly 

surround integer copy-number states. As bin count dispersion around copy-number states 

increases, or is influenced by local chromosomal trends, the distinction between copy-

number states will blur.

To examine this, we generated a histogram of the normalized read count distribution for the 

CTC and T10 datasets (Supplementary Fig. 8). We also show the distributions of bin counts 

for representative cells: excellent, typical, and lower quality cells as well as the highest 

quality population average (Fig. 4). All T10 profiles have distinct peaks representative of 

integer copy-number values. While there are a few cells in the CTC dataset that have distinct 

peaks, many of the CTC profiles have considerably worse resolution with substantial 

blurring between CN states. Furthermore, the scaled read count distributions illustrate the 

substantial difference in signal-to-noise between the T10 and CTC datasets (Supplementary 

Fig. 9).

4. Simulation analysis of copy number accuracy

To test the accuracy of the copy number and clustering analysis by Ginkgo, we simulated 

single cell sequencing of 90 cells with 100 total copy-number events per cell. We modeled 

the cells after a population comprised of 9 distinct clonal populations, with 10 cells per 
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population (Fig. 5a). We began by generating 3 primary clonal populations by introducing 

80 copy-number events compared to the parent diploid cell. Next, for each of the 3 primary 

clones, we generated 3 subclonal populations by introducing an additional 20 non-

overlapping copy-number events to the original clones. Overall, this resulted in 9 distinct 

subclones belonging to 3 larger clonal populations with a total of 100 CNVs with respect to 

the human reference genome (hg19).

The genome positions of CNVs were non-overlapping and generated from a uniform 

random distribution across the genome. The lengths of CNVs were generated from an 

exponential distribution with a mean of 5Mb and bounded between the range of 200kb and 

20Mb to approximate the CNVs observed in the genuine data. The copy-number state of the 

CNVs were generated from a Poisson distribution with a mean of 2.5 excluding the value 2.

We generated 10 cells from each of the 9 subclones (90 cells in total) by simulating reads 

from the subclone reference sequences generated above. For each cell, we simulated 200k, 

101bp, single-end reads from the subclone reference sequence using dwgsim (https://

github.com/nh13/DWGSIM) (dwgsim –n 101 –z -1 –e .01 –d 1 –r 0 -1 101 -2 0). For each 

cell, the simulated reads were then mapped to the hg19 human reference genome using the 

command “bowtie hg19.fa –S –t –m --best –strata” and filtered for only uniquely mappable 

high scoring reads (quality > 25). The SAM output was then converted to BED format and 

all 90 cells were uploaded and analyzed directly within Ginkgo with variable length 50kb 

bins.

Ginkgo is able to accurately reproduce the population structure through hierarchical 

clustering (Fig. 5b). In addition, we examined Ginkgo’s ability to call CNVs by examining 

the false negative and false positive rates for all 90 cells at three different read counts (2M, 

1.5M, 1M) across three different bin sizes (100kb, 50kb, 25kb) (Supplementary Table 2). 

We measured Ginkgo to have a 0.15% negative and 0.08% false positive rate excluding 

those bins that are partially spanned by a copy number alteration. When the entire genome is 

considered, including partially spanned bins, Ginkgo still has only an ~2% false negative 

and ~1.2% positive rate. Hence, as expected, errors are almost exclusively concentrated at 

the boundaries of CNVs where the precise end of the event cannot be determined due to the 

extremely low coverage available or partially spanning of a bin.

We compared these results to the widely used CNVnator algorithm (http://

sv.gersteinlab.org/cnvnator) for bulk sequencing CNV analysis and find that Ginkgo 

performs CNV calls with higher accuracy (Supplementary Table 2). Furthermore, CNVnator 

and other bulk sample analysis programs do not attempt to assign integer copy number 

states, but in this analysis we have measured Ginkgo’s accuracy with this more strict 

requirement while for CNVnator we could only evaluate if an amplification or deletion had 

been identified. Ginkgo also has numerous features for evaluating population-wide CNV 

relationships (heatmaps & hierarchical clusters, multi-sample GC & Lorenz plots, etc) that 

are also not present in CNVnator or other bulk sample programs that we could not evaluate. 

Finally, in a practical sense, we also find Ginkgo to be substantially faster than CNVnator, 

requiring a few hours via a simple web-interface rather than many days in a very difficult to 

install console program for the 90 cell evaluation.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
The Ginkgo flowchart for performing single-cell copy-number analysis. Usage and 

parameters are described in the online methods and on the website.
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Figure 2. 
(a) Lowess fit of GC content with respect to log normalized bin counts for all samples in 

each of the 9 datasets analyzed: 3 for MDA (top left – green), 3 for MALBAC (center left – 

orange), and 3 for DOP-PCR (bottom left – blue). Each colored line within a plot 

corresponds to the lowess fit of a single sample. The dashed lines show a two fold increase 

or decrease in average observed coverage. Note that the three MDA datasets (top left) have a 

different y-axis scale due to the large GC biases present. (b) The median absolute deviation 

(MAD) of neighboring bins: A single pair-wise MAD value is generated for each sample in 

a given dataset and represented by a box and whisker plot. The bold center line represents 
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the mean, the box boundaries represent the quartiles, and the whiskers represent the 

remaining data points. The high biases present in the MDA datasets make comparing DOP-

PCR and MABLAC samples difficult. Figure 3 of the Online Methods shows this 

comparison more clearly.
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Figure 3. 
A comparison of MAD between the Navin et al. (T10) shown in blue and Ni et al. (CTC) 

shown in orange. As the bin offset increases the separation between the mean T10 MAD and 

mean CTC MAD grows.
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Figure 4. 
Histograms of normalized bin counts across the CTC and T10 datasets, for a high-, typical-, 

and poor-quality cell. The rightmost column contains histograms of high quality cell 

population averages. Distinct peaks are representative of clean data from which accurate 

copy number calls can be made.
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Figure 5. 
(a) Model representation of the 9 distinct subclones generated by simulation of 100 copy 

number events with respect to the reference. (b) Hierarchical clustering of the 90 samples by 

Ginkgo. Ginkgo perfectly recovers the underlying subclonal population structure.
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Table 1

List of the 9 datasets analyzed across 8 different studies.

Study WGA Method Tissue Type # of cells Accession

Kirkness et al. (2013) MDA Sperm 11 SRP017516

Wang et al. (2012) MDA Sperm 31 SRA053375

Evrony et al. (2012) MDA Neuron 8 SRA056303

Lu et al. (2012) MALBAC Sperm 99 SRA060945

Ni et al. (2013) MALBAC Lung 29 SRP029757

Hou et al. (2013) MALBAC Oocyte 181 SRA091188

Navin et al. (2011) DOP-PCR Breast (T10) 100 SRX021401

Navin et al. (2011) DOP-PCR Breast (T16) 100 SRX037035/SRX037132

McConnnell et al. (2013) DOP-PCR Neuron 109 SRP030642

Note that there are two distinct datasets from the same Navin et al. study. We validate Ginkgo by reproducing major findings of several single cell 
sequencing studies that employ three different WGA techniques: MALBAC, DOP-PCR/WGA4, and MDA. Take together, we analyze the data 
characteristics of nine datasets across five tissue types (Table 2). The Ginkgo parameters for these datasets are described in the main text, and 
additional parameters are noted below.
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