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Abstract

A bacterial transcriptome of the primary etiological agent of human dental caries, Streptococcus mutans, is described here
using deep RNA sequencing. Differential expression profiles of the transcriptome in the context of carbohydrate source, and
of the presence or absence of the catabolite control protein CcpA, revealed good agreement with previously-published
DNA microarrays. In addition, RNA-seq considerably expanded the repertoire of DNA sequences that showed statistically-
significant changes in expression as a function of the presence of CcpA and growth carbohydrate. Novel mRNAs and small
RNAs were identified, some of which were differentially expressed in conditions tested in this study, suggesting that the
function of the S. mutans CcpA protein and the influence of carbohydrate sources has a more substantial impact on gene
regulation than previously appreciated. Likewise, the data reveal that the mechanisms underlying prioritization of
carbohydrate utilization are more diverse than what is currently understood. Collectively, this study demonstrates the
validity of RNA-seq as a potentially more-powerful alternative to DNA microarrays in studying gene regulation in S. mutans
because of the capacity of this approach to yield a more precise landscape of transcriptomic changes in response to specific
mutations and growth conditions.

Citation: Zeng L, Choi SC, Danko CG, Siepel A, Stanhope MJ, et al. (2013) Gene Regulation by CcpA and Catabolite Repression Explored by RNA-Seq in
Streptococcus mutans. PLoS ONE 8(3): e60465. doi:10.1371/journal.pone.0060465

Editor: Indranil Biswas, University of Kansas Medical Center, United States of America

Received November 21, 2012; Accepted February 25, 2013; Published March 28, 2013

Copyright: � 2013 Zeng et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This study was funded by the National Institute of Allergy and Infectious Disease (http://www.niaid.nih.gov), U.S. National Institutes of Health (http://
www.nih.gov), under grant number AI073368 and National Institute for Dental and Craniofacial Research (http://www.nidcr.nih.gov/) grant number DE12236.
Additional support was provided by National Science Foundation (http://www.nsf.gov) Career Award DBI-0644111 and a David and Lucile Packard Fellowship for
Science and Engineering (to A.S.). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: rburne@dental.ufl.edu

¤ Current address: Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, Arkansas, United States of America

. These authors contributed equally to this work.

Introduction

About one fifth of children between the ages of 2 and 19 were

reported to have untreated dental caries in the United States

(National Center for Health Statistics, 2010). It is generally

accepted that the presence of acid-tolerant bacteria, a carbohy-

drate-rich diet and a susceptible host are all required for

development of dental caries. In fact, carbohydrates introduced

into the oral cavity provide the preferred energy sources for the

majority of the most abundant members of the oral microbiome.

This is especially true for those organisms that are regarded as

significant contributors to the caries process, including aciduric

streptococci, certain Actinomyces spp., and various lactobacilli,

bifidobacteria and Scardovia spp. These organisms are particularly

effective at converting host- and diet-derived carbohydrates into

the organic acids that can directly effect demineralization of the

tooth [1,2,3].

Cariogenic bacteria, including the primary etiological agent of

human dental caries, Streptococcus mutans, are usually equipped with

multiple pathways for the internalization and catabolism of

carbohydrates [4]. The development of these repertoires of

carbohydrate catabolic pathways likely reflects adaptation to the

complex combination of carbohydrates that are secreted by the

host in the glycoproteins and other glycoconjugates produced in

saliva and gingival exudates, as well as to the variety of simple and

complex carbohydrates that became more significant components

of the human diet a few thousand years ago. Because of the

complexities of the repertoire of carbohydrates to which oral

biofilms are exposed and the intermittent feeding patterns of

humans, it is reasonable to conclude that many of the most

abundant members of the oral microbiota have evolved sophis-

ticated pathways to rapidly and efficiently prioritize the assimila-

tion, catabolism and storage of carbohydrates. Likewise, when the

diet becomes enriched for carbohydrates, the microorganisms

must adapt their utilization of substrates as the physico-chemical

and microbial composition of the biofilms acquire the character-

istics associated with enhanced cariogenic potential. These

characteristics include enrichment for the aforementioned aciduric

organisms, lower biofilm pH and other changes in microenviron-

ments, e.g. reduced redox, which can alter bacterial gene

expression and physiology [5,6,7,8].
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Carbon catabolite repression (CCR) allows bacteria to utilize

carbon sources in a selective fashion, turning off non-essential

catabolic functions while activating pathways required for

utilization of preferred carbohydrates and other carbon sources

[9,10]. In a number of low-G+C Gram-positive pathogenic

bacteria, CCR has also been shown to affect the expression of

numerous virulence factors in response to the source and amount

of carbohydrate [9]. CCR in these organisms is primarily exerted

through the catabolite control protein A, CcpA. When preferred

carbohydrate sources are present, as sensed through the accumu-

lation of glycolytic intermediates, a protein kinase (HprK) is

activated that can phosphorylate the general sugar:phosphotrans-

ferase system (PTS) protein HPr at serine 46 (HPr-Ser46-PO4).

Hpr-Ser46-PO4 functions as a co-factor for the binding of CcpA to

conserved catabolite response elements (CRE) found near the start

sites of target genes to activate or repress gene expression,

depending on the gene, the position of the CRE and other factors

[10].

CcpA was shown to regulate carbohydrate metabolism and

virulence expression in S. mutans in a transcriptomic study using a

Microarray technique [11]. A Regprecise search (http://

regprecise.lbl.gov) of the S. mutans UA159 genome yielded 99

genes in 48 operons with potential CREs detected in their

promoter regions [12]. Although only a very small number of

these genes have been confirmed to be regulated by CcpA in S.

mutans, apparent homologues in related bacteria have been shown

to be subject to CCR by CcpA. A comparison with the results of

our previous Microarray analysis indicated that, using a two-fold

cutoff, about half of the operons predicted by Regprecise were not

among the genes found to be differentially expressed in a ccpA

mutant [11]. Notably, in another study using Microarrays that

included all intergenic regions (IGR) of S. mutans UA159,

differential expression of certain IGRs was observed in cell sub-

populations that responded to the bacterial quorum-sensing signal

CSP (competence-stimulating peptide) [13]. Some of these IGRs

may encode as-yet-uncharacterized regulatory RNAs or encode

proteins that may help regulate the development of competence,

biofilm formation and stress tolerance in S. mutans. Similarly, as-

yet-undisclosed IGRs or small RNAs in the genome of S. mutans

could play regulatory roles in carbohydrate metabolism.

Microarray analysis has proven to be reliable, rapid and

comparatively economical method to analyze bacterial transcrip-

tomes [14]. However, only genes or transcripts that are included in

a predetermined set of probes can be detected in any given assay.

Thus, the technique generally does not capture unannotated

transcripts or genes, or is of limited use for strains with a different

complement of non-core genes than the sequenced reference

strain(s). Relatively recently, RNA deep sequencing (RNA-seq) has

facilitated annotation- and probe-free detection of bacterial

transcripts, with greater sensitivity and dynamic range in RNA

expression levels than Microarrays [15,16]. In addition, RNA-seq

allows for the analysis of RNAs in non-coding regions, of small

RNAs (sRNAs) and of antisense transcripts. However, as a

relatively new tool in modern molecular microbiology, further

validation is needed to ensure that confounding variables do not

bias the results to a significant degree. Confounders include bias in

steps that require reverse transcription and ligation and, partic-

ularly for bacterial samples, relatively low signal/noise ratios due

to the presence of a large ribosomal RNA population. In order to

test the applicability of RNA-seq for transcriptomic studies in S.

mutans, we adopted RNA deep sequencing techniques to sequence

enriched mRNAs from 13 S. mutans samples, focusing on mRNA

and sRNA levels in response to different carbohydrates (glucose

and galactose) in both the wild-type strain (UA159) and a ccpA

mutant (TW1) [11]. As we have previously conducted Microarray

analysis with the same set of strains grown under identical

conditions, we could validate the RNA-seq technology while

expanding our knowledge of the scope of RNAs that may play a

role in regulation of carbohydrate metabolism, a central factor in

S. mutans virulence.

Materials and Methods

Bacterial strains and growth conditions
Streptococcus mutans strains UA159 and TW1 [11] were main-

tained on BHI (Difco Laboratories, Detroit, MI) agar plates, and

bacterial cultures used for extraction of RNA were prepared with

Tryptone-vitamin [17] base medium supplemented with 0.5% of

glucose or galactose (Sigma, St. Louis, MO). Four repeats, each in

a volume of 15 mL, were included for the culture of strain UA159

growing in TV-galactose, while 3 repeats were used for each of the

other 3 cultures. Bacterial cultures were incubated statically in the

presence of 5% CO2 at 37uC until they reached mid-exponential

phase (OD600<0.5), harvested by centrifugation at 4uC for

10 min, treated with bacterial RNAprotect Bacteria Reagent

(Qiagen, Germantown, MD), and immediately stored at 280uC.

RNA isolation, mRNA enrichment and sequencing
Total RNA was extracted from bacterial cells using the RNeasy

Mini kit (Qiagen) according to previously published protocols [18].

To remove 16S and 23S rRNAs, 10 mg of high-quality total RNA

was processed using the MICROBExpressTM Bacterial mRNA

Enrichment Kit (Ambion of Life Technologies, Grand Island,

NY), twice, before precipitating with ethanol and resuspending in

25 mL of nuclease-free water. The final quality of enriched mRNA

samples was analyzed using an Agilent Bioanalyzer (Agilent

Technologies, Santa Clara, CA). cDNA libraries were generated

from the enriched mRNA samples using the TruSeq Illumina kit

(Illumina, San Diego, CA), following instructions from the

supplier. Deep sequencing was performed at the Cornell

University Life Sciences Core Laboratories Center (Ithaca, NY).

Short-read alignments
Approximately 20 million short-reads were obtained for each

sample. Because the aligner BWA [19] allowed a few gaps for

efficient alignment of millions of reads of approximately 100 bp,

shorter reads consisting mostly of sequencing adapters would not

be mapped. After removing adapter sequences from each short-

read [20] and trimming of the 39-ends by quality scores [21], the

resulting sequences were mapped onto the reference genome of

strain UA159 (GenBank accession no. AE014133) using the short-

read aligner. Mapped short-read alignments were then converted

into readable formats using SAMTOOLS [22].

Transcript predictions
RNA transcripts were inferred by applying a hidden Markov

model to site-wise expression levels [23]. A pileup command of

BWA was used to convert the short-read alignments into pileup

values, which were taken as the site-wise expression levels along

the genome. Site-wise expression levels are a list of non-negative

integers that represent numbers of short-reads mapped to a

particular genomic position. For the transcript inference program,

ParseRNAseq, the following options were used: ‘‘-c 10 -b 25 -force

gp’’, which binned expression levels into 25 parts and allowed 10

emission states for relative expression intensity. Genes that were

annotated in close proximity were used as the predicted parts of a

transcript, while no information regarding the precise transcrip-

tion initiation- or stop-sites were pursued in this study. For similar
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reasons, the orientation of each transcript could not be verified

solely based on RNA-seq data; instead we used the information of

annotated genes to determine the strandedness of predicted

transcripts.

Prediction of small RNAs and targets
Although our RNA-seq protocol did not specifically enrich non-

coding small RNAs in the cDNA preparation, small RNAs were

retained in the RNA samples as only ribosomal RNAs were

depleted using specific oligonucleotides. Consequently, it was

difficult to discriminate cDNA originated from small non-coding

RNAs from that of mRNAs, as expression of non-coding RNA is

often masked by the expression of neighboring background

mRNAs. Therefore, we utilized RNAz [24], a program that uses

homologous sequences and RNA secondary structures to predict

putative non-coding small RNAs. Because sequence alignment was

a critical step for finding small RNAs via this approach, intergenic

regions that also included up- and down-stream sequences were

extracted, BLAST-searched against a database of bacterial

genomes [25], and the resultant sequence alignments were further

refined using a program named MUSCLE [26]. Subsequently,

RNAz was applied to the alignments for scoring intergenic regions

for putative small RNAs [24,27]. Targets genes for each candidate

small RNA were predicted using RNAplex [28] and RNAplfold

[29], and the resultant genes were then used to perform functional

category enrichment tests based on their scores by these two

programs. In addition, we employed a method of Rho-indepen-

dent terminator (RIT) identification to help identify candidate

small RNAs [30], which were subsequently scored using RNAz,

and a transcriptional signal-based method to identify intergenic

sRNA transcription units (TUs) [31].

Statistical analysis for differential expression
The R package DESeq [32] was used to determine differential

gene expression on the basis of the negative binomial model [33].

Detailed steps for analyzing RNA-seq data for differentially

expressed genes were utilized as described elsewhere [34]. Briefly,

short-reads aligned to a particular annotated gene in the reference

genome were counted, generating a table of read counts of all the

open-reading frames. Statistical software R of the R package

DEseq [35] was then employed to infer differentially expressed

genes in various biological conditions. To normalize expression

levels among different samples, total sequencing depths for each

sample were estimated as the median of the ratios of the sample’s

counts to geometric mean across all samples, as detailed elsewhere

[32,36].

Gene functional category associations
Three sets of gene categories were compiled for testing

functional associations of differentially expressed genes. First,

genes were each assigned to Gene Ontology (GO) categories by

comparing to bacterial proteins from the Uniref90 database using

the BLASTP program, and a GO classification was assigned if the

match had an E-value of,1.061025. A gene family was assigned a

given classification if any of its genes was assigned that

classification. Second, this classification was collated against

functional classes of genes in the Oral Pathogen Sequence

Databases available at http://oralgen.lanl.gov. Third, genes were

mapped onto a set of metabolic pathways for S. mutans available at

Kyoto Encyclopedia of Genes and Genomes (KEGG) [37]. Using

the sets of gene categories, a variation of Fisher’s exact test was

conducted accounting for gene lengths to test enrichment of

differentially expressed genes [38]. To determine the functional

categories of predicted target genes of small RNAs, a Mann-

Whitney U test was performed using the values of the target genes

in association with a given category versus those for the other

categories. Both tests were corrected for multiple testing

hypotheses [39].

UCSC genome browser tracks and data availability
Tracks were created for the recently-released Streptococcus

Genome Browser (http://strep-genome.bscb.cornell.edu) that

summarized the results of our S. mutans transcriptomic analysis

with known genes, gene expression levels based on the short-read

alignments, predicted putative transcripts, and predicted small

non-coding RNAs. These results can be accessed by clade

‘‘Streptococcus’’, genome ‘‘S. mutans UA159’’ and assembly ‘‘January

2006’’. These tracks can be used to inspect loci of interest and to

compare the results of different RNA-seq data sets. They can also

be queried and intersected with other tracks using the UCSC

Table Browser.

Results and Discussion

Clustering of RNA samples
Based on the results of read counts of all annotated genes, a total

of 13 RNA-seq samples were clustered without supervision. As

illustrated in Figure 1, the effect of carbohydrate source appeared

to be significantly stronger than that of the loss of the ccpA gene.

Nevertheless, all replicates of the same bacterial strain growing in

the same carbohydrate conditions clearly clustered together,

indicating that the transcriptomic shifts were the results of both

sugar specificity and CcpA.

Predicted transcripts
Using the RNA-seq data, a set of transcripts were obtained for

each of the 13 samples. In order to summarize the 13 sets of

predicted transcripts, all transcripts were scored based on their

average site-wise expression levels in relation to transcripts in the

Figure 1. Clustering of 13 RNA-seq samples. Heatmap shows the
Euclidean distances between the samples as calculated from the
variance-stabilizing transformation of the count data.
doi:10.1371/journal.pone.0060465.g001
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rest of the set. More highly-ranked segments were placed first on

the reference genome based on their scores, while lower-ranked

segments were purged from the transcriptome map. In doing so, a

final set of data were generated as non-overlapping transcripts.

The distributions of expression levels of the predicted transcripts

are shown in Figure 2. Designated as expressed were transcripts

with average site-wise expression levels greater than 5 and with

proportion of sites with zero site-wise expression of less than 10%.

A gene was designated as expressed if it belonged to an expressed

transcript. Of 823 predicted transcripts, 11 were found either

expressed poorly or not expressed at all; and of the total 1960

genes, 1947 (99%) were designated as expressed (Figure S1). Of

the 812 expressed transcripts, 84 contained no annotated genes or

RNAs. As a measure of quality of the transcriptome map, the

expression levels between pairs of adjacent genes were compared

and the results indicated that the expression levels for two genes

located within the same predicted transcript (Figure 3A) were far

better correlated than those belonging to two adjacent transcripts

(Figure 3B).

Figure S2 shows the length distribution of expressed transcripts

containing annotated genes and unannotated regions. Unanno-

tated regions could include potential non-coding RNAs and novel

genes. Transcripts from unannotated regions appeared to be

generally shorter than those with annotated genes. We used

strandedness of known genes to determine that of a hosting

transcript as a strand-specific RNA-seq technique was not

employed here. Of the 812 expressed transcripts, 204 included

annotated genes with conflicting strandedness. Among the 608

transcripts without conflicting strandedness, 271 contained a single

gene while 337 were polycistronic. Figure S3 shows length

distributions of 59 and 39 untranslated regions (UTR) of the final

608 transcripts.

Prediction of small RNAs and targets
Three different methods, RNAz, Rho-independent terminator-

based and transcriptional signal-based identifications were used to

predict the presence of small non-coding RNAs, yielding 105, 69

and 135 regions of interest, respectively. After eliminating

overlapping hits among these predictions, a pool of 243 genomic

regions was generated (Table S1). Because we focused our search

of small RNAs on intergenic regions, only 3 predicted small RNA

regions overlapped known genes. As an example, for each of the

105 small RNAs generated using RNAz, target genes were

predicted using RNAplex and RNAplfold methods and the

functional categories of those that met our criteria are summarized

in Table 1. After analyzing the RNA-seq data for the expression

levels of each predicted small RNA, it was found that 114 of the

243 predicted sRNAs were actively expressed in our samples.

Ultimately, five regions met all criteria for differential expression

by UA159 cells grown in glucose versus galactose: Pre-

dSmallRNA-35, PredSmallRNA-71, PredSmallRNA-116, Pre-

dSmallRNA-117, and PredSmallRNA-204 (see Figure S4 for

MFE structure drawing). In the other three sets of pair-wise

comparisons, we also found other differentially expressed regions:

PredSmallRNA-204, and PredSmallRNA-205 (UA159/TW1,

glucose condition); PredSmallRNA-35 (glucose/galactose, TW1

background); PredSmallRNA-116 and PredSmallRNA-205

(UA159/TW1, galactose condition). Interestingly, by investigating

the expression patterns of the neighboring transcripts, an

intergenic region that hosts the predicted small RNAs Pre-

dSmallRNA-204 and PredSmallRNA-205 was identified as being

regulated in a fashion independent of the surrounding genes.

Differential expression of mRNA transcripts
Two independent factors of the biological processes being

studied here included the effects of possession of CcpA and of

growth in glucose versus galactose, resulting in four pair-wise

comparisons. The cut-off for designating a gene as being

differentially expressed was a change in transcript levels of at

least 2-fold and an adjusted P-value of less than 0.001. Of note,

similar cut-off conditions were used in statistical analysis of our

previously published Microarray assays [11]. Using a different

threshold, namely 1.5-fold change in mRNA levels and an

adjusted P-value of less than 0.05, a more extensive list of

differentially expressed genes was identified (Table S8).

Comparison between wild-type and ccpA mutant strains

in glucose-grown cells. Table 2 lists differentially expressed

genes in the comparison of wild-type UA159 and the ccpA mutant

strain TW1 grown with glucose. Of 1960 genes, 45 genes showed

at least a two-fold increase in expression in the mutant relative to

the wild-type strain. At the same time, three genes showed at least

a two-fold reduction in expression associated with the loss of

CcpA. Among these differentially-expressed genes, 18 are involved

in energy metabolism, including glycolysis, fermentation and sugar

utilization; nine encode Enzyme II components of the PTS and

are required for transporting glucose, mannose, sucrose or

cellobiose; and four are classified as regulatory or two-component

system genes (Figure 4 and S5; also see Tables S2 and S3 for gene

ontology and KEGG terms that were enriched with differentially

expressed genes in this comparison). We also found five

differentially expressed genes annotated as hypothetical. We

confirmed that the most up-regulated genes in TW1 encoded

the components of the pyruvate dehydrogenase (PDH) enzyme

complex (SMU.1421c,1424c), as reported previously [11].

Down-regulated genes included a cytoplasmic a-amylase

(SMU.1590) that is located downstream of ccpA [40], and a

fructosyltransferase gene ftf (SMU.2028) encoding the enzyme

involved in converting sucrose to a fructan homopolymer [41].

These results appeared to be generally consistent with those of the

previous Microarray analysis [11]. To better contrast the RNA-seq

results with that of Microarrays assays, genes that have been

Figure 2. Distribution of expression levels of the predicted
transcripts. The last bin sums from the expression levels 1000 to
50,000. The expression levels were measured as the average of reads
mapped on predicted transcripts.
doi:10.1371/journal.pone.0060465.g002
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identified in corresponding microarrays are highlighted in

Tables 2, 3, 4 and 5.

In agreement with the in silico prediction provided by the

Regprecise website, results from the RNA-seq study, but not that

of Microarray study, identified the following as differentially

expressed: genes encoding enzymes for pyruvate kinase

(SMU.1190c; decreased by two-fold in TW1) and pyruvate-

formate lyase (SMU.402c; increased by twofold in TW1), a

putative thiamine biosynthesis lipoprotein (SMU.1088),

SMU.1125c of a putative ribonucleoside-metabolism operon, a

ribosome associated protein (SMU.500), the sucrose-6-phosphate

hydrolase (SMU.1843) and sucrose-PTS EII (SMU.1841c) [42],

the major glucose-PTS EIIMan (SMU.1877,1879) [43], the

cellobiose-PTS operon (SMU.1596c,1600c) [44] and another

b-glucoside-PTS EII (SMU.980) [45]. On the other hand, genes

identified only in the Microarray study that matched the

Regprecise predictions included: glucose-6-phosphate isomerase

(SMU.307), a putative ribulose-monophosphate-PTS EIIC com-

ponent (SMU.270) and a hypothetical protein (SMU.799c). There

were six potential CcpA-regulated operons overlapping these two

methods.

Figure 3. Scatter plot of the expression levels of pairs of adjacent genes. The expression levels of two genes located within the same
transcript (A) or separate but adjacent transcripts (B) are plotted in log10 scale.
doi:10.1371/journal.pone.0060465.g003
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Table 1. Gene Ontology enrichment for target genes of putative unannotated RNAs, as predicted using RNAz.

Small RNA qa Count GO Description

PredSmallRNA-233 0.043 165 GO:0016021 integral to membrane

PredSmallRNA-227 0.00021 46 GO:0055085 transmembrane transport

PredSmallRNA-223 0.03 46 GO:0055085 transmembrane transport

PredSmallRNA-222 0.036 49 GO:0003735 structural constituent of ribosome

0.036 51 GO:0005840 ribosome

0.041 49 GO:0030529 ribonucleoprotein complex

PredSmallRNA-49 0.0041 49 GO:0030529 ribonucleoprotein complex

0.0041 51 GO:0005840 ribosome

0.0041 30 GO:0019843 rRNA binding

0.0041 49 GO:0003735 structural constituent of ribosome

PredSmallRNA-45 0.016 46 GO:0055085 transmembrane transport

PredSmallRNA-192 0.0074 17 GO:0043169 cation binding

PredSmallRNA-19 0.015 197 GO:0003677 DNA binding

PredSmallRNA-4 0.02 10 GO:0048037 cofactor binding

PredSmallRNA-171 0.039 165 GO:0016021 integral to membrane

PredSmallRNA-126 0.02 10 GO:0048037 cofactor binding

PredSmallRNA-139 0.05 10 GO:0048037 cofactor binding

PredSmallRNA-1 0.011 101 GO:0005886 plasma membrane

0.011 165 GO:0016021 integral to membrane

PredSmallRNA-14 0.006 10 GO:0048037 cofactor binding

PredSmallRNA-10 0.044 13 GO:0004519 endonuclease activity

PredSmallRNA-8 0.0016 10 GO:0048037 cofactor binding

PredSmallRNA-5 0.030 14 GO:0015074 DNA integration

0.047 66 GO:0016301 kinase activity

0.047 67 GO:0016310 phosphorylation

aFalse discovery rate estimated by the Benjamini-Hochberg method. Only categories having at least ten genes and q#0.05 are displayed.
doi:10.1371/journal.pone.0060465.t001

Figure 4. Distribution of functional classes of differentially expressed genes between UA159 and TW1 growing on glucose. The
x-axis represents the log2 values of the fold of change in expression (TW1/UA159).
doi:10.1371/journal.pone.0060465.g004
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Table 2. List of genes differentially expressed in UA159 and TW1 when growing in TV-glucose.

Gene ID log2(TW1/UA159) P-value Gene description

SMU.1423c 6.4 3E-148 putative pyruvate dehydrogenase, E1 component a-subunit

SMU.1424c 6.4 3E-151 putative dihydrolipoamide dehydrogenase

SMU.1422c 6.0 8E-135 putative pyruvate dehydrogenase, E1 component b-subunit

SMU.1421c 5.7 3E-102 branched-chain a-keto acid dehydrogenase subunit E2

SMU.1425c 5.0 2E-27 putative Clp proteinase, ATP-binding subunit ClpB

SMU.1600c 5.1 2E-10 cellobiose phosphotransferase system IIB component

SMU.1599c 4.3 7E-47 putative transcriptional regulator; possible antiterminators

SMU.1598c 3.8 2E-25 cellobiose phosphotransferase system IIA component

SMU.1596c 3.2 1E-39 cellobiose phosphotransferase system IIC component

SMU.1539c 2.7 1E-16 glycogen branching enzyme

SMU.1538c 2.7 3E-25 glucose-1-phosphate adenylyltransferase

SMU.1537c 2.3 3E-28 putative glycogen biosynthesis protein GlgD

SMU.1536c 2.2 2E-27 glycogen synthase

SMU.1535c 2.0 2E-22 glycogen phosphorylase

SMU.2037c 2.7 7E-34 putative trehalose-6-phosphate hydrolase TreA

SMU.2038c 2.7 8E-35 putative PTS system, trehalose-specific IIABC component

SMU.2127 2.6 2E-36 putative succinate semialdehyde dehydrogenase

SMU.179 2.4 1E-30 hypothetical protein

SMU.180 2.4 5E-31 putative oxidoreductase; fumarate reductase

SMU.252 2.4 2E-31 hypothetical protein

SMU.1862 2.3 6E-20 hypothetical protein

SMU.148 2.0 5E-12 bifunctional acetaldehyde-CoA/alcohol dehydrogenase

SMU.149 1.5 7E-11 putative transposase

SMU.1077 1.7 1E-16 putative phosphoglucomutase

SMU.1088 1.7 1E-16 putative thiamine biosynthesis lipoprotein

SMU.1089 1.7 3E-17 hypothetical protein

SMU.1090 1.7 7E-18 hypothetical protein

SMU.1841c 1.7 3E-17 putative PTS system, sucrose-specific IIABC component

SMU.1843 1.1 2E-06 sucrose-6-phosphate hydrolase

SMU.500 1.7 9E-17 putative ribosome-associated protein

SMU.576c 1.4 8E-11 putative response regulator LytR

SMU.577c 1.6 2E-15 putative histidine kinase LytS

SMU.1877 1.5 1E-07 putative PTS system, mannose-specific component IIAB

SMU.1878 1.8 1E-04 putative PTS system, mannose-specific component IIC

SMU.1879 1.4 5E-07 putative PTS system, mannose-specific component IID

SMU.1116c 1.5 4E-02 hypothetical protein

SMU.402c 1.4 2E-05 pyruvate formate-lyase

SMU.980 1.4 1E-09 putative PTS system, b-glucoside-specific EII component

SMU.981 1.1 2E-02 putative BglB fragment

SMU.982 1.2 2E-02 putative BglB fragment

SMU.870 1.4 5E-07 putative transcriptional regulator of sugar metabolism

SMU.871 1.3 2E-09 putative fructose-1-phosphate kinase

SMU.872 1.1 3E-07 putative PTS system, fructose-specific enzyme IIABC component

SMU.1004 1.2 1E-02 glucosyltransferase-I

SMU.1043c 1.0 2E-06 phosphotransacetylase

SMU.2028c -1.5 9E-12 levansucrase precursor; b-D-fructosyltransferase

SMU.1590c -4.7 6E-19 cytoplasmic a-amylase

SMU.1591c -6.2 4E-29 catabolite control protein A, CcpA

Bold font indicates the gene has been identified by respective Microarray assay [11].
doi:10.1371/journal.pone.0060465.t002
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Table 3. List of genes differentially expressed in UA159 cells growing in TV-glucose (glc) and TV-galactose (gal).

Gene ID log2(gal/glc) P-value Gene description

SMU.1498c 3.5 2E-32 lactose repressor

SMU.1496c 9.4 0E+00 galactose-6-phosphate isomerase subunit LacA

SMU.1495c 9.2 8E-182 galactose-6-phosphate isomerase subunit LacB

SMU.1494c 9.2 0E+00 tagatose-6-phosphate kinase

SMU.1493c 9.1 0E+00 tagatose 1,6-diphosphate aldolase

SMU.1492c 9 2E-122 PTS system, lactose-specific enzyme IIA EIIA

SMU.1491c 8.3 0E+00 PTS system, lactose-specific enzyme IIBC EIIBC

SMU.1490c 8.6 0E+00 6-phospho-b-galactosidase

SMU.1489c 7.9 1E-295 LacX

SMU.1488c 7.9 5E-249 hypothetical protein

SMU.1487 1.3 2E-10 hypothetical protein

SMU.1486c 1.1 4E-07 hypothetical protein

SMU.870 1.1 1E-05 putative transcriptional regulator of sugar metabolism

SMU.871 1.1 1E-09 putative fructose-1-phosphate kinase

SMU.872 1.2 1E-12 putative PTS system, fructose-specific enzyme IIABC

SMU.882 1.1 1E-09 multiple sugar-binding ABC transporter, MsmK

SMU.885c 1.7 4E-20 galactose operon repressor GalR

SMU.886 5.5 9E-135 galactokinase

SMU.887 4.8 5E-150 galactose-1-phosphate uridylyltransferase

SMU.888 3.6 1E-94 UDP-galactose 4-epimerase, GalE

SMU.889 2.2 2E-40 putative penicillin-binding protein, class C; fmt-like protein

SMU.1425c 3.9 3E-97 putative Clp proteinase, ATP-binding subunit ClpB

SMU.1424c 3.6 5E-14 putative dihydrolipoamide dehydrogenase

SMU.1423c 3.7 4E-12 putative pyruvate dehydrogenase, E1 component a-subunit

SMU.1422c 3.5 1E-11 putative pyruvate dehydrogenase, E1 component b-subunit

SMU.1421c 3.4 1E-12 branched-chain a-keto acid dehydrogenase subunit E2

SMU.1600c 3.7 2E-16 cellobiose phosphotransferase system IIB component

SMU.1599c 3.4 1E-39 putative transcriptional regulator; possible antiterminators

SMU.1598c 3.2 1E-12 cellobiose phosphotransferase system IIA component

SMU.1596c 2.7 3E-31 cellobiose phosphotransferase system IIC component

SMU.1539c 2.9 6E-31 glycogen branching enzyme

SMU.1538c 3.2 1E-77 glucose-1-phosphate adenylyltransferase

SMU.1537c 3.1 2E-45 putative glycogen biosynthesis protein GlgD

SMU.1536c 2.9 4E-67 glycogen synthase

SMU.1535c 2.7 7E-60 glycogen phosphorylase

SMU.2127 2.8 4E-62 putative succinate semialdehyde dehydrogenase

SMU.1004 2.6 7E-14 glucosyltransferase-I

SMU.1005 1.0 4E-10 glucosyltransferase-Si

SMU.2037c 2.6 2E-41 putative trehalose-6-phosphate hydrolase TreA

SMU.2038c 2.5 3E-38 putative PTS system, trehalose-specific IIABC component

SMU.180 2.4 5E-49 putative oxidoreductase; fumarate reductase

SMU.179 2.3 2E-39 hypothetical protein

SMU.252 2.2 9E-24 hypothetical protein

SMU.1862 2.1 5E-19 hypothetical protein

SMU.112c 1.0 7E-05 putative transcriptional regulator

SMU.113 2 9E-12 putative fructose-1-phosphate kinase

SMU.114 1.8 4E-11 putative PTS system, fructose-specific IIBC component

SMU.115 1.9 6E-09 putative PTS system, fructose-specific IIA component

SMU.116 2 1E-14 tagatose 1,6-diphosphate aldolase
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Table 3. Cont.

Gene ID log2(gal/glc) P-value Gene description

SMU.1187c 2 6E-32 glucosamine–fructose-6-phosphate aminotransferase

SMU.1185c 1.6 1E-15 PTS system, mannitol-specific enzyme IIBC component

SMU.1396c 1.8 3E-16 glucan-binding protein C, GbpC

SMU.1877 1.7 3E-23 putative PTS system, mannose-specific component IIAB

SMU.1878 1.8 3E-07 putative PTS system, mannose-specific IIC component

SMU.1879 1.6 9E-18 putative PTS system, mannose-specific component IID

SMU.1116c 1.6 3E-13 hypothetical protein

SMU.1117c 2.0 2E-07 NADH oxidase (H2O-forming)

SMU.402c 1.9 1E-05 pyruvate formate-lyase

SMU.270 1.2 2E-05 PTS system ascorbate-specific transporter subunit IIC

SMU.1217c 1.1 8E-09 putative ABC transporter, amino acid binding protein

SMU.980 1.5 3E-14 putative PTS system, b-glucoside-specific EII component

SMU.1841c 1.4 4E-14 putative PTS system, sucrose-specific IIABC component

SMU.1843 1.2 2E-12 sucrose-6-phosphate hydrolase

SMU.1844 1.0 5E-09 sucrose operon repressor

SMU.1088 1.1 9E-12 putative thiamine biosynthesis lipoprotein

SMU.1090 1.1 2E-11 hypothetical protein

SMU.1410 1.1 2E-06 putative reductase

SMU.576c 1.0 2E-07 putative response regulator LytT

SMU.577c 1.0 2E-08 putative histidine kinase LytS

SMU.148 2 2E-36 bifunctional acetaldehyde-CoA/alcohol dehydrogenase

SMU.149 1.1 2E-06 putative transposase

SMU.915c 21.1 4E-04 7-cyano-7-deazaguanine reductase

SMU.916c 21.1 7E-04 hypothetical protein

SMU.917c 21.2 1E-04 putative 6-pyruvoyl tetrahydropterin synthase

SMU.954 21.1 4E-07 pyridoxamine kinase

SMU.1945 21.3 2E-13 hypothetical protein

SMU.1946 21.1 2E-09 hypothetical protein

SMU.1595c 21.3 8E-09 putative carbonic anhydrase precursor

SMU.423 21.5 3E-09 possible bacteriocin NlmD

SMU.1175 21.6 1E-12 putative sodium/amino acid (alanine) symporter

SMU.150 21.9 1E-14 non-lantibiotic mutacin IV A, NlmA

SMU.151 21.8 6E-13 non-lantibiotic mutacin IV B, NlmB

SMU.152 22 1E-17 hypothetical protein

SMU.153 22.1 5E-37 hypothetical protein

SMU.1898 21.2 6E-10 putative ABC transporter, ATP-binding and permease protein

SMU.1899 21.3 4E-04 putative ABC transporter, ATP-binding and permease protein

SMU.1902c 21.8 9E-21 hypothetical protein

SMU.1903c 22.2 4E-17 hypothetical protein

SMU.1904c 22.2 4E-45 hypothetical protein

SMU.1905c 22.1 2E-17 putative bacteriocin secretion protein

SMU.1906c 22.1 2E-11 bacteriocin-related protein

SMU.1907 22.3 5E-28 hypothetical protein

SMU.1908c 22.2 5E-11 hypothetical protein

SMU.1909c 22.1 3E-32 hypothetical protein

SMU.1910c 22 4E-12 hypothetical protein

SMU.1912c 22 4E-14 hypothetical protein

SMU.1913c 22.1 1E-16 putative immunity protein, BLpL-like

SMU.1914c 22.0 2E-06 hypothetical protein

Deep-Sequencing of the S. mutans Transcriptome

PLOS ONE | www.plosone.org 9 March 2013 | Volume 8 | Issue 3 | e60465



Table 3. Cont.

Gene ID log2(gal/glc) P-value Gene description

SMU.1700c 22.0 2E-04 LrgB family protein

SMU.1701c 22.0 2E-06 hypothetical protein

SMU.602 22.9 2E-06 putative sodium-dependent transporter

Bold font indicates the gene has been identified by respective Microarray assay [11].
doi:10.1371/journal.pone.0060465.t003

Table 4. List of genes differentially expressed in TW1 cells growing in TV-glucose (glc) and TV-galactose (gal).

Gene ID log2(gal/glc) P-value Gene Description

SMU.1498c 3.3 9E-13 lactose repressor

SMU.1495c 9.4 2E-275 galactose-6-phosphate isomerase subunit LacB

SMU.1496c 9.2 3E-172 galactose-6-phosphate isomerase subunit LacA

SMU.1494c 9.2 4E-270 tagatose-6-phosphate kinase

SMU.1493c 9.1 1E-95 tagatose 1,6-diphosphate aldolase

SMU.1492c 9.1 6E-80 PTS system, lactose-specific enzyme IIA

SMU.1491c 8.2 5E-237 PTS system, lactose-specific enzyme IIBC

SMU.1490c 8.6 5E-250 6-phospho-b-galactosidase

SMU.1489c 7.8 1E-216 LacX

SMU.1488c 7.7 6E-203 hypothetical protein

SMU.883 1.3 8E-10 dextran glucosidase DexB

SMU.882 1.2 9E-08 multiple sugar-binding ABC transporter, MsmK

SMU.881 1.2 1E-07 sucrose phosphorylase, GtfA

SMU.880 1.1 2E-06 multiple sugar-binding ABC transporter, MsmG

SMU.878 1.1 2E-06 multiple sugar-binding ABC transporter, MsmE

SMU.877 1.0 5E-06 a-galactosidase

SMU.1187c 2.3 3E-31 glucosamine–fructose-6-phosphate aminotransferase

SMU.1185c 2.1 4E-18 PTS system, mannitol-specific enzyme IIBC

SMU.113 2.2 1E-09 putative fructose-1-phosphate kinase

SMU.114 1.8 2E-08 putative PTS system, fructose-specific IIBC

SMU.115 1.8 2E-04 putative PTS system, fructose-specific IIA

SMU.116 1.8 4E-05 tagatose 1,6-diphosphate aldolase

SMU.1004 1.7 4E-05 glucosyltransferase-I

SMU.1896c 1.6 8E-09 hypothetical protein

SMU.1895c 1.6 2E-06 hypothetical protein

SMU.1396c 1.4 3E-04 glucan-binding protein C, GbpC

SMU.1486c 1.3 3E-07 hypothetical protein

SMU.1958c 1.1 2E-05 putative PTS system, mannose-specific IIC

SMU.1538c 1.0 3E-06 glucose-1-phosphate adenylyltransferase

SMU.916c 21.1 3E-04 hypothetical protein

SMU.1898 21.1 3E-04 putative ABC transporter

SMU.919c 21.2 1E-05 putative ATPase, confers aluminum resistance

SMU.152 21.5 9E-05 hypothetical protein

SMU.1903c 21.9 7E-05 hypothetical protein

SMU.1905c 21.5 2E-04 putative bacteriocin secretion protein

SMU.1910c 21.6 5E-04 hypothetical protein

Bold font indicates the gene has been identified by respective Microarray assay [11].
doi:10.1371/journal.pone.0060465.t004
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There also appeared to be evidence suggesting improved

consistency using RNA-seq technology. For example, a proven

CCR-sensitive operon, the glycogen biosynthesis glg cluster that

spans SMU.1535c,1539c [11,46], was shown here by RNA-seq

to be uniformly derepressed in strain TW1 growing on glucose,

whereas Microarray analysis of the same strains grown in the same

condition indicated that the expression of only one of the genes,

SMU.1537c, was altered in a statistically significant way. The

same pattern was true for an inducible fructose-PTS operon

(SMU.870,872). Furthermore, RNA-seq analysis, at a two-fold

cutoff, showed fewer genes (3 out of a total of 48) with decreased

expression in TW1 as compared to UA159, whereas Microarray

analysis showed 110 genes with decreased expression and 61 genes

with increased expression in TW1 at the same cutoff, when both

were growing in TV-glucose. A similar pattern appeared when the

analysis was repeated at a lower (1.5-fold) threshold (Table S8).

Considering the collective evidence regarding CCR in Gram-

positive bacteria, it is conceivable that CcpA exerts its function

predominantly through negative regulation [10].

Comparison between glucose- and galactose-grown

UA159 cells. Figure S6 shows proportions of functional

categories that included differentially expressed genes between

glucose-grown and galactose-grown UA159 cells. Of the four

pairwise comparisons, this showed the largest number of genes,

101, as differentially expressed (Table 3). Again, energy metab-

olism had the most (30%) differentially expressed genes and as

many as 16 PTS genes were affected, reflecting potential changes

in uptake of lactose, galactose, glucose, fructose, mannose,

cellobiose, sucrose and trehalose (Table S4). Clearly, glucose is a

potent activator of CCR, negatively affecting the expression of

various glycolytic components and PTS operons in the S. mutans

genome. Notably in S. mutans, the effects of glucose on some of

these PTS operons, including EIILac [47] EIICel [44] and EIIFru

(SMU.1956c,1961c) [48] have been shown to be mediated

primarily through the major glucose-PTS EIIMan; and CcpA

exerts its regulation indirectly by negatively regulating the

expression of the genes for EIIMan [48]. Therefore, the

transcriptomic alterations observed here are likely a result of

these two tiers of regulation: one directly effected by CcpA and the

other exerted through changes in the production of EIIman. In

addition, the profound changes in gene expression in the parental

strain as a function of carbohydrate source was also attributable in

part to the fact that galactose and its derivatives could serve as

inducers of expression of the Leloir pathway and tagatose pathway

genes that are responsible for assimilating galactose and lactose

(Table S5) [47,49]. These include the contiguous genes

SMU.1486c to SMU.1496c (tagatose pathway) and genes

SMU.885 to SMU.889 encoding the Leloir pathway. Interestingly,

roughly 30% of all differentially expressed genes were considered

hypothetical or of unknown function according to Oralgen

database (http://oralgen.lanl.gov), and 74% of these were up-

regulated in the presence of glucose (Figure 5). Among these were

two clusters of genes that were up-regulated by glucose,

SMU.150,153 that encode the bacteriocin mutacin IV capable

of killing closely related oral streptococci [50]; and the

SMU.1898,1914c gene cluster that includes two putative ABC-

transporters, a putative bacteriocin-secretion protein

(SMU.1905c), a bacteriocin-related protein (SMU.1906c) and a

bacteriocin immunity protein (SMU.1913c).

Notably, genes that were expressed at a lower level when

glucose was the growth carbohydrate rather than galactose

included the glg operon (SMU.1535c,1539c), the glucan-synthe-

sizing enzymes gtfBC (SMU.1004,1005) [51,52], the pyruvate-

formate lyase (SMU.402c), a glucan-binding protein gbpC

(SMU.1396c) [53] and an NAD-dependent aldehyde dehydroge-

nase gabD (SMU.2127). Furthermore, a two-component system,

lytT and lytS (SMU.576c,577c) whose gene products are required

for the expression of the genes for the bacterial holin:antiholin

homologues LrgAB and for oxidative stress tolerance [54,55], were

down-regulated by the presence of glucose, although expression of

lrgAB was not altered. Conversely, two additional genes encoding

holin:antiholin-like proteins (SMU.1700c,1701c, cidB and cidA,

Table 5. List of genes differentially expressed in UA159 and TW1 when growing in TV-galactose.

Gene ID log2(TW1/UA159) P-value Gene Description

SMU.1425c 1.0 2E-10 putative Clp proteinase, ATP-binding subunit ClpB

SMU.1424c 3.6 2E-15 putative dihydrolipoamide dehydrogenase

SMU.1423c 3.5 5E-16 putative pyruvate dehydrogenase, E1 component a-subunit

SMU.1422c 3.3 7E-23 putative pyruvate dehydrogenase E1 component b -subunit

SMU.1421c 3.1 2E-20 branched-chain a-keto acid dehydrogenase E2

SMU.602 3.0 2E-23 putative sodium-dependent transporter

SMU.600c 2.0 5E-23 hypothetical protein

SMU.1700c 2.6 5E-34 LrgB family protein

SMU.1175 2.5 2E-30 putative sodium/amino acid (alanine) symporter

SMU.500 1.9 7E-17 putative ribosome-associated protein

SMU.1658c 1.5 4E-04 putative ammonium transporter, NrgA protein

SMU.913 1.1 3E-10 glutamate dehydrogenase

SMU.2042c 1.0 3E-08 dextranase precursor

SMU.609 1.0 1E-05 putative 40K cell wall protein precursor

SMU.2028c 22.1 3E-07 levansucrase precursor; b-D-fructosyltransferase

SMU.1590c 25.5 5E-132 cytoplasmic a-amylase

SMU.1591c 26.8 1E-237 catabolite control protein A, CcpA

Bold font indicates the gene has been identified by respective Microarray assay [11].
doi:10.1371/journal.pone.0060465.t005
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respectively) that were previously found inversely regulated in

relation to lrgAB [55], were up-regulated in the presence of

glucose.

Our previous Microarray analysis of the same set of samples

showed similar patterns of change in gene expression, with a

significant portion (28 out of 90) of the affected genes encoding

hypothetical proteins [11]. However, in comparison with the

predictions using Regprecise, the RNA-seq analysis identified 15

presumably CCR-sensitive operons, 8 of which were not detected

in the Microarray study performed under identical conditions:

SMU.112,116 (fructose-1-phosphate kinase and a fructose-PTS

EIIBC) [56], SMU.1088 (a putative thiamine biosynthesis

lipoprotein), SMU.1843 (scrB), SMU.2127 (gabD),

SMU.1596,1600 (cellobiose operon), SMU.1877,1879 (EIIMan),

SMU.980 (b-glucoside PTS EII) and the sucrose-PTS (scrA).

Conversely, 8 operons from the list of Regprecise were identified

by Microarray, but only two exclusively: SMU.574c,575c (lrgBA)

[55] and SMU.396 (a glycerol-uptake facilitator protein, glpF).

Comparison between glucose- and galactose-grown cells

in the absence of CcpA. As mentioned above, the effect of

carbohydrate source appears to have a greater impact on gene

expression than does the loss of CcpA. Similar to the observations

made with strain UA159, when the transcriptomes from strain

TW1 grown in glucose or galactose were contrasted, transcripts for

energy metabolism (45%) constituted the greatest proportion of

differentially-expressed genes (Figure S7, S8, Tables S6, S7). In

contrast to wild-type cells, however, only 7 PTS genes were

identified that encode PTS components for lactose, fructose and

mannitol (Table 4). Notably up-regulated by galactose in TW1

were the tagatose and Leloir pathways for galactose/lactose

metabolism, the glg operon for glycogen metabolism, gbpC, gtfB and

the msm pathway. A total of seven genes were found down-

regulated in galactose-grown TW1 cells, with the majority being

classified as hypothetical proteins.

Different from our previous Microarray study that saw as many

as 515 genes differentially expressed by at least two-fold in TW1,

with more than 50% of which having lower expression in galactose

conditions, RNA-seq analysis performed at identical statistical

thresholds showed only 42 genes in total affected in TW1 as a

function of the growth carbohydrate. This divergence persisted

when the analysis was performed under a lower threshold and a

more relaxed P value (Table S8). A similar discrepancy was noted

in the comparative analyses of the wild-type and ccpA mutant cells

growing on glucose that were carried out using these two

technologies, where markedly more genes were found to be

down-regulated due to the loss of CcpA by Microarray than RNA-

seq (see above). While some of these differential expressions have

been confirmed by RealTime quantitative RT-PCR in our

previous study ([11], and unpublished data), many more remain

untested due to the large number of the affected genes, and the

likelihood of many being indirectly regulated by CcpA. Multiple

comparative studies by workers in other fields have suggested that

as a likely replacement of Microarrays for high-throughput

transcriptomic analysis, RNA-seq appears to be consistently more

sensitive and repeatable [34]. Considering the many differences

between these two methodologies that range from sample

preparation, data generation and normalization, to statistical

modeling that leads to identification of differential expression,

these discrepancies noted in our study are likely the result of

multiple factors. For example, whereas the Microarray study was

carried out using total RNA, the RNA samples used in RNA-seq

analysis were enriched for mRNA and other non-rRNA popula-

tions. Conversely, steps such as reverse transcription and adapter

ligation are also known to affect the consistency of RNA-seq

analysis. Nevertheless, since the difference between TW1 cells

grown in glucose and galactose conditions is expected to be greatly

reduced due to the loss of CcpA, these observations perhaps imply

improved accuracy of RNA-seq technology over microarrays.

Comparison between the wild-type and ccpA mutant

growing in TV-galactose. As reported previously, galactose is

less effective than glucose at triggering CCR in S. mutans [48], so

the finding that there were fewer differences between the

Figure 5. Distribution of functional classes of differentially expressed genes in UA159 growing in TV-glucose and TV-galactose. The
x-axis represents the log2 values of the fold of change in expression (galactose/glucose).
doi:10.1371/journal.pone.0060465.g005
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transcriptomes of UA159 and TW1 in galactose-grown cells was

expected. Nevertheless, energy metabolism remained the predom-

inant category (41%) among all differentially expressed genes

(Figures S9, S10). Similar to what was observed in glucose-grown

cells, a few genes, including those for PDH components

(SMU.1421c,1425c) were up-regulated in TW1, and a-amylase

(SMU.1590c) and b-D-fructosyltransferase ftf (SMU.2028c), were

down-regulated (Table 5). In contrast, no major PTS genes were

differentially expressed in the mutant during growth in galactose.

Because both strains were grown in galactose, genes involved in

galactose and lactose utilization were likely being expressed

similarly and therefore no differences were noted. Consequently,

no gene ontology terms were found significantly associated with

differentially expressed genes. These results are largely consistent

with our previous Microarray analysis, despite significantly more

genes (57 genes) having been found to be down-regulated in the

Microarray study [11].

Concluding Remarks

Our current knowledge of the S. mutans transcriptome is limited

to annotated or predicted genes. Whole transcriptome sequencing

using high throughput sequencing technologies, deep RNA

sequencing (RNA-seq), allowed us to better reveal the transcrip-

tomic topography of S. mutans. Instead of aiming at pin-pointing

transcript start or end sites, we focused on differential expression of

genes in response to nutrient availability and deletion of ccpA from

UA159. Although we did not use strand-specific RNA-seq, which

could be important in gene-dense transcriptomes of species like

bacteria or archaea, our application of a hidden Markov model for

predicting transcripts to RNA-seq data in conjunction with known

gene annotations allowed for inference of segments of putatively

co-transcribed regions. In doing so, we attempted to ensure a high-

quality transcriptome assembly. Although this map of transcripts

did not precisely tell us where transcripts start and end, it does

provide information as to which open reading frames could be co-

transcribed under the conditions tested. The integration of this

data with the newly developed genome browser described above is

an asset for future analysis of the transcriptome of S. mutans.

In comparison with our previous Microarray study of differen-

tial gene expression using the same set of samples, we observed

generally good agreement between these two methodologies, but

were also able to identify genes by each method alone (especially

RNA-seq) that appeared to match an in silico analysis published

online at Regprecise website, and consistent with other indepen-

dent studies [54,55,57,58,59,60]. Further, additional genes and

transcripts that are differentially regulated in S. mutans in response

to carbohydrate source or loss of CcpA were identified. We also

found discrepancies of annotated genes and their transcription, for

example a gene containing two transcripts and non-coding regions

producing significant numbers of transcripts. We hope that our

work serves as a foundation for a comprehensive study of the S.

mutans transcriptome and a more thorough evaluation of the role

of non-coding sequences in gene regulation.
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