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A developmental cell-type switch in cortical
interneurons leads to a selective defect in cortical
oscillations
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The cellular diversity of interneurons in the neocortex is thought to reflect subtype-specific

roles of cortical inhibition. Here we ask whether perturbations to two subtypes—

parvalbumin-positive (PVþ ) and somatostatin-positive (SSTþ ) interneurons—can be

compensated for with respect to their contributions to cortical development. We use a

genetic cell fate switch to delete both PVþ and SSTþ interneurons selectively in cortical

layers 2–4 without numerically changing the total interneuron population. This manipulation

is compensated for at the level of synaptic currents and receptive fields (RFs) in the

somatosensory cortex. By contrast, we identify a deficit in inhibitory synchronization in vitro

and a large reduction in cortical gamma oscillations in vivo. This reveals that, while the roles of

inhibition in establishing cortical inhibitory/excitatory balance and RFs can be subserved by

multiple interneuron subtypes, gamma oscillations depend on cellular properties that cannot

be compensated for—likely, the fast signalling properties of PVþ interneurons.
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G
ABAergic interneurons have traditionally been classified
into distinct subtypes based on their cellular properties,
including firing properties, morphological features and

expression of proteins linked to synaptic functions, such as the
calcium-binding proteins parvalbumin (PV) and calretinin (CR)
or co-neurotransmitters somatostatin (SST) and vasoactive
intestinal peptide (VIP)1. The extraordinary diversity of
interneuron subtypes in the mammalian neocortex suggests that
inhibition plays particularly important and complex roles in
controlling the development and adult functions of cortical
excitatory circuits.

Genetic lineage-tracing studies have revealed detailed informa-
tion about the embryonic origins of the main cortical interneuron
subtypes, as well as their migration and final distribution across
cortical layers. The most abundant cortical subtypes are the PVþ
and SSTþ interneurons, which arise from the medial ganglionic
eminence (MGE) and account for nearly 70% of cortical
inhibitory cells2–4. The PVþ interneurons are characterized as
fast spiking and include basket cells populating cortical layers 2–6
and chandelier cells found in layers 2 and 5/6, whereas the SSTþ
interneurons comprise the Martinotti cells and distribute to layers
2/3 and 5. The remaining B30% of cortical interneurons arise
from the caudal ganglionic eminence and can be broadly
classified as bipolar VIP-positive (VIPþ ), the CR-positive
(CRþ ) interneurons and the reelin-expressing neurogliaform
cells, all populating mainly superficial cortical layers 2/3 (ref. 4).
Remarkably, a single transcription factor, called Nkx2-1, acts as a
‘master switch’ in promoting the cell fate of the MGE-derived
interneurons: Nkx2.1 is expressed only in the MGE and its
genetic deletion leads to a cell fate switch of the PVþ and SSTþ
subtypes into caudal ganglionic eminence-like VIPþ , CRþ and
reelinþ subtypes as defined by the expression of the respective
marker proteins, firing properties and axonal arborizations5,6.

In contrast to the detailed knowledge about the embryonic
origins, we know much less about subtype-specific roles of
cortical interneurons during postnatal development, when
excitatory and inhibitory circuits are established and shaped by
sensory experience. On the basis of the studies of a knockout
mouse model lacking the glutamic acid decarboxylase 65
(GAD65) protein, one of the two GABA-synthesizing enzymes
in the brain, the onset of normal receptive field (RF) development
is proposed to depend on the maturation of GABAergic circuits
that is needed to reach a necessary threshold level of inhibition
and establish normal excitation/inhibition (E/I) balance7–9. The
developmental increase in inhibition has been proposed to be
mediated by the PVþ interneurons, because their maturation in
the cortex approximately parallels RF development7. However, it
is not known whether specific cellular properties of PVþ
interneurons are required for normal cortical development,
including establishing the E/I balance and sensory RFs, or
whether the overall increase in inhibition (independent of
subtype-specific roles) is the critical developmental factor.

In the adult cortex, subtype-specific roles of inhibition have
recently begun to be elucidated by optogenetic manipulations.
The PVþ interneurons are proposed to drive gamma (30–80 Hz)
oscillations, thought to be a substrate for neuronal coordination
underlying cortical processing. The fast signalling properties of
PVþ interneurons, such as the ability to fire short-duration
action potentials, rapid and highly synchronized GABA release
and short inhibitory postsynaptic current (IPSC) decay time
constant, have been proposed as the underlying cellular
mechanisms that enable this cell type to organize the fast
network oscillations10–14. This can occur either via the activation
of reciprocally connected inhibitory circuits, termed interneuron
gamma, or via an excitatory-inhibitory loop, termed the
pyramidal-interneuron gamma10,15–17. In support of the PING

model in the cortex, optogenetic activation of either the PVþ
interneurons or layer 2/3 pyramidal neurons was shown to be
sufficient to initiate cortical gamma activity18–20. Other
optogenetic studies showed that the activity of PVþ
interneurons can control the size as well as the gain of sensory
RFs21–23, while the activity of SSTþ interneurons can regulate
the RF size in the visual cortex24,25. These studies suggest that the
adult requirements for modes of cortical inhibition are allocated
in a subtype-specific manner. They do not, however, address the
importance of interneuron subtype diversity during development,
including the question whether the PVþ and SSTþ subtypes are
necessary for the proposed roles or whether some inhibitory
circuit functions may be compensated for by other interneurons.

Here we study the developmental cell type-specific roles of
cortical inhibition by genetically deleting the PVþ and SSTþ
interneurons in the upper layers of the neocortex. This
manipulation enabled us to test whether the innervation by the
two interneuron subtypes is necessary for normal development of
pyramidal neuron cellular (intrinsic) and synaptic properties,
cortical E/I balance, sensory RFs and network synchronization.

Results
We used a genetic approach based on a conditional deletion of
the MGE-specific Nkx2.1 in a loss-of-function (Nkx2-1LOF)
mouse model6, which allowed us to test the roles of the PVþ
and SSTþ interneurons during development and in the young
adult. We timed the Nkx2-1 deletion at embryonic day (E) 12.5
(Nkx2-1E12.5LOF), which restricts the cell fate switch to the
cortical layers 1–4 and causes the substitution of the PVþ /SSTþ
interneurons by the VIPþ , CRþ and neurogliaform subtypes
without affecting the total interneuron cell count5,6. Given that
the Nkx2-1E12.5LOF mice have normal lifespans and no seizures6,
we hypothesized that the loss of PVþ and SSTþ interneurons
may be compensated for at the level of gross cortical development
and, therefore, that these mice may allow us to directly test
whether these interneuron subtypes are necessary for the
development of cortical E/I balance and sensory RFs, as well as
the generation of gamma cortical oscillations.

Characterization of the Nkx2-1 deletion in vitro. In the first
set of experiments, we confirmed by immunohistochemistry
that the E12.5 deletion of Nkx2-1 reliably induces the cell
fate switch as intended6, demonstrating B93% reduction in
PVþ and B85% reduction in SSTþ without any changes in the
total interneuron count as revealed by anti-GABA
immunostaining in the superficial layers of the somatosensory
cortex (Fig. 1; Supplementary Table 1).

We then considered the consequences of this manipulation on
the development of excitatory layer 2/3 pyramidal neurons. First,
we tested whether the development of biophysical and cellular
properties of pyramidal neurons is affected by the altered
interneuron composition. If so, such changes would need to be
taken into account when interpreting more complex cortical
functions in later experiments. Whole-cell recordings in acute
brain slices from control and Nkx2-1E12.5LOF mice revealed no
differences in intrinsic membrane properties, including input
resistance, rectification index and membrane time constant
(Supplementary Tables 2 and 3). Several other cellular properties,
including action potential properties, resting membrane potential
and excitability, were altered during the second postnatal week
(P11–13), but returned mostly to normal by the end of the third
week (P20–22) (Supplementary Tables 2 and 3; Supplementary
Figs 1 and 2). These data show that the Nkx2-1E12.5LOF

manipulation induces transient changes in the development of
cellular properties of cortical pyramidal neurons, which are
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largely compensated for by the end of the third postnatal week
marking the end of the critical period of sensory development in
the somatosensory barrel cortex26,27.

Next, we determined whether normal balance of synaptic
excitation and inhibition is preserved in the Nkx2-1E12.5LOF

somatosensory cortex, using whole-cell recordings in brain slices
from 3- to 4-week-old animals. First, recordings of spontaneous
miniature excitatory postsynaptic currents (EPSCs) and IPSCs
(mEPSCs and mIPSCs, respectively) in layer 2/3 pyramidal
neurons revealed no changes in mEPSC frequencies and
comparably increased mEPSC and mIPSC amplitudes, by B24
and B32%, respectively, resulting in no change in the mEPSC/
mIPSC amplitude ratio in Nkx2-1E12.5LOF compared with control
slices (Fig. 2a–g; Supplementary Table 4). Second, we also tested
evoked EPSCs and IPSCs by incubating the brain slices in a bath
solution with higher potassium and lower magnesium concentra-
tion28. As shown in Supplementary Fig. 3, this analysis also did
not detect any differences between the two conditions
(Supplementary Table 4). These data thus indicate that the

cortical E/I balance is normal in the Nkx2-1E12.5LOF mice at 4
weeks of age. The transient changes in cellular properties and the
comparable increase in mEPSC and mIPSC amplitudes suggest
that some forms of homeostatic synaptic plasticity29 likely
contribute to the normalization of synaptic currents and E/I
balance in the Nkx2-1E12.5LOF cortex.

Nkx2-1 deletion does not affect RF properties. Having
demonstrated largely normal properties of excitatory pyramidal
neurons and normal E/I balance in the Nkx2-1E12.5LOF cortex, we
turned our attention to the study of sensory RF development, by
mapping sensory responses in the somatosensory barrel cortex
representing inputs from the rodent facial vibrissae (whiskers).
The critical period in the barrel cortex occurs during the second
to third postnatal week, when the sensory responses of layer 2/3
neurons increase in strength and their RFs are sensitive to sensory
deprivation26,27. Mature RFs of layer 2/3 pyramidal neurons in
the barrel cortex have the strongest response to the deflection of
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Figure 1 | Quantification of the Nkx2-1E12.5LOF cell fate switch. (a,b) Double fluorescent immunostaining against PV (a) (n¼ 7 wt and 7 mutant) and

GABA (b; n¼ 7 wt and 7 mutant). (c) Fluorescent immunostaining against WFA, a marker of PV-specific perineuronal nets55 (n¼ 7 wt and 7 mutant).

(d) Anti-SST immunostaining (n¼6 wt and 6 mutant). Asterisks indicate statistical significance Po0.05 (two-tailed t-test). Error bars are s.e.m. Scale bar,

100mm. Each staining is an example of two repeated experiments.
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Figure 2 | Synaptic E/I balance and sensory RFs of layer 2/3 pyramidal neurons in the Nkx2-1E12.5LOF layer 2/3 somatosensory cortex. (a) Sample

mIPSC (top) and (b) mEPSC (bottom) traces from layer 2/3 pyramidal neurons in the somatosensory cortex in control (wild type, wt) and Nkx2-1E12.5LOF

(mutant) acute brain slices. Scale bars, 500 ms and 30 pA ((a) top) and 100 ms and 50 pA (bottom); and 50 pA and 500 ms ((b) top) and 50 pA

and 100 ms (bottom). (c–e) Analysis of mEPSC (n¼ 11 wt; n¼ 12 mutant) and mIPSC (wt n¼ 11; mutant n¼ 16) mean amplitudes. Error bars are s.e.m.

(f,g) Mean frequency of mEPSCs (e) and mIPSCs (f). Error bars are s.e.m. Asterisks indicate statistical significance Po0.05 (two-tailed t-test). (h) A

schematic representation of the recording setup in an anaesthetized mouse, showing a craniotomy window with a patch pipette at a site contralateral to

piezo-based deflection of the facial whiskers. (i) Sensory responses evoked by deflection of principal and surrounding whiskers (PW and SW1, respectively)

in layer 2/3 pyramidal neurons. The traces are averages of about 20 responses. The duration of the whisker deflection is indicated schematically below

the traces. Scale bar, 50 ms and 5 mV. (j) RF maps of control (n¼ 5) and Nkx2-1E12.5LOF (n¼8) mice shown centred on the principal whisker; each bar

indicates the average amplitude of postsynaptic potentials evoked by the deflection of corresponding whiskers. (k) Mean amplitude of whisker-evoked

postsynaptic potentials in primary whisker (PW) or primary SW1 stimulations in control and Nkx2-1E12.5LOF mice (mV; mean±s.e.m.): control

PW¼ 16.36±3.10, mutant PW¼ 17.21±2.47, P¼0.83; control SW¼ 8.16±1.70, mutant SW¼9.19±2.03, P¼0.72 (two-tailed t-test).
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the principal whisker and weaker responses to the deflections of
the adjacent surround whiskers30. Whole-cell recordings in vivo
in anaesthetized mice (B4 weeks old) revealed normal layer 2/3
RF properties in the Nkx2-1E12.5LOF barrel cortex (Fig. 2h–k). The
amplitude of whisker-evoked subthreshold postsynaptic
potentials was (mV): principal whisker: 16.4±3.1 and 16.3±2.4
(P¼ 0.996; Student’s t-test); and surround whisker: 8.2±1.7 and
8.7±1.9 (P¼ 0.843; mean±s.e.m.), in control and Nkx2-
1E12.5LOF recordings, respectively. In addition, no differences
were observed in the postsynaptic potential kinetics
(Supplementary Table 5) or in the number of sensory-evoked
action potentials (spikes per trial): 0.064±0.032 and
0.067±0.040 (P¼ 0.954), control and Nkx2-1E12.5LOF barrel
cortex, respectively. On the basis of these data, we conclude
that the cell fate switch of the PVþ and SSTþ interneurons is
compensated for at the level of somatosensory RF development in
the Nkx2-1E12.5LOF barrel cortex.

Nkx2-1 deletion prevents fast cortical oscillations. Next, we
turned our attention to the study of cortical circuit dynamics, first
using an optogenetic model of cortical oscillations driven by
activation of layer 2/3 pyramidal neurons20. Channelrhodopsin-2
(ChR2) was targeted to layer 2/3 pyramidal neurons by
stereotaxic injections of an adeno-associated virus expressing
yellow fluorescent protein (YFP)-tagged ChR2 (ChR2-YFP)
under the control of the alpha-CaMKII promoter18,31. Driving
ChR2-expressing pyramidal neurons with a ramp of blue light
(2 s of increasing intensity) was sufficient to induce a robust
synchronization in control brain slices, as manifested by
an increase in IPSC power in the 20–30 Hz frequency band in
whole-cell recordings from layer 2/3 pyramidal neurons (Fig. 3).
In contrast, the same manipulation evoked variable activity
with a broadly reduced peak power in layer 2/3 neurons in
Nkx2-1E12.5LOF brain slices (Fig. 3), indicating an impaired
capacity of local inhibitory circuits to synchronize at higher
frequencies. This suggests that the inhibitory circuits in the
Nkx2-1E12.5LOF cortex may not be able to sustain fast oscillations
in vivo in behaving mice.

In the final sets of experiments, we addressed the question
whether fast cortical oscillations persist in the Nkx2-1E12.5LOF

mice during behaviour. Local field potentials (DLFP in bipolar
configuration between supragranular and infragranular layers)
were recorded in the barrel cortex in control and Nkx2-1E12.5LOF

mice during a novelty-induced exploration paradigm. During
exploration, behavioural measures were not different between
control and Nkx2-1E12.5LOF animals (mean±s.e.m.): occupancy
of a novel object (novel object visit/total time): 0.07±0.018 and

0.07±0.042 (P¼ 0.917); speed of movement (m s� 1):
0.046±0.0055 and 0.037±0.0014 (P¼ 0.146); and distance
covered (m): 8.26±0.741 and 6.92±0.151 (P¼ 0.081),
respectively. However, we observed a dramatic difference
between control and Nkx2-1E12.5LOF mice in terms of oscillations
(Fig. 4c,d). To focus on the rhythmic components of the
LFP (instead of total spectral power that includes the
non-rhythmic 1/f background), we used the better oscillation
detection (BOSC) spectral analysis method. This technique
detects oscillatory episodes based on power and duration
threshold of the wavelet-filtered signal32,33. The probability of
oscillatory episodes was highest around the gamma frequency
range in control mice, whereas in the Nkx2-1E12.5LOF mice the
gamma frequency component was nearly absent and the peak
frequency was shifted to the lower beta frequency range (Fig. 4).
These results thus demonstrate that the PVþ /SSTþ cell-type
switch indeed interferes with the capacity of cortical circuits to
generate gamma oscillations in the somatosensory barrel cortex
during behaviour, as predicted based on our optogenetic
experiments in brain slices.

Discussion
Our study answered three questions regarding the role of
GABAergic inhibition during development and in the young
adult cortex. First, we showed that genetic deletion of two major
interneuron cell types, the PVþ and SSTþ interneurons, can be
largely compensated for at the level of cortical E/I balance
development when the total interneuron cell count remains
unchanged. This is in contrast to the PVþ /SST cell fate switch
induced by the Nkx2.1 deletion at E10.5, just 2 days earlier than
the timing used here, which induces a significant reduction in the
number of cortical interneurons and leads to pronounced
spontaneous seizures6. We have also observed transient changes
in the Nkx2-1E12.5LOF pyramidal neuron cellular properties
during the second postnatal week, which were largely
compensated for by the end of the third week. The second-to-
third week period marks the critical period of RF development in
the somatosensory barrel cortex26,27. This suggests that some
forms of homeostatic plasticity, known to play important roles
during postnatal development29, are activated and contribute to
the establishment of E/I balance.

Second, the finding of normal sensory-evoked responses in the
Nkx2-1E12.5LOF barrel cortex suggests that the PVþ /SSTþ cell
types can be also compensated for during somatosensory RF
development. The role of inhibition in RF development was
examined first in the visual cortex in the GAD2 knockout mice, in
which the lack of the GAD65 isoform was shown to lead to a
reduction in fast inhibitory transmission, enhanced sensory-
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evoked responses and a deficit in monocular deprivation-induced
plasticity9. PVþ interneurons are likely to play a critical role in
mediating normal RF development and plasticity, because their
maturation occurs approximately in parallel to critical periods of
RF development in sensory cortices and their responses are
modulated by monocular deprivation7,28,34,35. Thus, our data do
not exclude a role of PVþ interneurons in this process, but
support a model in which the overall level of inhibition mediated
by PVþ and possibly other interneuron subtypes and E/I
balance7, rather than specific cellular properties of the PVþ
interneurons, is necessary for normal RF development. In
addition, although our data show that the PVþ and SSTþ
interneurons are not necessary for normal RF development in the
barrel cortex, this finding should not be interpreted to mean that
these cell types do not regulate RFs in the normal brain. For
example, optogenetic studies showed that PVþ interneurons can
regulate both the size and the gain of sensory RFs21,22, while the
activity of SSTþ interneurons was proposed to regulate the RF
size by the suppressive surround mechanism in the adult visual
cortex24,25.

Third, in contrast to the overall normal synaptic currents and
sensory-evoked responses, the PVþ /SSTþ cell fate switch
induced large changes at the level of cortical network activity,
including a loss of cortical gamma frequency and an augmenta-
tion of lower-frequency oscillations in the Nkx2-1E12.5LOF mice.
While several studies have demonstrated that cortical gamma
activity can be externally manipulated by multiple means,
including optogenetic activation of pyramidal neurons and
PVþ interneurons, glutamate AMPA/kainate and metabotropic
receptor-mediated excitation and cholinergic neuromodula-
tion18–20,36–42, our study demonstrates that the MGE-derived
interneuron subtypes are necessary for the generation of cortical
gamma rhythms.

Our study does not directly address the question of which
interneuronal cellular properties are necessary for the generation
of gamma oscillations. On the basis of modelling studies, the lack
of fast signalling properties of the PVþ interneurons, including
synaptic kinetics, rapid action potentials and high intrinsic
resonance frequency, is likely to play a critical role in the
observed oscillatory phenotype13,14,43. In addition, the SSTþ
interneurons, which innervate distal dendrites of cortical
pyramidal neurons, have also been shown to synchronize even
though at lower (o30 Hz) frequencies44. Therefore, the genetic
deletion of SSTþ interneurons may also contribute to the
oscillatory phenotype observed in the Nkx2-1E12.5LOF cortex.

In summary, our study describes distinct developmental roles
of cortical inhibition—cell type-independent regulation of E/I
balance and sensory RFs and cell type-dependent regulation of
fast cortical oscillations. To our knowledge, this is the first
demonstration of a selective deficit in neuronal network
synchronization, in the absence of other synaptic network
changes. Since the E12.5 Nkx2.1-1 deletion does not affect
interneuron composition in the hippocampus or elsewhere in the
brain6, our study opens the door to future investigations using the
Nkx2-1E12.5LOF mouse model to probe the roles of cortical
gamma oscillations in cognitive behaviours.

Methods
All data are presented as mean±s.e.m. Statistical significance was tested using the
Student t-test or Mann–Whitney U-test, as stated in the Figure legend texts
(significance level o0.05). Animal procedures were approved by the Cold Spring
Harbor Laboratory Animal Care and Use Committee. All animals were housed
under constant temperature and light conditions (12 h cycle lights ON: 0600, lights
OFF: 1800) and given food and water ad libitum.

Generation of Nkx2-1E12.5LOF mice. Triple-heterozygote male mice (Nkx2-1þ /�

(ref. 45); Olig2CreER/þ (ref. 46); Z/EGþ /� (ref. 47)) were intercrossed with Nkx2-1
conditional homozygote females (Nkx2-1C/C) (ref. 48) to generate experimental
control (Nkx2-1C/þ ; Olig2CreER/þ ; Z/EGþ /� or Z/EG� /� ) and mutant (Nkx2-
1C/� ; Olig2CreER/þ ; Z/EGþ /� or Z/EG� /� ) mice. Tamoxifen (4 mg, Sigma) was
administered to pregnant mice at E12.5 to induce the Cre recombinase, leading to a
cell fate switch of superficial cortical interneurons derived from the MGE6.

Immunocytochemistry. The mice were killed by transcardial perfusion with 4%
paraformaldehyde and the brains were dissected and sectioned coronally at 50 mm.
Sections comprising the somatosensory cortex were incubated in a blocking
solution containing 5% donkey serum and 0.2% Triton X-100 in phosphate buffer
for 1 h, followed by the incubation with the blocking solution containing mouse
anti-parvalbumin (Sigma, 1:1,000) or rat anti-somatostatin (Millipore, 1:200)
antibodies or fluorescein-labelled Wisteria floribunda lectin (Vector Laboratories,
1:500), in combinations with rabbit anti-GABA (Sigma, 1:500) or guinea pig anti-
type 2 vesicular glutamate transporter (VGluT2, Millipore, 1:1,000) antibodies
overnight at 4 �C. Primary antibodies were fluorescently labelled by incubation
with appropriate secondary antibodies conjugated with Alexa Fluor-405, -488 and
-594 (1:200, Invitrogen). Fluorescence images were taken using LSM710 confocal
laser-scanning microscope (Zeiss). VGluT2 staining was used to visualize barrel
structures of the somatosensory barrel cortex, based on the dense labelling of axon
terminals from thalamocortical projections49. The specific interneuron cell types
were counted manually using FIJI image processing software.
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Figure 4 | LFP recordings in the barrel cortex in awake free-moving mice.

(a) Schematic illustration of the setup of LFP recordings. One microdrive

electrode was inserted in the upper layers and one in the deep layers in the

barrel cortex. (b) LFPs were obtained in a novelty-induced exploration

condition, where the animals were actively whisking and exploring around

the novel objects in the arena. Heat map shows the occupancy of the

animal in the novel arena during LFP recordings and the trace indicates a

segment of track that the animal navigated on. (c–d) Sample traces of LFPs

(left traces, control; right traces, mutant; upper traces, recordings from the

upper layers; lower traces, recordings from the deep layers). The beta

frequency component is highlighted in yellow while the gamma component

is in gray. (e) The probability distribution of oscillatory frequency

component computed by the better oscillation detection method (BOSC) in

a pair of the control (blue line) and mutant (red line). (f) The summary data

of BOSC analysis shown in d (n¼ 3 pairs of mutant and wild-type mice).

The high-frequency gamma component is diminished in the mutant and

instead the beta component becomes dominant.
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In vitro whole-cell patch-clamp recordings. Acute brain slices including the
barrel cortex were made by cutting the brain at 45� angle between the horizontal
and sagittal plane50 in an ice-cold artificial cerebrospinal fluid (ACSF) containing
(in mM): 125 NaCl, 2.5 KCl, 1 CaCl2, 4 MgCl2, 25 NaHCO3, 1.25 NaH2PO4, 25
glucose, 1 kynurenic acid, equilibrated with a mixture of 95% O2 and 5% CO2.
The thickness of slices is 300 mm and the age of animals is postnatal day 20–25
(P20–26), unless otherwise noted. The holding chamber was maintained at
29±1 �C for about 30 min and then kept at room temperature.

Membrane currents and potentials were recorded by using whole-cell patch-
clamp techniques (MultiClamp 700B patch-clamp amplifier, Molecular Devices) at
29 �C. The ACSF contained (in mM): 125 NaCl, 2.5 KCl, 2 CaCl2, 1 MgCl2, 25
NaHCO3, 1.25 NaH2PO4, 25 glucose (pH 7.4), unless otherwise noted. The slices
were observed under an upright microscope (BX50WI, Olympus) equipped with a
� 40 water immersion objective and IR-DIC optics via a CCD (charge-coupled
device) camera (ORCA, Hamamatsu). Glass micropipettes fabricated from
borosilicate glass capillaries were filled with the intracellular solution (tip
resistance: 4–7 MO) containing (in mM): 135 K-gluconate, 4 KCl, 10 HEPES, 4
MgATP, 0.3 Na3GTP, 10 phosphocreatine-2Na (pH 7.35) for current-clamp
recordings and 100 CsMeSO3, 5 CsCl, 10 HEPES, 10 BAPTA-4Cs, 4 MgATP, 0.3
Na3GTP, 10 phosphocreatine-2Na, 4 QX-314, 0.3% biocytin (pH 7.35) for voltage-
clamp recordings. Series resistance was typically o20 MO. Signals were filtered at
1–4 kHz, digitized at 5–20 kHz (USB-6259, National Instruments) and acquired by
a custom-made program written in LabVIEW (National Instruments). Miniature
EPSCs were recorded at � 70 mV in ACSF containing 1 mM tetrodotoxin (TTX),
10mM SR-95531 (gabazine) and 5 mM (RS)-CPP, whereas miniature IPSCs were
recorded at þ 15 mV in the presence of 1 mM TTX, 5 mM 2,3-dioxo-6-nitro-1,2,3,4-
tetrahydrobenzo[f]quinoxaline-7-sulfonamide (NBQX) and 5 mM (RS)-CPP (all
drugs were purchased from Tocris). Miniature synaptic events were detected based
on the amplitude threshold of 5 pA and fitting of the events with an alpha function
of 1 ms rise and 2 ms decay time constants for miniature EPSCs and 2 ms rise and
20 ms decay time constants for miniature IPSCs, followed by visual inspection to
exclude inappropriate ones such as overlapped events or events on noisy baseline.
Spontaneous synaptic activities without TTX were observed in slightly excitable
ACSF in which 2.5 mM KCl and 1 mM MgCl2 were replaced with 4 mM KCl and
0.5 mM MgCl2, respectively28. EPSC and IPSC components were recorded at � 60
and þ 15 mV, respectively, which are close to the reversal potential of the other
synaptic component. Because of high occurrences of events, the spontaneous
activities were evaluated by calculating the area or charge of the responses. All data
analyses were performed by using Igor Pro (WaveMetrics).

In vivo whole-cell patch-clamp recordings. Animals (P29–93) were anaesthetized
with urethane (1.5–2 g per kg body weight, intraperitoneal). After incision of scalp,
a metal plate was attached to the skull with dental cement to fix a head and make a
chamber, and a craniotomy of about 2 mm diameter was made over the barrel
cortical region. The dura mater was carefully removed with a needle while the
chamber was superfused with ACSF. The exposed surface was then covered with
1.5% agarose. In vivo whole-cell patch-clamp was obtained by a ‘blind’ technique51.
The patch pipette and the internal solution were the same as those used in slice
experiments. Initially, LFP recording was performed in layer 2/3 to estimate the
primary whisker of the target recording site by stimulating whiskers of the opposite
side randomly. Then, a micropipette electrode that has a positive pressure of
30–40 mbar was inserted into the target region while the current response is
continuously monitored in a voltage-clamp mode. Positive pressure was released
when the resistance suddenly increased, indicating that the tip of the pipette may
have been pushed against a cell membrane. Gentle suction was then applied to
achieve a GO seal if needed. The whole-cell recording configuration was established
by voltage clamp, with series resistances between 10 and 75 MO51. For current-
clamp recordings, bridge balance was adjusted manually to eliminate voltage errors
arising from series resistance. Sensory stimulations were done as described52, by
delivering mechanical stimuli (9.5� deflection angle) to each whisker of the
opposite side by a capillary attached to a piezoelectric apparatus (Piezo Systems)
for 200 ms at a frequency of about 1 Hz. Recordings were obtained with a
MultiClamp 700B patch-clamp amplifier, filtered at 10 kHz and digitized at
10–20 kHz using a similar system to that of slice experiments. After recordings,
animals were perfused transcardially with 4% paraformaldehyde in phosphate
buffer.

LFP recordings in awake animals. All experiments were performed with the
experimenter blind to strain of mice. Adult (over 2 months old) Nkx2-1 mutants
and their control litter mates were implanted with custom-built microdrives in the
left barrel cortex (1.0 mm posterior to bregma and 3.0 mm lateral to midline) using
stereotaxis as described previously53. One electrode was placed in the superficial
layer (100 mm deep from the pia mater) and the other was in the deeper layer (500–
600mm deep). After 10 days recovery from the surgery, LFPs were obtained using
the Cheetah system (Neuralynx) in a novelty-induced exploration condition, where
the animals were actively whisking and moving around the novel objects in the
arena. Spectral analysis was performed with multitaper technique in Chronux
software54 and the better oscillation detection method (BOSC)33 using Matlab
(Mathworks).

Photostimulation by ChR2. ChR2 fused to YFP was selectively transfected in L2/3
pyramidal neurons in the somatosensory cortex by a stereotaxic injection of adeno-
associated viral vectors based on the a-CaMKII promoter. The viral solution of
about 90 nl was injected into the barrel cortical region at P13 or 14 (posterior
1.2 mm and lateral 3.0 mm relative to bregma and depth 0.25 mm from the dura
mater) and the brain slices were prepared 7–12 days after the injection. After
whole-cell recording was established from a cell located in the centre of ChR2-
expressing area, ChR2 was activated by illumination of a blue light at around
470 nm through the objective using an LED (LEDC5, Thorlabs), which is attached
to the microscope and controlled by the patch-clamp software. The illumination of
ramped intensity for 3 s could effectively induce the oscillatory synaptic activities in
control neurons. The IPSCs were measured from the trace between 2 and 3 s with
respect to the onset of light stimulation. The IPSC decay time constants were
measured by fitting with a single exponential function. The degree of rhythmicity
was evaluated with a highest frequency component and its intensity of the PSD.
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