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Abstract

Background: The processing and analysis of the large scale data generated by next-generation sequencing (NGS)
experiments is challenging and is a burgeoning area of new methods development. Several new bioinformatics
tools have been developed for calling sequence variants from NGS data. Here, we validate the variant calling of
these tools and compare their relative accuracy to determine which data processing pipeline is optimal.

Results: We developed a unified pipeline for processing NGS data that encompasses four modules: mapping,
filtering, realignment and recalibration, and variant calling. We processed 130 subjects from an ongoing whole
exome sequencing study through this pipeline. To evaluate the accuracy of each module, we conducted a series of
comparisons between the single nucleotide variant (SNV) calls from the NGS data and either gold-standard Sanger
sequencing on a total of 700 variants or array genotyping data on a total of 9,935 single-nucleotide polymorphisms.
A head to head comparison showed that Genome Analysis Toolkit (GATK) provided more accurate calls than
SAMtools (positive predictive value of 92.55% vs. 80.35%, respectively). Realignment of mapped reads and recalibration
of base quality scores before SNV calling proved to be crucial to accurate variant calling. GATK HaplotypeCaller
algorithm for variant calling outperformed the UnifiedGenotype algorithm. We also showed a relationship between
mapping quality, read depth and allele balance, and SNV call accuracy. However, if best practices are used in data
processing, then additional filtering based on these metrics provides little gains and accuracies of >99% are achievable.

Conclusions: Our findings will help to determine the best approach for processing NGS data to confidently call
variants for downstream analyses. To enable others to implement and replicate our results, all of our codes are freely

available at http://metamoodics.org/wes.
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Background

Advances in next-generation sequencing (NGS) technol-
ogy are beginning to provide a cost-effective approach
for identifying and cataloging the full spectrum of gen-
etic variation across the genome at a scale not previously
attainable by more traditional techniques such as Sanger
sequencing or single-nucleotide polymorphism (SNP) ar-
rays, thus creating a foundation for a profound understand-
ing of human diseases [1-4]. The ability to comprehensively
examine the genome in a high-throughput and unbiased
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manner has generated a great deal of interest in the use of
NGS platforms to sequence entire exome or genome of
large numbers of individuals to search variation in com-
mon disease, mutations underlying rare Mendelian disease
[5,6], or spontaneously arising variation for which no
gene-mapping shortcuts are available (e.g., somatic muta-
tions in cancer [7,8] or de novo mutations in autism [9-13]
and schizophrenia [14]).

Although NGS is a powerful approach, there are many
technical challenges involved in obtaining a complete
and accurate record of sequence variation from NGS
data and in turning raw sequence reads into biologically
meaningful information [15-17]. Given accurately mapped
and calibrated reads, identifying simple SNPs, let alone
more complex variation such as multiple base pair substi-
tutions, insertions, deletions, inversions, and copy number
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variation, requires complex statistical models and sophisti-
cated bioinformatics tools to implement these models on
large amounts of data [16,18]. A number of such tools have
recently been developed, including the short oligonucleo-
tide alignment program (SOAP) [19,20], SAMtools [21],
and the Genome Analysis Toolkit (GATK) [22]. However,
many questions remain about how well these different tools
work in identifying and accurately calling sequence vari-
ation and what are the best strategies for optimizing their
use. Several recent studies have begun to evaluate and com-
pare the performance of these tools [23-25].

We sought to add to these studies in order to determine
best processes for identifying and calling sequence variants
from NGS data. We carried out a comparative analysis
of 130 whole exome subjects from an ongoing bipolar
disorder exome sequencing project. We developed a
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multi-stage pipeline for processing the exome data on these
subjects and then examined the accuracy of calls derived
from different implementations of the pipeline by validation
with Sanger sequencing of a total of 700 variants using the
ABI capillary sequencing platform and SNP genotyping on
a total of 9,935 variants using the Affymetrix microarray
platform. The goal was to critically evaluate and optimize
processes for generating valid single nucleotide variant
(SNV) calls from NGS data. Our results provide useful in-
formation and guidance for future studies analyzing data
from next-generation sequencing experiments.

Results and discussion

Pipeline development

We developed a modular pipeline for processing NGS as
shown in Figure 1 and described in Additional file 1 and
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Figure 1 Modular structure of pipeline for processing next-generation sequencing data. The pipeline contains 4 modules: (1) mapping, (2)
filtering, (3) realignment/recalibration, and (4) variant calling. Detailed description is available at http://metamoodics.org/wes.



http://metamoodics.org/wes

Pirooznia et al. Human Genomics 2014, 8:14
http://www.humgenomics.com/content/8/1/14

in more detail at our Wiki site (http://metamoodics.org/
wes). First, raw read data with well-calibrated base error
estimates in fastq format are mapped to the reference gen-
ome. The BWA mapping (version 0.7.0) application [26] is
used to map reads to the human genome reference, allow-
ing for two mismatches in 30-base seeds, and generate a
technology-independent SAM/BAM reference file format
[21]. Next, duplicate fragments are marked and eliminated
with Picard (version 1.8) (http://picard.sourceforge.net),
mapping quality is assessed and low-quality mapped reads
are filtered, and paired read information is evaluated to
ensure that all mate-pair information is in sync between
each read. We then refine the initial alignments by local
realignment and identify suspicious regions. Using this in-
formation as a covariate along with other technical covari-
ates and known sites of variation, the GATK base quality
score recalibration (BQSR) is carried out. Lastly, SNV call-
ing is performed using the recalibrated and realigned
BAM files.

In this study, we evaluated different components of
the pipeline that may influence the accuracy of the SNV
calls in order to optimize the pipeline. We did this by
comparing SNV call sets from the pipeline versus ‘gold
standard’ calls either from targeted Sanger sequencing or
previously available genome-wide association study (GWAS)
data. In particular, we compared two of the most commonly
used tools for variant calling (SAMtools versus GATK), dif-
ferent algorithms for variant calling implemented by GATK
(UnifiedGenotyper versus HaplotypeCaller and hard filter-
ing versus VariantRecalibration), and the influence of sev-
eral sequence parameters (read depth, allele balance, and

mapping quality).

GATK versus SAMtools
A number of tools have been developed for variant call-
ing from aligned sequence reads, including GATK [22],
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SAMtools [21], MAQ [27], VarScan [28], SNVer [29],
GNUMAP [30], and SOAPsnp [31]. We sought to com-
pare GATK (version 2.6) and SAMtools (version 0.1.18),
which are among the most widely used. Before making this
comparison, we first evaluated the effect of realignment
and recalibration of sequences on the accuracy of down-
stream variant calling. We did this by comparing SNV
call sets from SAMtools with and without realignment/
recalibration on a sample of 30 subjects with an average
of 14,730 SNVs per subject. As shown in Figure 2, the
majority of SNVs, approximately 96% of all SNVs called
by either of the call sets, were called by both. Less than 1%
of all SNVs were called only by the pipeline that did not
use realignment/recalibration, while another 3% of all
SNVs were called only by the pipeline with realignment/
recalibration. We resequenced with Sanger methods a
random selection of identified variants to evaluate the ac-
curacy of these calls. A total of 341 individual SNV calls
were available to evaluate the pipeline with realignment/
recalibration, for which we observed a positive predictive
value of 88.69% among variants that were called only after
realignment/recalibration. By contrast, we found a positive
predictive value of only 35.25% among individual SNV
calls for the pipeline without realignment/recalibration
only. Similar to others [23,32], we concluded based on
these findings that realignment/recalibration improves the
accuracy of calls and implemented these steps in our pipe-
line as standard practice moving forward.

We then compared SNV calls from GATK versus SAM-
tools using data from the same 30 subjects (Figure 3). For
these comparisons, we used the UnifiedGenotyper algo-
rithm in GATK and mpileup in SAMtools. We rese-
quenced 336 individual calls from GATK and observed a
true-positive rate of 95.00%. By contrast, from calls only
made by SAMtools (1.23% of the total calls), we rese-
quenced 341 individual calls and observed a much lower
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sequencing was performed to evaluate the accuracy of these calls.
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Figure 2 Comparison of SNV calling using SAMtools with and without realignment/recalibration on a sample of 30 subjects. Sanger
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Figure 3 Comparison of SNVs calls from GATK versus SAMtools
using data from 30 subjects. For these comparisons, we used the
UnifiedGenotyper algorithm in GATK and mpileup in SAMtools.
Sanger sequencing was performed to evaluate the accuracy of
these calls.

true-positive rate of 69.89%. We considered whether it
would be better to make calls using both tools and take
the intersection as the final call set. Just over 96.38% of all
SNVs called by either tool were called by both. We rese-
quenced 165 individual calls of these SN'Vs and observed
a positive predictive value of 95.34%. Another 2.39% of all
SNVs were called only by GATK. Resequencing of 171 in-
dividual calls of these variants yielded a positive predictive
value of 95.37%. As a result, we decided to go with GATK
exclusively as our variant calling tool. Additional file 2:
Table S1 provides a breakdown of the characteristics of
the SNV calls that were concordant and discordant with
the Sanger sequencing by the different calling methods.

Variant quality score recalibration versus hard filter

Moving forward with GATK, we examined the accuracy of
calls when using hard filtering with recommended thresh-
olds from GATK (variant confidence score =30, mapping
quality 240, read depth 26, and strand bias FSfilter <60);
a full description is provided in Additional file 1 versus
using GATK's Variant Quality Score Recalibration (VQSR),
which builds a Gaussian mixture model by looking at the
annotation values over a high-quality subset of the input
call set and then uses this model to evaluate all input vari-
ants. We compared calls using both strategies against
GWAS SNP genotype data previously obtained from 100
subjects and 9,930 SNVs. We used the UnifiedGenotyper
algorithm for these comparisons. A total of 181,304 out of
191,361 (94.74%) total SNVs were called in common be-
tween the hard filtering and VQSR strategies. Table 1
shows a breakdown of genotypes for these 181,304 SNVs.
Over 99% of individual genotype calls at the SN'Vs were
concordant between both strategies. As a result, the sensi-
tivity and specificity of VQSR versus hard filtering using
the GWAS SNP genotype as the gold standard were very
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Table 1 UnifiedGenotyper Variant Quality Score
Recalibration (UGVR) versus Hard Filter (UGHF)

UGHF
AA AB BB
UGWR AA 513,601 315,00, 26] 49 [0, 0, 0, 49]
AB 0 296,714 0
BB 0 1,235 [0, 6, 1,222, 7] 170,818

similar, with sensitivity of 99.87% for both VQSR and hard
filtering, and specificity of 99.79% and 99.56% for VQSR
and hard filtering, respectively. In order to evaluate the
differences more closely, we examined the small percent-
age of discordant genotype calls between VQSR and hard
filtering. Here, the calls from VQSR were almost always
in better agreement with the available GWAS SNP geno-
type data than were the calls from hard filtering (1,227
out of 1,233 calls in agreement for VQSR vs. 6 out of
1,233 for hard filtering). To evaluate the differences with
respect to rarer SNVs with minor allele frequency (MAF)
<10% that are not available in the GWAS data, we ran-
domly selected 50 rarer SN'Vs from the subset that were
discordantly called between VQSR and hard filtering and
performed Sanger sequencing to validate the calls. Again,
the VQSR calls were in better agreement (70%) than the
hard filtering calls (61%) with the reference calls from
Sanger sequencing. Overall, the comparisons against data
from both GWAS and Sanger sequencing showed that
VQSR provides better calling accuracy than simply using
hard filtering. Thus, we used variant recalibration moving
forward.

Shown is a comparison of genotype calls from the two
approaches for the 181,304 variants that were called by
both and for which we had GWAS SNP genotypes. A re-
fers to the reference allele and B to the alternative allele.
The four values in brackets [w, x, y, z] refer to the geno-
type calls from the GWAS data, where w refers to homo-
zygous reference (AA) calls, x to heterozygous (AB) calls,
y homozygous alternative (BB) calls, and z to missing.
The GWAS genotype calls are only shown for those calls
that are discrepant between UGVR and UGHF. A total of
191,361 variants were called by both UGVR and UGHEF.
Of these, 181,304 (94.74%) were in common, 3,655 (1.91%)
were unique to UGVR, and 6,402 (3.35%) were unique to
UGHFE.

UnifiedGenotyper versus HaplotypeCaller

We next compared the accuracy of calls using the Unified-
Genotyper (UGVR) versus HaplotypeCaller (HCVR) algo-
rithms as implemented in GATK version 2.5 (Table 2).
Here, we used variant recalibration with both algorithms.
Again, comparisons were made against GWAS genotype
data from 100 subjects and 9,935 single nucleotide varia-
tions (SN'Vs). HaplotypeCaller calls variants via a local de
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Table 2 UnifiedGenotyper Variant Quality Score
Recalibration (UGVR) versus HaplotypeCaller Variant
Quality Score Recalibration (HCVR)

UGVR
AA AB BB
HCVR  AA 510,296 194 [176, 17,0, 1] [0,0,0,0]
AB 196 [60, 133, 2, 1] 294,595 210 [0, 5,204, 1]
BB 51[0,0,5,0] 230 [0, 10, 219, 1] 171,086

novo assembly of haplotypes in an active region, while
UnifiedGenotyper simply looks for a coincident haplo-
type event in the reads. Both methods evaluate haplo-
types using an affine gap penalty Pair Hidden Markov
Model [33]. However, UnifiedGenotyper uses a Bayes-
ian genotype likelihood model and estimates the most
likely genotype calls while HaplotypeCaller chooses the
best two haplotypes which explain the read data [34]. Of the
190,352 SNVs called by either algorithm, 90.29% (171,867)
were called in common. Among those SNVs called in
common, the genotype calls were also highly concordant
between the two algorithms (99.91%). Overall, the sensi-
tivity and specificity of the calls from UnifiedGenotype
versus HaplotypeCaller were nearly similar: 99.78% versus
99.80%, respectively, for sensitivity, and 99.68% versus
99.70%, respectively, for specificity. Among the few dis-
cordant genotype calls, the HCVR algorithm provided
slightly more accurate calls than UGVR, when compared
against the GWAS data. Of the 835 discordant genotype
calls, the HCVR was correct 63.83% of the time as com-
pared to 34.85% for UGVR. Both algorithms did equally
well in calling homozygous alternative calls, but UGVR
made a few more mistakes in making heterozygous calls
when the true genotype was homozygous reference.
Again, to evaluate the accuracy with respect to rarer SNVs
(MAF <10%), we randomly selected 50 rarer SNVs from
the subset that was discordantly called between UGVR
and HCVR and performed Sanger sequencing to validate
the call. The results were very similar to what we observed
with comparisons against GWAS data. HCVR was correct
61% of the time as compared to 39% of the time for
UGVR.

Shown is a comparison of genotype calls from the two
approaches for the 465,681 variants that were called by
both and for which we had GWAS SNP genotypes. A re-
fers to the reference allele and B to the alternative allele.
The four values in brackets [w, %, y, z] refer to the geno-
type calls from the GWAS data, where w refers to homo-
zygous reference (AA) calls, x to heterozygous (AB) calls,
y homozygous alternative (BB) calls, and z to missing. The
GWAS genotype calls are only shown when the calls are
discrepant between UGVR and HCVR. A total of 190,352
variants were called by both UGVR and UGHE. Of
these, 171,867 (90.29%) were in common, 15,839 (8.32%)
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were unique to UGVR, and 2,646 (1.39%) were unique to
HCVR.

Sequencing parameters

Finally, we evaluated the effects of varying certain se-
quencing parameters such as read depth, allele balance,
and mapping quality (Figure 4). We compared the accur-
acy and missing data rates of the sequencing calls after
systematically varying these parameters using data from
100 subjects with valid genotype data from GWAS on
7,370 SNPs. Overall, the accuracy of the sequence calls,
which were made using the UnifiedGenotyper algorithm
and VQSR, was very high when compared with the
GWAS genotype calls. However, several trends emerged.
The accuracy of calls increased with both increasing read
depth and allele balance towards 50-50. The increase in
accuracy was most notable after read depths greater than
10 times, while it plateaued after allele balances between
20 and 80. The missing data rate similarly increased with
read depth and allele balance as calls that did not meet
the more stringent read depth or allele balance require-
ments were filtered. Thus, as expected, there was a trade-
off between increasing accuracy and increasing missing
data. This was not found for mapping quality. As mapping
quality increased, the missing data rate also increased
while the accuracy actually decreased. This might be ex-
plained by the fact that as the mapping quality criteria are
increased, the number of reads that align to the reference
genome decreases, leading to lower overall read depths on
which to base downstream SNV calls and, as a result,
lower accuracy calls. It is important to note, however, that
these trends were relatively subtle and the overall accuracy
of these calls made using best practices was well over 99%,
regardless of the read depth, allele balance, and mapping
quality thresholds.

Conclusions

Advances in next-generation sequencing technologies have
improved our ability to characterize genomic sequence
variation at a scale and resolution not previously possible.
This has opened up new avenues for studying how genetic
variation contributes to human disease. A major challenge
is how to process the copious data generated by the new
technologies to yield high-quality data for downstream ana-
lyses. A variety of computational tools have been developed
for this purpose. We have implemented a semi-automated
pipeline using these tools to manage and analyze next-
generation sequence data, and here we evaluated how key
elements of the pipeline influence data quality.

After comparing SNV calls from GATK and SAMtools,
we decided to adopt GATK [22] as our primary variant
calling platform. In general, we found that GATK yields
very high quality variant call data. Similar to others [23,31],
we observed that realignment of mapped sequence reads
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accuracy. We compared the accuracy and missing data rates of the sequencing calls after systematically varying these parameters using data




Pirooznia et al. Human Genomics 2014, 8:14
http://www.humgenomics.com/content/8/1/14

around putative insertion/deletions (indels) and recali-
bration of base quality scores before variant calling are
crucial to this performance. An example of the effects of
realignment and recalibration on variant calling is illus-
trated in Additional file 3: Figure S1 and Additional file 4:
Figure S2. For these comparisons between GATK and
SAMtools with and without realignment/recalibration, we
did not have SNP genotype data, and it was not practical
to validate with Sanger sequencing non-calls by the dif-
ferent methods. As a result, we did not have information
on false-negative and true-negative calls. Still, based on
the available results from the validation of made calls, we
felt confident in moving forward with GATK with realign-
ment and recalibration.

GATK has developed several algorithms for variant
calling from realigned and recalibrated sequence reads,
including UnifiedGenotyper and HaplotypeCaller. Both
performed well, but the HaplotypeCaller algorithm pro-
vided more accurate calls over all. Unlike UnifiedGen-
otype, HaplotypeCaller is capable of calling SNPs and
insertion/deletion (indels) simultaneously. When the al-
gorithm encounters a region that is highly variable, it
discards the existing mapping information and reassem-
bles the reads in the region de novo. The result is that
HaplotypeCaller may be more accurate when calling re-
gions that are traditionally difficult to call. This comes at a
cost, however, as the HaplotypeCaller algorithm is cur-
rently computationally intensive, which limits the feasibil-
ity of using this approach with whole genome or larger
exome sequencing studies. Improvements to the algo-
rithm are needed to render it more efficient and practical
to use with such studies. GATK has also implemented a
Variant Quality Score Recalibration algorithm that uses
machine learning methods for filtering variants that we
demonstrated works better in terms of yielding a final set
of accurate calls compared to hard filters based on pre-
determined thresholds. Finally, we showed that there is a
relationship between mapping quality, read depth and al-
lele balance, and variant call accuracy, but if best practices
are used throughout data processing, then additional fil-
tering based on these metrics provides little gains.

Several previous studies have investigated factors that
influence the accuracy of variant calling algorithms with
sequence data [23-27]. One study sequenced 15 exomes
from four families and processed the raw data using dif-
ferent alignment and variant-calling pipelines and found
that there was a low concordance between approaches
[25]. Another study used exome sequence data on 20 in-
dividuals and simulated whole genome sequence data to
compare different algorithms for variant calling. Consistent
with our results, this study found that GATK in particular
outperformed SAMtools, especially for low coverage data,
and yielded the most accurate data with multi-sample call-
ing [27]. Still another study used whole genome sequence
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data from monozygotic twins to determine optimal se-
quencing filters for achieving the greatest concordance in
variant calling at the minimal costs of filtered data [29].
However, similar to our study, work by the group that de-
veloped GATK suggested that variant recalibration with
their machine learning approach performed better than
strategies using hard filtering [25].

Our study has several strengths including having been
carried out with real rather than simulated sequence data
and having utilized direct comparisons against calls from
more traditional platforms such as Sanger sequencing and
GWAS microarray data that were previously validated.
One limitation is that the comparisons against GWAS data
were only for more common variants. It is unclear if the
observed accuracy rates would be different for rarer vari-
ants that are not well represented in GWAS data. How-
ever, we note that when the sensitivity and specificity of
SNV calls for lower frequency variants among the GWAS
data (<20%) were examined, the results were not materially
different from the more common variants (results not
shown). In addition, we did not evaluate the quality of
indel calls which pose their own challenges. Overall, the re-
sults reported here provide reassurance that it is possible
to generate highly accurate data from next-generation se-
quencing. Our findings will help inform researchers who
are seeking to optimize their own pipelines for working
with next-generation sequence data. As tools and methods
for processing such data are constantly evolving, we will
continue to evaluate them to determine which can yield
the highest-quality sequencing data.

Methods

Samples

Samples for the validation experiments described herein
came from an ongoing whole exome sequencing study
of bipolar disorder. A total of 130 samples were selected
from two collections of pedigrees with bipolar disorder
from Johns Hopkins or from the National Institute of
Mental Health (NIMH) Genetics Initiative Bipolar Dis-
order Collaborative Study.

Pre-capture library preparation

Genomic DNA samples were individually processed into
Hlumina paired-end or TruSeq DNA libraries using
[lumina-compatible barcoded DNA adapters [17]. Puri-
fied genomic DNA, 1-3 pg, was initially fragmented using
a Covaris S2 instrument (Covaris Inc, Woburn, MA,
USA), followed by end-repair and ligation to paired-end
adapters. As recommended by NimbleGen, pre-capture
libraries were enriched with an additional 8 cycles of high-
fidelity polymerase chain reaction (PCR). Pre-capture library
quality and yield were assessed using the Bioanalyzer DNA
1000 Kit (Agilent Technologies, Santa Clara, CA, USA) and



Pirooznia et al. Human Genomics 2014, 8:14
http://www.humgenomics.com/content/8/1/14

the NanoDrop 1000 Spectrophotometer (Thermo Scientific,
West Palm Beach, FL, USA).

Exome capture and sequencing

Due to ongoing changes in sequencing technology, se-
quencing was performed using two different exome cap-
ture kits and sequencing technologies. Our first set of
analysis comparing SAMtools and GATK assessment
was performed on sequencing data from 30 subjects cap-
tured with NimbleGen EZ exome v1.0 kit and sequenced
with the Illumina Genome Analyzer (GA) II (Illumina
Inc, San Diego, CA, USA). The NimbleGen EZ exome
v1.0 kit was designed to capture approximately 33.8 Mb
of hgl8 genomic target, or approximately 180,000 cod-
ing exons from approximately 16,000 genes annotated in
CCDS build 36.2 (April 2008 release). The remaining
comparison analyses were carried out using 100 subjects
that were captured with the NimbleGen EZ exome v2.0
kit and sequenced with the Illumina HiSeq 2000. The
NimbleGen EZ exome v2.0 kit was designed to capture
36.0 Mb of hgl9 genomic target, or approximately 300,000
coding exons from approximately 30,000 genes annotated
across CCDS build 37.1 and RefSeq release 39. Sequencing
generally produced enough coverage to obtain >80% of the
target covered at >20X sequencing depth per sample. Sam-
ples that were just below this level (>75% at 20X or more)
were also included for further analyses. Variants were
called using our pipeline as described in Additional file 1
and in more detail on our Wiki site (http://metamoodics.
org/wes).

Validation sequencing and genotyping

Next-generation sequence variant calls were validated
against either Sanger sequencing or microarray genotyping
from a previous GWAS. Sanger sequencing was carried
out on a random selection of variants identified through
our sequencing pipeline in 30 subjects. Multiple SNPs were
assayed across all individual samples. SNPs were validated
by Sanger sequencing. Primer pairs flanking each SNP
were designed using Primer3 software (http://primer3.
sourceforge.net/). Template DNA, 25-50 ng, was then
used for amplification with the NEB LongAmp PCR proto-
col. Following amplification, PCR products were visualized
on 1% agarose gels, and products which showed a single
clean band in the proper size range were selected for fur-
ther processing. PCR products were then incubated
with exonuclease I to remove excess primers and shrimp
alkaline phosphatase to remove unincorporated nucleotides.
Sequencing reactions were performed using ABI BigDye
terminator chemistry (Life Technologies, Austin, TX, USA).
Reactions were then precipitated with salt and washed with
ethanol. Samples were sequenced with both forward and
reverse primers on the ABI 3730 sequencer. SNPs were
confirmed using the CONSED software [35] to align the
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Sanger reads to the reference sequence and visualize the
alleles at the putative SNP position. In the first validation
round, 400 total SNPs were assayed. 330 of those were
confidently genotyped, 21 were potentially genotyped but
suffered from slightly messy data, and 49 failed due to
poor data quality. In the second validation round, 300
total SNPs were assayed. Our of 248 that were confidently
genotyped, 11 were potentially genotyped but suffered
from slightly messy data, 37 failed due to poor data quality,
and 4 were reported as a possible indel rather than a SNP.

In addition, for comparisons, we used SNP genotype data
from a previously conducted GWAS. Details of the GWAS
have been described elsewhere [36]. Briefly, samples were
genotyped using the Affymetrix Genome-Wide Human
SNP Array 6.0 (Affymetrix, Santa Clara, CA, USA) [37].
Allele calling was performed using the BirdSeed algorithm
[38]. Scans from the same production plate were clustered
together. Rigorous quality control measures were carried
out with the resulting genotype calls. Samples were not
used in the analysis if they had low call rate (<98.5%),
excessively high (>0.363) or low (<0.344) heterozygos-
ity, or incompatibility between reported gender and
genetically determined gender [36]. Samples were also
checked for unexpected familial relationships using pair-
wise IBD (Identity by Descent) estimation in PLINK [39].
SNPs were not analyzed if the minor allele frequency
(MAF) was <0.01, the call rate was <95%, the SNP violated
Hardy-Weinberg equilibrium (p<1x107®) in control
samples within an ancestry group, there were >3 Mendelian
errors, or there was >1 discrepancy among duplicate sam-
ples. Each plate in the study was compared to all other
plates with a Chi-square test to examine and remove any
plate effects.

Additional files

Additional file 1: Whole Exome Sequencing Analysis Pipeline.

Additional file 2: Table S1. Characteristics of the true-positive (TP) and
false-positive (FP) variant calls for the comparisons of SAMtools without
realignment/recalibrations, SAMtools with realignment/recalibration calls,
and GATK with realignment/recalibration. Characteristics include
functional annotation (using NCBI RefSeq, release 63), average read
depth, number of variants in putative indels, and number of variants
in repeat regions defined by UCSC simple tandem repeats track
(hg19).

Additional file 3: Figure S1. lllustration of SNVs at a specific locus

using the integrated genomic viewer before (top) and after (bottom)
applying realignment. Artefactual SNPs are recovered by realignment.

Additional file 4: Figure S2. lllustration of changes in the quality
scores and the residual errors by machine cycle before (left top and
bottom) and after (right top and bottom) applying quality score
recalibration.
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BAM: binary alignment map; Indel: small insertion/deletion; NGS: next-generation
sequencing; SAM: sequence alignment map; SNP: single-nucleotide
polymorphism; SNV: single-nucleotide variant; VCF: variant call format;
PLINK: population-based linkage analyses application.
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